首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
To develop phosphorus-based agronomic application rates of phytase-diet, bisulfate-amended Delmarva poultry litter in conservation tillage systems, nutrient release dynamics of the organic fertilizer under local weather conditions were investigated. Delmarva poultry litter was placed in polyvinyl chloride columns to a depth of 5 cm and weathered in the field for 570 days. Leachate from the columns was collected and measured for concentrations of various nutrients. Cumulative release of the nutrients as a function of weathering time was modeled, and the nutrient supply capacity was determined. Poultry litter leachate contained high contents of dissolved organic carbon (15–31,500 mg L?1), nitrogen (N 5–7,070 mg L?1), phosphorus (P 5–230 mg L?1), potassium (K+ 2–7,140 mg L?1), and other nutrients. Release of most nutrients occurred principally in the first 100 days, but for P and calcium (Ca2+), it would last for years. The release kinetics of N followed a logarithm equation, while P and K demonstrated a sigmoidal logistic pattern. The nutrient supply capacity of surface-applied Delmarva poultry litter was predicted at 10.9 kg N Mg?1, 6.5 kg P Mg?1, 34.7 kg K+ Mg?1, 5.4 kg Ca2+ Mg?1, and 14.0 kg SO 4 2? Mg?1. The results suggest that Delmarva poultry litter should be applied to conservation tillage systems at 6.6 Mg ha?1 that would furnish 25 kg P ha?1 and 63 kg N ha?1 to seasonal crops. In repeated annual applications, the rate should be reduced to 5.2 Mg ha?1, with supplemental N fertilization to meet crop N requirements.  相似文献   

2.
In tropical montane forests nutrients released from the organic layers of the soil can supply a large part of the vegetation's requirements. We have examined concentrations, storage, and turnover times of nutrients in the organic layer and the fluxes of nutrients by the fall of small litter (leaves, seeds, flowers, small twigs, and plant debris that passed an opening of 0.3 m × 0.3 m) in such a forest in Ecuador. The times taken for litter to turn over were estimated by relating nutrient storage in the organic layer to rate of litterfall and by incubating samples in the laboratory. The organic layer had a thickness of 2–43 cm, a mass of 30–713 t ha?1, and a nutrient storage of 0.87–21 t N, 0.03–0.70 t P, 0.12–2.5 t K, 0.09–3.2 t Ca, and 0.07–1.0 t Mg ha?1. The pH (in H2O) ranged between 3.1 and 7.4 and was correlated with the concentrations of Ca and Mg (r= 0.83 and 0.84, respectively). The quantity of small litter (8.5–9.7 t year?1) and mean concentrations of nutrients in litter (19–22 g N, 0.9–1.6 g P, 6.1–9.1 g K, 12–18 g Ca, and 3.5–5.8 g Mg kg?1) were larger than in many other tropical montane forests. The mean turnover times of elements in the organic layer increased in the order, Mg (7.0 years) < Ca (7.9) < K (8.5) < P (11) < N (14) < S (15) when calculated as the quotient of storage in the organic layer to flux by litterfall; they were < 12 years for N, P, and S in the incubation experiment. Under optimum conditions in the laboratory, the mineralization of S was just as large as the S deposition by litterfall. In weakly acid soils Mn and Zn and in strongly acid soils Ca added in a nutrient solution were immobilized during incubation. Thus, lack of S, Mn, Zn, and Ca might limit plant growth on some soils.  相似文献   

3.
ABSTRACT

Preliminary compositional nutrient diagnosis (CND) norms for maize (Zea mays L.) were developed from a small database as means and standard deviations of row-centered log ratios V X of five nutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] and a filling value R, which comprised all nutrients not chemically analyzed and quantified in 72 leaves of hybrid ‘Pioneer 3044.’ Norms were derived from maize grain yields higher than 7.7 t ha?1. Principal-component analysis performed using CND nutrient indexes allowed us to identify an antagonism between N and Mg explained by the calcareous nature of the soil and the relevant N fertilization with ammonium (NH4 +), and a positive interaction between P and K, and P-Ca and K-Ca antagonisms. Maize plants tended to take up lower amounts of N and K and higher amount of Mg in our calcareous soil than the concentrations of these nutrients reported to be optimum.  相似文献   

