首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of plant nutrition》2013,36(6):1277-1286
Abstract

Male and female leaf discs of Jojoba [Simmondsia chinensis (Link) Schneider] were cultured on Murashige and Skoog (MS) media supplemented with various nitrate:ammonium ratio and phytohormones concentrations. For the optimum callus growth, hormonal concentrations were remained equal for both male and female leaf tissues i.e., 0.4 mg L?1 2,4‐dichlorophenoxyaceticacid, 1.25 mg L?1 6‐benzyladenine and 0.5 mgL?1 kinetin. However, a statistically significant difference was observed when Murashige and Skoog media was supplemented with an additional nitrogen source. In female leaf tissue, maximum fresh and dry weights were recorded in Murashige and Skoog media supplemented with an additional source of NO3 ?:NH4 + (60 mM) whereas in male leaf tissue this addition was inhibitory. This study suggests that nitrogen requirement may be different for optimum callus growth in both male and female leaf tissues.  相似文献   

2.
Hydroponic production of rocket as a salad vegetable has become increasingly important in recent years. Rocket is known to be a high nitrate (NO3)-accumulating vegetable, which can be grown throughout the year. In the present study, rocket was grown in a floating hydroponic system at three levels of nitrogen (N) and sodium chloride (NaCl). The highest yield was obtained at 14 mM N, whereas the yield was lower at 20 mM and 40 Mm NaCl. Leaf elongation was more sensitive to salinity than leaf differentiation. Adding NaCl to the nutrient solution increased the relative chlorophyll content. Na+ and Cl concentrations increased as salinity increased. NO3? levels in fresh biomass increased with increased amounts of NO3? in the nutrient solution, and plants at 18 mM N were able to maintain a higher NO3? : Cl? ratio than those at 10 mM N.  相似文献   

3.
Brassica alboglabra plants were first grown aeroponically with full nutrients under full sunlight with average midday photosynthetic photon flux density (PPFD) of 1200 μmol m?2 s?1. Thirty days after transplanting, plants were respectively, subjected to 10 days of average midday PPFD of 1200 (control, L1), 600 (L2) and 300 μmol m?2 s?1 (L3). Productivity, photosynthetic CO2 assimilation and stomatal conductance were significantly lower in low-light (L2 and L3) plants than in high-light (L1) plants. Low light plants had the highest nitrate (NO3?) accumulation in the petioles. Low light also had an inverse effect total reduced N content. After different light treatments, all plants were re-exposed to another 10 days of full sunlight. Low-light plants demonstrated their ability to recover their photosynthetic rate, enhance productivity and reduce the NO3? concentration. These results have led to the recommendation of not harvesting this popular vegetable during or immediately after cloudy weather conditions.  相似文献   

4.
小白菜适当增铵下硝酸盐累积机理研究   总被引:14,自引:6,他引:14  
利用NO3--N/NH44+-N为100∶0和75∶25的营养液对两个硝酸盐累积能力显著不同的小白菜品种(上海青和亮白叶1号)进行培养,测定了小白菜叶片、叶柄及根系硝酸盐含量、硝态氮和铵态氮吸收量及各部位硝酸还原酶活性,以探讨适当增铵降低小白菜硝酸盐含量以及小白菜不同品种和不同器官累积硝酸盐能力差异的机理。结果表明,适当增铵使叶片、叶柄和根系硝酸盐含量分别降低了22%、15%和22%,而硝态氮吸收量则降低了7.5%。小白菜各器官硝酸盐含量为叶柄叶片根系。叶片硝酸还原酶活性分别是叶柄和根系的27和9倍,呈现叶片根系叶柄,叶片是硝态氮的主要还原器官。亮白叶1号叶片、叶柄及根系硝酸盐含量分别较上海青高3%、38%和34%,硝态氮吸收量仅较上海青高11%;而叶片、叶柄及根系硝酸还原酶活性则分别较后者降低44%、56%和38%。适当增铵减少硝态氮吸收量是增铵降低硝酸盐含量的主要原因。不同器官的功能与结构的不同决定其累积硝酸盐能力的不同;不同品种硝酸盐累积的差异取决于还原硝态氮能力的差异。  相似文献   

