首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The important root characteristics of root length density (RLD) and root mass density (RMD) generally differ among irrigation managements and potato cultivars. The objective of this study was to investigate the RLD and RMD variations and their functional relationships with gross potato tuber yield for two commercial potato cultivars, Agria and Sante, under different irrigation strategies. Full irrigation and water‐saving irrigation strategies, deficit and partial root drying irrigations, were applied statically (S) and dynamically (D) based on daily crop evapotranspiration. Results showed that SPRD had significantly greater RLD (3.64 cm/cm3) and RMD (132.7 μg/cm3) than other irrigation treatments. Between the potato cultivars, Agria had significantly larger values of RLD (3.50 cm/cm3) and RMD (138.7 μg/cm3) than Sante. The functional relationship between the root growth characteristics and tuber yield showed that under water‐saving irrigations, Agria increased root mass at the expense of gross tuber yield but Sante increased root mass to maintain larger gross tuber yields. However, Agria produced more roots and gross tuber yield than Sante, and it is concluded that Agria is a more drought‐tolerant potato cultivar, which is recommended for tuber production in regions where water might be scarce. It was shown that larger root production in potatoes was associated with improved tolerance to water stress.  相似文献   

2.
Abstract

Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Nitrogen fertilizer (15N‐labeled urea) and irrigation methods (drip and furrow) were evaluated on spring and fall potato cultivars under Syrian Mediterranean climatic conditions. Field experiments were conducted in the El‐Ghab Valley near Hama in fall 2000 and spring 2001 on a heavy clay soil. Four N‐fertilizer applications (70, 140, 210, and 280 kg N/ha) were applied in five equally split treatments for both irrigation methods. Potato was irrigated when soil moisture in the specified active root depth reached 80% of the field capacity as indicated by the neutron probe.

Higher marketable tuber yield of spring potato was obtained by fertigation compared to furrow irrigation; the magnitude of tuber yield increases was 4, 2, 31, and 13%, whereas for fall potato the tuber yield increases were 13, 27, 20, and 35% for N fertilizer rates of 70, 140, 210, and 280 kg N/ha, respectively. Shoot dry matter and tuber yields at the bulking stage were not good parameters to estimate marketable tuber yield. The effect of N treatments on potato yield with furrow irrigation and fertigation was limited and not significant. Drip fertigation improved tuber yield of fall potato relative to national average yield. Nitrogen uptake increased with increasing N input under both irrigation methods. Reducing N input under both irrigation methods improved N recoveries. Increasing N input significantly increased total N content in plant tissues at the bulking stage. Spring potato yields were almost double those of fall potato under both irrigation methods and all N treatments.

Nitrate (NO3) movement in the soil solution for fall potato was monitored using soil solution extractors. Furrow irrigation resulted in greater movements of NO3‐N below the rooting zone than drip fertigation.

Harvest index did not follow a clear trend but tended to decrease upon increasing N fertilization rates beyond 140 kg N/ha under both irrigation methods. Drip fertigation improved field water‐use efficiencies at the bulking and harvest stages. Fertigation increased specific gravity of potato tubers relative to furrow irrigation. Higher N input decreased specific gravity of potato tubers under both irrigation methods.  相似文献   

3.
Abstract

Defining growth stages of the potato plant (Solanum tuberosum L.) based on aboveground morphological characteristics could be more practical than using underground characteristics such as tuber size. The applicability of this approach was tested in Cyprus for a spring‐harvested crop sown in a Tera Rosa soil with three different within‐row spacings (15, 25, and 35 cm). The development of various tuber characteristics of three commercial potato cultivars (cvs. “Cara”, “Nicola”, and “Spunta”) was monitored for two growing seasons. The three cultivars represent late, medium, and early maturity classes. Various tuber sizes obtained from each cultivar were related with the number of fully expanded leaves (NFEL) based on linear equations. For individual cultivars, the NFEL appeared to be a reliable aboveground parameter for estimating the size of the largest tuber during the early stages of growth. Defining growth stages based on NFEL could also be a practical approach for the farmers to perform activities, which must be done at a specific developmental stage.  相似文献   