4.
Diagnosis and Recommendation Integrated System (DRIS) approach was employed to monitor the nutrient status of cotton (Gossipium hirsutum) in southwestern districts of Punjab, North-West India. DRIS norms for macro, secondary and micro nutrients in cotton plant are developed. Considering these DRIS norms, the most limiting nutrient for cotton plant in the region is identified along with the order in which the other nutrients become limiting. The DRIS approach indicated that 11, 3, 8, 5, 2, 4, 2, 3, 6 and 2 percent of the total cotton leaf samples collected were low in nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu), respectively. Leaf tissues of cotton plant were also found to contain high to excessive content of N, P, K, Ca, Mg, S, Fe, Mn Zn and Cu in 11, 7, 15, 19, 25, 18, 66, 33, 9 and 25 percent samples, respectively. DRIS derived sufficiency concentration ranges obtained from survey of cotton fields in this region were 2.22 to 5.20% N, 0.20 to 0.47% P, 1.05 to 2.14% K, 1.66 to 2.86% Ca, 0.34 to 0.57% Mg, 0.65 to 1.11% S, 106 to 172 mg kg?1 Fe, 35 to 68 mg kg?1 Mn, 18 to 33 mg kg?1 Zn, and 5 to 8 mg kg?1 Cu. The results elucidate that DRIS technique can be used for macro, secondary and micro nutrients indexing of cotton crop irrespective of its cultivar.  相似文献   

5.
The aim of the experiment was to evaluate the effect of organic fertilization on nutrient uptake and partitioning in potted peach trees. The study was carried out on 72 peach (Prunus persica L.) plants. The following treatments were compared: 1) unfertilized control, 2) mineral fertilization [713 mg nitrogen (N), 119 mg phosphorus pentoxide (P2O5), 476 mg potassium oxide (K2O) pot?1], 3) cow manure (119 g dw pot?1) and 4) compost (119 g dw pot?1). Compared to the untreated control, plant biomass was improved by supplying cow manure and compost. Potassium concentration in fine roots and leaves was higher in compost treated trees. Leaf concentrations of calcium (Ca) and magnesium (Mg) were decreased by applications of compost and cow manure. Nutrient concentrations in fine roots were always positively correlated with nutrients in coarse roots, only N showed a negative correlation. With the exception of Ca and Mg, macronutrients removed by trees were higher after compost fertilization than in unfertilized controls.  相似文献   

6.
A long-term field experiment was conducted in Vertisols of Solapur (Maharashtra, India) to assess the effect of the integrated use of nutrients on yield, soil properties, and nutrient balance in post-monsoon sorghum. The highest crop yield (1.19 Mg ha?1) and available nutrients (308, 14.9, and 814 kg ha?1 nitrogen (N), phosphorus (P), and potassium (K), respectively) were recorded in the treatment of 25 kg N sorghum crop residue (CR) + 25 kg N Leucaena clippings (LCs), 25 kg N (CR) + 25 kg N (urea), 25 kg N farmyard manure + 25 kg N (urea), and 25 kg N (CR) + 25 kg N (LC), respectively. Most of the nutrients were depleted except K and Ca. The response ratio for N (16 kg kg?1) and partial factor productivity (33 kg kg?1) were considerably higher in the 25 kg N (CR) + 25 kg N (LC) treatment. Conjunctive use of organic ?and chemical fertilizers helped in reducing the nutrient losses and improved their use efficiency and yield sustainability.  相似文献   

7.
The root is an important organ which supplies water and nutrients to growing plants. Data related to root growth and nutrient uptake by tropical legume cover crops are limited. The objective of this study was to evaluate root growth of tropical legume cover crops and nutrient uptake and use efficiency under different phosphorus (P) levels. The P levels used were 0 (low), 100 (medium) and 200 (high) mg kg?1 of soil and 5 cover crops were evaluated. Root dry weight, maximum root length, specific root length were significantly influenced by P and cover crop treatments. Maximum values of these root growth parameters were achieved with the addition of 100 mg P kg?1 soil. The P X cover crops interaction for all the macro and micronutrients, except manganese (Mn) was significant, indicating variation in uptake pattern of these nutrients by cover crops with the variation in P rates. Overall, uptake pattern of macronutrients was in the order of nitrogen>calcium>potassium>magnesium>phosphorus (N > Ca > K > Mg > P) and micronutrient uptake pattern was in the order of iron>manganese>zinc>copper (Fe > Mn > Zn > Cu). Cover crops which produced maximum root dry weight also accumulated higher amount of nutrients, including N compared to cover crops which produced lower root dry weight. Higher uptake of N compared to other nutrients by cover crops indicated that use of cover crops in the cropping systems can reduce loss of nitrate (NO3?) from soil-plant systems. Increase in root length and root dry weight with the addition of P can improve nutrient uptake from the soil and less loss of macro and micronutrients from the soil-plant systems.  相似文献   

8.
The role of mounds of the fungus-growing termite Macrotermes bellicosus (Smeathman) in nutrient recycling in a highly weathered and nutrient-depleted tropical red earth (Ultisol) of the Nigerian savanna was examined by measuring stored amounts of selected nutrients and estimating their rates of turnover via the mounds. A study plot (4?ha) with a representative termite population density (1.5?mounds?ha?1) and size (3.7?±?0.4?m in height, 2.4?±?0.2?m in basal diameter) of M. bellicosus mounds was selected. The mounds were found to contain soil mass of 9249?±?2371?kg?ha?1, composed of 7502?±?1934?kg?ha?1 of mound wall and 1747?±?440?kg?ha?1 of nest body. Significant nutrient enrichment, compared to the neighboring topmost soil (Ap1 horizon: 0–16?cm), was observed in the nest body for total nitrogen (N) and exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and in the mound wall for exchangeable K only. In contrast, available (Bray-1) phosphorus (P) content was found to be lower in both the mound wall and the nest body than in the adjacent topmost soil horizon. Consequently, the mounds formed by M. bellicosus contained 1.71?±?0.62?kg?ha?1 of total N, 0.004?±?0.003?kg?ha?1 of available P, 3.23?±?0.81?kg?ha?1 of exchangeable Ca, 1.11?±?0.22?kg?ha?1 of exchangeable Mg and 0.79?±?0.21?kg?ha?1 of exchangeable K. However, with the exception of exchangeable K (1.2%), these nutrients amounted to less than 0.5% of those found in the topmost soil horizon. The soil nutrient turnover rate via M. bellicosus mounds was indeed limited, being estimated at 1.72?kg?ha?1 for organic carbon (C), 0.15?kg?ha?1 for total N, 0.0004?kg?ha?1 for available P, 0.15?kg?ha?1 for exchangeable Ca, 0.05?kg?ha?1 for exchangeable Mg, and 0.06?kg?ha?1 for exchangeable K per annum. These findings suggest that the mounds of M. bellicosus, while being enriched with some nutrients to create hot spots of soil nutrients in the vicinity of the mounds, are not a significant reservoir of soil nutrients and are therefore of minor importance for nutrient cycling at the ecosystem scale in the tropical savanna.  相似文献   