4.
To evaluate the effects of drip irrigation regimes on potato (Solanum tuberosum L.) tuber yield and quality, an experiment was conducted in 2009 and 2010. Experimental factors were the irrigation regimes including: FI, providing 100% of the water requirement of potato; IR1, providing 70% of the water requirement of potato by reducing the applied irrigation water between planting and tuber initiation by 30%; and IR2, providing 70% of the water requirement of potato by reducing the applied irrigation water during the whole growing season by 30%; and three potato cultivars Agria, Almera and Sinora. The results indicated that cultivars Agria and Almera were much better than Sinora in terms of tuber yield under all irrigation regimes. For Agria and Almera, the experiments show that the full irrigation regime had the highest yield and water productivity. For Sinora, however, deficit irrigation yields higher water productivity than the full irrigation regime. Consequently, deficit irrigation IR1 and IR2 should be applied to Sinora, but not to Agria and Almera.  相似文献   

5.
Potato (Solanum tuberosum L.) is the fourth major crop worldwide after cereals. Some producers use irrigation water with high salinity, which consequently decreases the agronomic yield and potato quality. The aim of this investigation was to determine the effect of vermicompost and vermiwash on plant growth and tuber yield and characteristic traits in Solanum tuberosum L. plants and tubers subjected to salinity stress. A surface response experimental design with three replicates using a central point and 15 treatments was used with vermicompost at 300, 580, and 860 g plant?1; vermiwash at 5, 10, and 15 ml plant?1; and salinity stress with 15, 20, and 25 mM of NaCl levels. Plant physiological measurements included plant height (cm), stem diameter (mm), and plant fresh and plant dry weight (g). Six months after planting, measurements on tuber fresh weight, pH, electric conductivity, and °Brix were carried out. The addition of vermicompost and vermiwash minimized the influence of salinity stress on growth parameters and tuber characteristics in potato plants. Vermicompost (580 g plant?1) plus vermiwash (15 ml plant?1) induced a greater plant height and stem diameter. Plants amended with vermicompost (860 g plant?1), vermiwash (15 ml plant?1), and salinity stress (15 mM) had higher pH values, whereas electrical conductivity value in potato tubers decreased.  相似文献   

6.
Drought is a serious concern in many parts of the world, including in California, where paucity of available irrigation water has impaired crop production and soil health through salt accumulation. With extending water and salinity crises, there is a need for advanced salt and vegetation management. To develop more efficient management solutions, Slingram electromagnetic investigations and stochastic and statistical analyses were performed for determining optimal vegetable yields in a salt-affected farmland. The Slingram results were evaluated using multi-linear regression analyses, and the yield and salinity were characterized for central tendency, variance, distributions and symmetry. The yields of two studied vegetable crops, lettuce and tomato, increased with decreasing salinity load. The average lettuce and tomato yield potentials were 55 and 75%, respectively. The minimum yield potential for tomato was 9.5 times higher than that for lettuce. The mode value for conductivity (ECe) was 650 mS m?1, which corresponded to 50% yield loss. The yield loss was <10% in locations with ECe < 250 mS m?1. In zones with ECe > 850 mS m?1, the yield reductions for lettuce and tomato reached up to 96 and 60%, respectively. About 57 and 82% of the field area could be limited to 20% yield potentials for tomato and lettuce, respectively. Lettuce had a higher cost benefit than tomato albeit with a greater yield potential of the latter crop. By delineating the spatial contours of salt-induced yield variability, vegetables can be grown in segmented soil zones based on salinity levels.  相似文献   

7.
Strawberry is listed as the most salt sensitive fruit crop in comprehensive salt tolerance data bases. Recently, concerns have arisen regarding declining quality of irrigation waters available to coastal strawberry growers in southern and central California. Over time, the waters have become more saline, with increasing sodium (Na+) and chloride (Cl?). Due to the apparent extreme Cl? sensitivity of strawberry, the rising Cl? levels in the irrigation waters are of particular importance. In order to establish the specific ion causing yield reduction in strawberry, cultivars ‘Ventana’ and ‘Camarosa’ were grown in twenty-four outdoor sand tanks at the ARS-USDA U. S. Salinity Laboratory in Riverside, CA and irrigated with waters containing a complete nutrient solution plus Cl? salts of calcium (Ca2+), magnesium (Mg2+), Na+, and potassium (K+). Six salinity treatments were imposed with electric conductivities (EC) = 0.835, 1.05, 1.28, 1.48, 1.71, and 2.24 dS m?1, and were replicated four times. Fresh and dry weights of ‘Camarosa’ shoots and roots were significantly higher than those of ‘Ventana’ at all salinity levels. Marketable yield of ‘Camarosa’ fruit decreased from 770 to 360 g/plant as salinity increased and was lower at all salinity levels than the yield from the less vigorous ‘Ventana’ plants. ‘Ventana’ berry yield decreased from 925 to 705 g/plant as salinity increased from 0.835 to 2.24 dS m?1. Relative yield of ‘Camarosa’ decreased 43% for each unit increase in salinity once irrigation water salinity exceeded 0.80 dS m?1. Relative ‘Ventana’ yield was unaffected by irrigation water salinity up to 1.71 dS m?1, and thereafter, for each additional unit increase in salinity, yield was reduced 61%. Both cultivars appeared to possess an exclusion mechanism whereby Na+ was sequestered in the roots, and Na+ transport to blade, petiole and fruit tissues was limited. Chloride content of the plant organs increased as salinity increased to 2.24 dS m?1 and substrate Cl increased from 0.1 to13 mmolcL?1. Chloride was highest in the roots, followed by the leaves, petioles and fruit. Based on plant ion relations and relative fruit yield, we determined that, over the range of salinity levels studied, specific ion toxicity exists with respect to Cl?, rather than to Na+ ions, and, further, that the salt tolerance threshold is lower for ‘Camarosa’ than for ‘Ventana’.  相似文献   