9.
ABSTRACT

Incorporating deep litter cow and deep litter poultry manures with the top 30-cm soil improved orchard soil chemistry, including nutrient availability, soil organic matter, electrical conductivity (EC), pH, cation exchange capacity (CEC) and biological activity in a ‘Golden Delicious’ apple (Malus domestica Bork) orchard in Zanjan, Iran. Application of deep litter cow manure at 30 t ha?1 or deep litter poultry manure at 10 t ha?1 resulted in a higher rate of nitrogen (N) release, and thus increased yield and fruit size, but decreased fruit color. The least leaf minerals were found in the untreated control trees. The control trees showed minor symptoms of N, iron (Fe), and magnesium (Mg) deficiencies during the following season. Positive correlation existed between the rate of manure applied and the content of soil organic matter (OM). The deep litter poultry manure at 10 t ha?1 increased the soil K, Mg, calcium (Ca), ammonium-N, and EC levels.  相似文献   

10.
Study aims to investigate the effects of vermicomposts containing oil processing wastes, dairy manure, municipal open market wastes and straw on the growth, nutrient concentrations and nutrient uptakes of corn plant. For this, there different mixtures were prepared. Vermicomposts were applied with the rates of 0, 5000, 10000, and 20000 kg ha?1 to 2 kg soil containing pots. Study was conducted in growth chamber for 2 months. Vermicompost applications increased plant growth, some plant nutrient concentrations and uptake. Also, vermicomposts showed the variation on parameters depending on their mixtures. Results showed that nutrients taken by the plant increased with the vermicompost until 10000 kg ha?1 dose. Most of the nutrient concentrations such as phosphorus, potassium, calcium, magnesium, iron, and manganese (P, K, Ca, Mg, Fe, and Mn) were not increased in plant tissues, whereas uptake of them by the plant showed a significant increase. In addition, residual soil nutrients increased with the increase in vermicompost levels.  相似文献   

11.
A nutrient solution experiment was done to evaluate effects of different concentrations of nitrogen (N), phosphorus (P) and potassium (K) on leaf mineral concentrations and some enzymes activity of melon seedlings (Cucumismelo var. inodorus subvar. Khatouni). Different levels of these nutrients including 0, 53, 105, 158 and 210?mg L?1 N; 0, 8, 16, 23 and 31?mg L?1 P; 0, 59, 118, 176 and 235?mg L?1 K, all corresponding to 0, 25, 50, 75 and 100% of their concentrations in Hoagland nutrient solution, were applied to plants. The results showed that the highest leaf nitrate reductase (NR) activity was observed at highest N and P levels, whereas the three highest K levels showed the highest NR activity. The highest leaf peroxidase activity was observed at 8?mg L?1 P, 59?mg L?1 K and 158?mg L?1 N. The leaf catalase activity was highest at zero concentration of P, 158?mg L?1 N and 176?mg L?1 K; however, catalase activity was decreased by increasing P levels. Leaf protein content showed an increasing trend with increasing N, P and K levels of nutrient solution, while there was no significant difference between 158 and 210?mg L?1 N. The highest leaf concentrations of N, P, K and Mg were observed at highest nitrogen, potassium and phosphorus levels of nutrient solution, whereas the highest leaf concentration of Ca were obtained at 53 or 105?mg L?1 N, 176?mg L?1 K and 23–31?mg L?1 P. The highest iron concentration of leaves was obtained from 23 to 31?mg L?1 P, 176?mg L?1 K and 210?mg L?1 N.  相似文献   

12.
Roots are important organs that supply water and nutrients to growing plants. Data related to root growth and nutrient uptake by tropical legume cover crops are limited. The objective of this study was to evaluate root growth of tropical legume cover crops and nutrient uptake and use efficiency under different phosphorus (P) levels. The P levels used were 0 (low), 100 (medium), and 200 (high) mg kg?1 of soil, and five cover crops were evaluated. Root dry weight, maximum root length, and specific root length were significantly influenced by P and cover crop treatments. Maximum values of these root growth parameters were achieved with the addition of 100 mg P kg?1 soil. The P?×?cover crops interactions for all the macro- and micronutrients, except manganese (Mn), were significant, indicating variation in uptake pattern of these nutrients by cover crops with the variation in P rates. Overall, uptake pattern of macronutrients was in the order of nitrogen (N) > calcium (Ca) > potassium (K) > magnesium (Mg) > P and micronutrient uptake pattern was in the order of iron (Fe) > Mn > zinc (Zn) > copper (Cu). Cover crops which produced maximum root dry weight also accumulated greater amount of nutrients, including N, compared to cover crops, which produced lower root dry weight. Greater uptake of N compared to other nutrients by cover crops indicated that use of cover crops in the cropping systems could reduce loss of nitrate (NO3 ?) from soil–plant systems. Increase in root length and root dry weight with the addition of P can improve nutrient uptake from the soil and lessen loss of macro- and micronutrients from the soil–plant systems.  相似文献   

13.
In Sudan, tree plantations remain the first choice and are widely used in protecting arable lands from sand movement. Decomposition and nutrient changes from leaves of some agroforestry trees (Eucalyptus microtheca, Ficus spp., and Leucaena leucocephala) and litter fall from guava (Psidium guajava) and mango (Magnifera indica) were monitored (in a 12‐week litter‐bag experiment). Rate of dry‐matter weight loss from guava (0.098 wk?1) was significantly (P < 0.01) faster than from mango residues (0.04 wk?1). Corresponding values for Leucaena, Eucalyptus, and Ficus were 0.0533, 0.0524, and 0.0438 wk?1, respectively. In general, micronutrients tend to accummulate during a decomposition period. Potassium (K) was the only element found to be consistently lost by leaching very rapidly from all litters. Nitrogen (N) was released at a significantly (P < 0.03) higher rate from Leucaena (0.0558 wk?1) compared to Ficus (0.0399 wk?1) and Eucalyptus (0.0301 wk?1). Mobility of nutrients from the litters was in the order of K > phosphorus (P) = N > calcium (Ca) > magnesium (Mg). It is concluded that ficus and mango leaves are suitable for improving quality of arid soils through buildup of soil organic matter and supplying easily released organic sulfur (S) (environmentally sound management practice) whereas litter from guava is suitable for temporary nutrient correction. Mixing of guava and mango residues may slow fast decomposition of the former.  相似文献   

14.
A field experiment was conducted on an Alfisol (kandic paleustalf) in Abeokuta, Southwestern Nigeria, for two seasons to assess the influence of inorganic and organic fertilizers on nitrogen (N), phosphorus (P), potassium (K), nutrient uptake and maize yield. The treatments consisted of three rates of organic fertilizer 0, 5 and 10 t ha?1 in the form of poultry manure and NPK fertilizer (20:10:10) applied at 0 and 120 kg ha?1. Maize (Zea mays) was used as the test crop. The results showed that the combined application of 10 t ha?1 poultry manure and 120 kg ha?1 NPK fertilizer enhanced the uptake of N, P and K better than other treatment combinations. Application of 10 t ha?1 poultry manure alone gave the highest grain yield, which was 67.02% higher than the control in the first season. Complementary application of 5 t ha?1 poultry manure with 120 kg ha?1 NPK 20–10-10 was recommended for grain yield.  相似文献   

15.
In this study, we assessed the macronutrient levels of apple fruits cv. “Golden Smoothee” by monitoring their fruit absorption rates (mg fruit?1 day?1) and accumulation patterns (mg fruit?1) throughout fruit development. Nutrient accumulation was a continuous process throughout the growing season, with patterns of absorption rates varying according to the nutrients concerned. Calcium was chiefly absorbed by the fruit during the first developmental stage, while the greatest absorption rates of other macronutrients occurred later in fruit development (from the end of shoot growth until harvest). From these patterns, it would be desirable to reduce the supply natural calcium (Ca) antagonists, such as potassium (K), ammonium (NH4+), and magnesium (Mg), during the first part of fruit development in order to achieve a good Ca balance with other nutrients and, consequently, an optimum fruit quality. Knowing these nutrient absorption and accumulation patterns is essential for planning optimum nutrient supply and improving their influence on fruit quality.  相似文献   