8.
Salinity is a limiting factor for forage productivity in irrigated areas. The aim of this study was to evaluate the salt tolerance index (STI), the K/Na ratio, and the forage quality of several introduced cool season grass species in irrigated agriculture. Four irrigated water salinity concentrations were used (control, 4000, 8000, and 12000 ppm sodium chloride (NaCl)), and four grass cultivars belonging to three species were established under greenhouse conditions at the Qassim University Agricultural Research and Experimental Station during the 2012 and 2013 growing seasons (perennial ryegrass (Lolium perenne L., cvs. Aries and Quartet), endophyte-free tall fescue (Festuca arundinacea Schreb., cv. Fawn), and orchardgrass (Dactylis glomerata L., cv. Tekapo)). A randomized complete block design (RCBD) using three replications was used. Cultivars were evaluated based on their dry weights (g m?2) and forage quality. Additionally, the STI and potassium (K+) and sodium (Na+) concentrations in the studied grass cultivars were evaluated. The dry weights of the grasses decreased significantly as the salinity level of the irrigation water increased. At a salinity of 4000 ppm, the Aries perennial ryegrass had the highest dry weight at both sample cuttings. The Aries, Fawn, and Quartet grasses had the highest STI values. The percent of K+ and the K/Na ratio increased as the salinity of the irrigation water increased for the Fawn tall fescue and Quartet perennial ryegrass. In the previously cultivars, the percentage of Na+ decreased as the salinity level of the irrigation water increased, which was in contrast with the results observed for the Tekapo orchardgrass.  相似文献   

9.
Parts of paddy fields in Mazandaran Province, northern Iran, are confronted with soil and water salinity. To screen proper rice cultivars, an experiment was performed with eight modified rice cultivars under four levels of irrigation water salinity (1, 2, 4 and 6 dS m?1) with three replications, in Amol, northern Iran. The objective of the present study was the evaluation of eight screening indices for identifying salinity tolerance of these cultivars, so that suitable cultivars can be recommended for the cultivation with saline irrigation water in paddy fields. To evaluate the resistance of these cultivars to salinity stress, different indices were calculated. The results showed that Khazar cultivar was the most salt-sensitive cultivar in all salinity levels. In the irrigation salinity levels of 2 and 4 dS m?1 Neda cultivar and in the level of 6 dS m?1 Dasht cultivar were the most salt-resistant cultivars. In the two irrigation salinity levels of 4 and 6 dS m?1, the mean productivity index was the most effective in the screening of salt-resistant cultivars. Harmonic mean, geometric mean productivity, stress tolerance index and mean productivity indices were found to be the best indices in screening resistant cultivars.  相似文献   