16.
Oil palm (Elaeis guineensis Jacq.) is a heavy feeder of nutrients and requires balanced and adequate supply of nutrients for optimum growth and yield. Information regarding soil nutrient status and leaf nutrient concentration is very much required for proper fertilizer application. Therefore, a survey was conducted for assessment of soil nutrient status and leaf nutrient concentration in 64 oil palm plantations in the state of Goa lying in the west coastal region of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K) (ammonium acetate-extractable K) (NH4OAc-K), available phosphorus (P) (Bray’s-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulphur (S) (calcium chloride-extractable S) (CaCl2-S), and hot water soluble boron (B) (HWB) in surface (0–20 cm depth) soil layers ranged from 4.25 to 6.77, 0.05 to 1.06 dS m–1, 5.07 to 48.4 g kg–1, 58.1 to 1167 mg kg–1, 1.80 to 415 mg kg–1, 200 to 2997 mg kg–1, 36.0 to 744 mg kg–1, 3.00 to 87.7 mg kg–1 and 0.09 to 2.10 mg kg–1, respectively. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions and were used to compute DRIS indices. As per DRIS indices, the order of requirement of nutrients in the region was found to be P > Mg > K > nitrogen (N) > B. Optimum leaf nutrient ranges as per DRIS norms varied from 1.64 to 2.79%, 0.36 to 0.52%, 0.37 to 0.75%, 0.89 to 1.97%, 0.35 to 0.63%, 0.89 to 1.50%, 3.10 to 13.9 mg kg?1, 7.50 to 32.2 mg kg?1, 35.0 to 91.1 mg kg?1, 206 to 948 mg kg?1, and 895 to 2075 mg kg?1 for N, P, K, Ca, Mg, S, B, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) respectively. On the basis of DRIS-derived sufficiency ranges, 14, 5, 11, 6, 6, 6, 8, 2, 3, 6, and 16% of leaf samples had less than optimum concentrations of N, P, K, Ca, Mg, S, B, Cu, Zn, Mn, and Fe respectively. The optimum ranges developed can be used as a guide for routine diagnostic and advisory purpose for balanced utilization of fertilizers.  相似文献   

17.
We assessed the influence of the addition of four municipal or agricultural by-products (cotton gin waste, ground newsprint, woodchips, or yard trimmings), combined with two sources of nitrogen (N), [ammonium nitrate (NH4NO3) or poultry litter] as carbon (C) sources on active bacterial, active fungal and total microbial biomass, cellulose decomposition, potential net mineralization of soil C and N and soil nutrient status in agricultural soils. Cotton gin waste as a C source promoted the highest potential net N mineralization and N turnover. Municipal or agricultural by-products as C sources had no affect on active bacterial, active fungal or total microbial biomass, C turnover, or the ratio of net C:N mineralized. Organic by-products and N additions to soil did not consistently affect C turnover rates, active bacterial, active fungal or total microbial biomass. After 3, 6 or 9 weeks of laboratory incubation, soil amended with organic by-products plus poultry litter resulted in higher cellulose degradation rates than soil amended with organic by-products plus NH4NO3. Cellulose degradation was highest when soil was amended with newsprint plus poultry litter. When soil was amended with organic by-products plus NH4NO3, cellulose degradation did not differ from soil amended with only poultry litter or unamended soil. Soil amended with organic by-products had higher concentrations of soil C than soil amended with only poultry litter or unamended soil. Soil amended with organic by-products plus N as poultry litter generally, but not always, had higher extractable P, K, Ca, and Mg concentrations than soil amended with poultry litter or unamende soil. Agricultural soil amended with organic by-products and N had higher extractable N, P, K, Ca and Mg than unamended soil. Since cotton gin waste plus poultry litter resulted in higher cellulose degradation and net N mineralization, its use may result in faster increase in soil nutrient status than the other organic by-products and N sources that were tested. Received: 15 May 1996  相似文献   