10.
Turfgrass cover is an inevitable component in the urban landscapes of the United Arab Emirates. Tolerance to abiotic stress like salt, drought, and high temperature is a potential factor to be considered in the selection of turfgrass for the landscapes in the arid regions. Three Seashore paspalum genotypes, four Bermudagrass cultivars along with tall fescue as a control were screened for enzymatic changes under four different saline irrigation levels of 5,000, 10,000, 15,000, and 20,000 mg L?1 of salinity. Irrigation with potable water served as the control. Turfgrasses were maintained in a field experiment under factorial randomized block design for a period of two years under sustained saline conditions by working out the leaching fraction to maintain the precise level of salinity in each treatment throughout the experimental period. The activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), polyphenol oxidase (PPO), and catalase (CAT) were assayed in each of the saline water treated turfgrass types. The SOD activity was found to be high in Yukon (bermudagrass) and Sea Dwarf paspalum. In the paspalum group, Salam and Sea Dwarf showed the highest SOD activity under saline condition. In Bermuda types, Yukon and SR 9554 showed the highest SOD activity compared to other bermuda types. Compared to other cultivars, Sea Isle 2000 (Paspalum type), SR 9554, and Yukon (Bermuda types) exhibited more APX activity without any significant differences among themselves. There was an elevated activity of POD initially, followed by gradual reduction upon increasing the salinity level. Salam cultivar maintained stable POD activity even at the elevated salinity levels. The paspalum types showed relatively high level of PPO activity compared to other types under salinity. Yukon cultivar showed a significantly higher activity of PPO when the salinity level was raised from 15,000 to 20,000 mg L?1. A significant increase with respect to CAT activity was exhibited in Sea Dwarf under elevated level of salinity. Saline water irrigation brought about a significant effect on the antioxidant enzyme systems to impart oxidative stress tolerance in turfgrass species.  相似文献   

11.
Drought stress is an important factor limiting the yield potential of peanut. In order to determine the effect of different irrigation scenarios on peanut production, field experiments were conducted in 2011 and 2012 growing seasons using factorial design with three replicates. On the other hand, the crop simulation models can be useful to predict crop yields and to investigate the impact of drought stress on plant growth and development. In this study, the Cropping System Model–Crop Growth (CSM-CROPGRO)-Peanut model was employed for the simulation of seed yield, pod yield, biomass, soil water balance components and water productivity for peanut in Astaneh-Ashrafiyeh, Iran. Results showed that the model was able to reasonably simulate seed yield, pod yield and final biomass for different irrigation scenarios (RMSEn < 20%, R2 > 0.8 and d > 0.8). According to the results, irrigation depth and interval were important factors affecting yield and biomass. In general, model error increased as the amount of water applied decreased. The least amount of water applied (40 mm) resulted in yield reductions by 76%, 70% and 67% of the greatest amount of water applied (480 mm) for seed yield, pod yield and final biomass, respectively. For each irrigation interval, larger irrigation depth led to lower water productivity (WP) of irrigation (WPI), but higher WP based on evapotranspiration (WPET) and transpiration (WPT).The average amounts of WPI, WPET, WPT based on seed yield were 1.2, 0.63 and 1.01 kg m?3, respectively.  相似文献   

12.
Three olive (Olea europaea L.) cultivars Nabali Baladi (NB), Nabali Muhassan (NM), and Grossi Di'Espagna (GE) were evaluated under salt stress. Seedlings were treated with salinity induced by a 3:1 ratio of calcium chloride and sodium chloride to four concentration levels measured as electrical conductivity (EC) [1.2, 4.1, 7.0, and 14.0 dS/m] for 122 days. Olive seedlings varied in their response to salinity. In all treatments, NB had the highest root; stem and leaf dry weights had among the highest total plant dry weights, specific stem length (SSL) and relative water content (RWC). NB seedlings maintained the highest stomatal conductance at 7.0 dS/m and highest chlorophyll index at 14.0 dS/m. Olive seedlings that tolerated salt tolerance developed mechanisms of nutrient acquisition and distribution in the organs, by storing minimal amounts of sodium (Na+) and chloride (Cl?) in the stems and loading the most in the leaves and roots.  相似文献   

13.
Thermography is proposed to be an alternative non-destructive and rapid technique for the study and diagnosing of salt tolerance in plants. In a pot experiment, 30 cultivars of wheat (Triticum aestivum L.) were evaluated in terms of their leaf temperature and shoot growth and their ion distribution responses to NaCl salinity at two concentration levels: the control with electrical conductivity (EC) of 1 dS m?1 and salinity treatment with EC of 16 dS m?1 (150 mM). A completely randomized block design with factorial treatments was employed with three replications. The results indicated that thermography may accurately reflect the physiological status of salt-stressed wheat plants. The salt stress-based increase in leaf temperature of wheat cultivars grown at 150 mM NaCl reached 1.34°C compared to the control. According to the results obtained, it appears that thermography has the capability of discerning differences of salinity tolerance between the cultivars. Three salt-tolerant wheat cultivars, namely Roshan, Kharchia and Sholeh, had higher mean shoot dry matter (0.039 g plant?1) and higher mean ratio of leaf K+/Na+ (14.06) and showed lower increase in the mean leaf temperature (0.37°C) by thermography compared to the control. This was while nine salt-sensitive cultivars, namely Kavir, Ghods, Atrak, Parsi, Bahar, Pishtaz, Falat, Gaspard and Tajan, had lower mean plant dry matter production (0.027 g plant?1), lower mean ratio of K+/Na+ (9.49) and higher mean increases in leaf temperature (1.24°C).  相似文献   

14.
To determine the effects of irrigation water quality, plants were irrigated with normal potable water [0.25 dS m?1 electrical conductivity (EC), 25 mg L?1 sodium (Na), 55 mg L?1 chloride (Cl)], treated effluent (0.94 dS m?1 EC, 122 mg L?1 Na, 143 mg L?1 Cl) and saline water with low salinity (1.24 dS m?1 EC, 144 mg L?1 Na and 358 mg L?1 Cl) and high salinity (2.19 dS m?1 EC, 264 mg L ?1Na and 662 mg L?1 Cl) for snow peas, and high salinity (3.07 dS m?1 EC, 383 mg L?1 Na and 965 mg L?1 Cl) and very high salinity (5.83 dS m?1 EC, 741 mg L?1 Na and 1876 mg L?1 Cl) for celery. The greater salts build up in the soil and ion toxicity (Cl and Na) with saline water irrigation contributed to significantly greater reduction in root and shoot biomass, water use, yield and water productivity (yield kg kL?1 of water used) of snow peas and celery compared with treated effluent and potable water irrigation. There was 8%, 56% and 74% reduction in celery yield respectively with treated effluent, high salinity and very high salinity saline water irrigation compared with potable water irrigation. The Na concentration in snow peas shoots increased by 54%, 234% and 501% with treated effluent, low and high salinity saline water irrigation. Similarly, the increases in Na concentration in celery shoots were 19%, 35% and 82%. The treated effluent irrigation also resulted in a significant increase in soil EC, nitrogen (N) and phosphorus (P) content compared with potable water irrigation. The heavy metals besides salts build up appears to have contributed to yield reductions with treated effluent irrigation. The study reveals strong implications for the use of saline water and treated effluent for irrigation of snow peas and celery. The salt build up within the root zone and soil environment would be critical in the long-run with the use of saline water and treated effluent for irrigation of crops. To minimize the salinity level in rhizosphere, an alternate irrigation of potable water with treated effluent or low salinity level water may be better option.  相似文献   

15.
This study was done to evaluate the effects of increasing concentrations of CO2 (CC) on rapeseed. Pot experiments were done with three cultivars (Okapi, Zarfam and RGS003) of rapeseed (Brassica napus) for salinity tolerance. Four levels of salinity (0, 5, 10 and 15 dS m?1) were tested on the three cultivars at three CC (350, 700 and 1050 mmol L?1) at the greenhouse of Tarbiat Modares University, Iran, during the crop seasons of 2010 to 2011. Three CCs were considered as three environments and the other two treatments (salinity and cultivar) were tested within these environments in a complete block design arranged as a factorial. Results indicated that photosynthetic rates declined with increasing levels of salinity. Elevated CC significantly increased rates of photosynthesis. The highest CC reduced the impact of salinity on photosynthesis. Increased CC reduced the rate of transpiration, which had the effects of increasing rates of photosynthesis and water use efficiency (WUE); these effects increased vegetative growth and reduced the adverse effects of salinity. Increased CC and salinity reduced harvest index. WUE increased with CC increment, and decreased with salinity elevation.  相似文献   

16.
The effect of potassium sulfate (K2SO4) on adaptability of sugarcane to sodium chloride (NaCl) stress was investigated under hydroponic conditions. Two sugarcane cultivars, differing in salinity tolerance, were grown in half strength Johnson's solution at 80 mM NaCl with 0, 2.5 and 5.0 mM potassium (K) as K2SO4. Salinity disturbed above and below-ground dry matter production in both sugarcane cultivars. However, salt sensitive cultivar showed more reduction in shoot dry matter and higher root:shoot ratio compare to the salt tolerant cultivar under. Application of K significantly (p < 0.05) improved dry matter production in both sugarcane cultivars. The concentration of Na was markedly increased with increasing salinity; however, the application of K reduced its uptake, accumulation and distribution in plant tissues. Salinity induced reduction in K concentration, K-uptake, K utilization efficiency (KUE) and K:Na ratio in both sugarcane cultivars was significantly improved with the addition of K to the saline growth medium.  相似文献   