18.
ABSTRACT

Recycling combusted poultry litter ash as a soil amendment would potentially ameliorate problems normally associated with poultry waste management. We evaluated the effect of chicken litter ash (CLA) and duck litter ash (DLA) as nutrient sources for Japanese mustard spinach (Brassica rapa L. var. perviridis) grown on a sand dune soil. Chicken and duck litter were ashed at five temperatures: 200, 400, 600, 800, and 900°C and the resulting ash samples were applied at the rate of 100 kg phosphorus (P) ha?1. Laboratory analysis showed the highest P extraction with citric acid from CLA and DLA obtained at 600°C. Chicken litter ash was richer in P and potassium (K) than DLA but the later contained more calcium (Ca) and magnesium (Mg). The amount of ammonium acetate soluble calcium (Ca), magnesium (Mg), and K recovered increased with increasing temperature except for Ca and Mg at the highest temperatures, 800 and 900°C. Plants grown in pots with the CLA and DLA obtained at 400°C had the highest P concentration, yielding significantly more biomass with dense green leaf color but on average, the DLA amended soil had greater biomass. However, the P level was higher in CLA treated plants than DLA due to the higher available P level (citric acid soluble). Increases in electrical conductivity and pH of the soil were noted after harvest due to litter ash application. Our experiment demonstrated that poultry litter is potential source of P and other nutrients for horticutural crops.  相似文献   

19.
A semiquantitative nutrient balance is presented for a field monocropped with sisal on Ferralsols in Tanzania. Input of nutrients included wet deposition, non-symbiotic nitrogen fixation and nutrients added with planting material. Nutrient output consisted of the harvested product. The average annual shortfall between 1966 to 1990 was 12 kg N ha−1, 2·8 kg P ha−1, 38 kg K ha−1, 44 kg Ca ha−1 and 19 kg Mg ha−1. The nutrient balance was compared to changes in topsoil (0–20 cm) nutrient contents of the sisal field during the same period. Average annual decrease in soil nutrient contents was: 104 kg N ha−1, 1·8 kg P ha−1, 11 kg K ha−1, 29 kg Ca ha−1 and 10 kg Mg ha−1. Much more nitrogen was lost from the topsoil than can be explained by the nutrient balance, indicating significant losses. Changes in soil phosphorus content are almost explained by the nutrient balance. More exchangeable cations were removed with the yield than were lost from the topsoil, which may imply that cations are extracted from the subsoil. Both the nutrient balance and the changes in soil nutrient contents showed that monocropping sisal is mining nutrients. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Purpose: Nitrogen (N) / potassium (K) nutrient balance has been studied for some ornamental plants, however, available information is limited. Here we investigate the optimum N and K balance and concentration for lisianthus production in soilless medium.

Materials and methods: The effect of three N / K balances: 1.43, 2.14 and 4.29, prepared by varying the concentration of N and K, were evaluated in lisianthus grown in soilless medium (volcanic rock).

Results: Plants fertigated with a N / K balance of 2.14 exhibited enhanced height and stem dry weight when compared to plants fertigated with a balance of 4.29, and a higher flower buds count and total dry weight than those fertigated with a balance of 1.43 or 4.29. Plants fertigated with a balance of 2.14 exhibited increased dry weight when N was reduced from 15 to 9?meq?L?1 and K from 7 to 4.2?meq?L?1, suggesting that lisianthus does not require high levels of these nutrients. Although shoot N concentration was not correlated with N concentration in the nutrient solution or balance, increasing N in the shoot was associated with higher P and Mg in the plant tissues. In general, P, Ca, and Mg in plant tissues were unaffected by the external N / K balance, however, the internal P and Mg concentrations were positively correlated with shoot dry weight. Shoot K concentration significantly increased when the N / K balance decreased, which is related to the higher concentrations of external K when the balance decreased.

Conclusions: The optimum N / K balance for lisianthus was 2.14. However, there was a concentration effect, as fertigation with solutions containing a N / K balance of 2.14 and an N and K concentration of 9 and 4.2?meq?L?1 respectively, resulted in plants with the greatest dry weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号