17.
Two cultivars of wheat (Triticum aestivum L.) with differential salinity tolerance were compared by evaluating the growth attributes, pigment composition and accumulation of Na+, K+, Zn2+, Fe 2+, Mn 2+ and proline. Wheat cultivars Al-Moiaya (AM) (salt tolerant) and Habbe-Druma (HD) (salt sensitive) were subjected to four levels of salinity (1.21 dS m?1, 4.4 dS m?1, 8.8 dS m?1 and 13.2 dS m?1) in factorial combinations with three drought stress (FC 30%, FC 60% and FC 90%) treatments in a randomized complete block design. Plant dry weight, leaf area ratio (LAR), soluble protein and total chlorophyll (Chl) content were higher in AM than HD. Salt-tolerant AM maintains a higher K+/ Na+ ratio and thereby is able to grow better than the salt-sensitive HD under both the stresses. The lower foliar Na+ in AM resulted in retention of higher Chl content, reflected in the strong positive correlations between plant ion status and Chl contents (Na+-Chl r2 = 0.83; Chl- Fe2+ r2 = 0.76; Zn2+ r2 = 0.93 and Mn2+ r2 = 0.88). In conclusion, our results suggested that the K+/Na+ ratio, exclusion of Na+ and ion homeostasis play much more important roles in the tolerance to salinity and drought stress than the compatible osmolyte, proline.  相似文献   

18.
High temperature has a deleterious effect in productivity of cool season crops like potato. This study was conducted to assess the efficacy of soil management practices to high-temperature tolerance in potato. Two popularly grown potato cultivars of northeast India, Kufri megha and Rangpuria, were sown under optimal and high-temperature conditions with soil application of inorganic nutrients (N, P, K, Ca, Zn), organic amendment, i.e. farm yard manure (FYM), and straw mulch. This integrative soil management practice showed significant positive influence on membrane integrity, chlorophyll content, total soluble sugars and superoxide dismutase activity of potato plant. Higher tuber bulking rate and tuber yield in both optimal and high-temperature situation was recorded under these soil applications. Kufri megha performed better with the application of Ca and Zn along with straw mulch, while Ca with farm yard manure substantially improved restore yield in Rangpuria. Application of CaSO4 and ZnSO4 (20 and 60 kg ha?1, respectively) with FYM and straw mulch (10 and 6 t ha?1, respectively) can mitigate the high-temperature stress in potato grown in acidic soil (deficient of Ca and Zn) of northeast India.  相似文献   

19.
A field experiment was conducted for five kharif seasons (2006–2011) in an Alfisol to study the effect of integrated use of lime, mycorrhiza, and inorganic and organics on soil fertility, yield, and proximate composition of sweet potato. Application of graded doses of nitrogen, phosphorus, and potassium (NPK) significantly increased the mean tuber yield of sweet potato by 44, 106, and 130 percent over control. Green manuring along with ½ NPK showed greater yield response over that of ½ NPK. The greatest mean tuber yield was recorded due to integrated application of lime, farmyard manure (FYM), NPK, and MgSO4 (13.69 t ha?1) over the other treatments. Inoculation of mycorrhiza combined with lime, FYM, and NPK showed a significant yield response of 10 percent over FYM + NPK. Conjunctive use of lime, inorganics, and organics not only produces sustainable crop yields but also improve soil fertility, nutrient-use efficiency, and apparent nutrient recovery in comparison to NPK and organic manures.  相似文献   

20.
Minimizing salinity impacts on yield in melon crops cultivated in closed-loop hydroponic systems requires better understanding of the physiological impact of gradual salt accumulation in the recycled solution. To attain this objective, different sodium chloride (NaCl) concentrations in the irrigation water, i.e. 0.7, 2.5, and 5 mM, were applied in two cropping seasons (winter-spring;WS and spring-summer;SS). In both seasons plant biomass and yield were negatively affected only in high NaCl-treated plants, due to stomatal limitations, which restricted carbon dioxide (CO2) diffusion into the leaf, osmotic and salt-specific effects. However, a progressive NaCl built-up to maximum concentrations in the root zone solution of 15 (WS) and 20 mM (SS), enabled plants to preserve several physiological mechanisms, thereby adjusting growth and yield without impairing fruit quality. Our results suggest that the use of irrigation water, containing up to 2.5 mM NaCl, is feasible in melon crops grown in closed-loop hydroponic systems, without yield and quality losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号