5.
Two hydroponic experiments were carried out to investigate the effects of nitrogen (N) levels and forms on the oxalate concentrations of different form in edible parts of spinach. Nitrogen was supplied at five levels (4, 8, 12, 16, 20 mM) in Experiment 1 and five ratios of nitrate (NO3 ?) to ammonium (NH4 +) (100/0, 75/25, 50/50, 25/75, 0/100) at a total N of 8 mM in Experiment 2. Biomass of spinach increased markedly from 4 mM to 8 mM N and reached the flat with further increase in N. The total oxalate and soluble oxalate in leaves and shoots (edible parts) increased significantly with increasing N levels from 4 to 12 mM, while the total oxalate and insoluble oxalate decreased markedly when N level was further increased from 12 to 20 mM. Oxalates of different forms in petioles increased first and then decreased and elevated again with increasing nitrogen levels. In the second experiment, decreasing NO3 ?/NH4 + ratios markedly increased at first and then significantly decreased the biomass of spinach plants and the maximum biomass was recorded in the treatment of the NO3 ?/NH4 + ratio of 50:50. The oxalate concentrations of different form in leaves and shoots were all decreased obviously as the ratio of NO3 ?/NH4 + decreased from 100:0 to 0:100. Concentrations of total oxalate and soluble oxalate in petioles could be reduced by increasing ammonium proportion and were the lowest as the ratio of NO3 ?/NH4 + was 50:50 and insoluble oxalate decreased as nitrate/ammonium ratio decreased. The concentrations of oxalate forms in leaves were all higher than those in petioles and soluble oxalate was predominant form of oxalates in both trials. It is evident that high biomass of spinach can be achieved and oxalate concentrations of different forms can be reduced by modulating N levels and NO3 ?/NH4 + ratio, so this will benefit for human health especially for those people with a history of calcium oxalate kidney stones.  相似文献   

6.
The different responses of two populations of Suaeda salsa (Linn.) Pall. (saline seepweed) from an intertidal zone and a saline inland zone to salinity [1 or 500 mM sodium chloride (NaCl)] and nitrogen [N; 0.05, 1, or 10 mM nitrate (NO3 ?)‐N] were investigated. Greater NO3 ?‐N supply (10 mM) increased shoot dry weight for the two populations of S. salsa, especially for S. salsa from the saline inland zone. Greater NO3 ?‐N supply (10 mM) increased the concentrations of chlorophyll and carotenoid in leaves and the NO3 ? and potassium (K+) concentrations in shoots for both populations. Greater NO3 ?‐N supply (10 mM) increased shoot Na+ in S. salsa from the intertidal zone. In conclusion, S. salsa from the saline inland zone is more responsive to NO3 ?‐N supply than the intertidal population. Greater NO3 ?‐N supply can help the species, especially the intertidal population, to grow and to mediate ion homeostasis under high salinity.  相似文献   

7.
Zeolite minerals improve the efficiency of nutrient use by plants by helping to regulate the release of nitrogen and nitrate accumulation in tissues. The main objectives of this research were to evaluate effects of the addition of zeolite enriched with potassium nitrate (KNO3) on the nitrate (NO3-N) and potassium (K) levels of lettuce shoot. Treatments arranged in a completely randomized block design with three replications comprised two types of the natural zeolite: concentrated zeolite, zeolite + KNO3, and a control grown in substrate fertilized with a nutrient solution without zeolite supply. Four levels of enriched zeolite were tested (20, 40, 80, and 160 g per pot). Nitrogen, K, and NO3-N data were evaluated and response equations were fitted. The results indicated that zeolite enriched with KNO3 released the macronutrients N and K to lettuce plants. The concentrations of total N, total K, and NO3-N increased with zeolite levels, and there was a positive correlation between total N and NO3-N forms. To keep levels of NO3-N? in shoots within the safe limit for human consumption, based upon the regression equation for NO3-N the recommended dose of KNO3-enriched zeolite should be up to 78 g per plant.  相似文献   

8.
Abstract

A sequential injection system for the determination of nitrate (NO3 ?) in vegetables was developed to automate this determination, allowing for substantially reduced reagent consumption and generated waste using low‐cost equipment. After extraction with water and filtration, the extracted nitrate is reduced inline to nitrite in a copperized cadmium (Cd) column and determined as nitrite. According to the Griess–Ilosvay reaction, nitrate is diazotized with sulfanilamide and coupled with N‐(1‐naphtyl)‐ethylenediamine dihydrochloride to form a purple‐red azo dye monitored at 538 nm.

Nitrate can be determined within a range of 1.35–50.0 mg L?1 of NO3 ? (corresponding to 0.270–10.0 g of NO3 ? per kg of vegetable), with a conversion rate of nitrate to nitrite of 99.1±0.8%. The results obtained for 15 vegetable extracts compare well with those provided by the classical procedure, with a sampling throughput of 24 determinations per hour and relative standard deviations better than 1.2%.  相似文献   

9.
In herbaceous plants grown in controlled environmental conditions nitrate (NO3?) uptake increases during the day and decreases in the night. The aim of this work was to measure NO3? uptake rates along the day-night cycle, in rose (Rosa hybrida L.) plants grown under controlled environmental conditions. Two independent experiments were conducted inside a growth chamber at 20 ºC and 25 ºC, using rose mini-plants cv. Texas, grown in a hydroponic nutrient film technique (NFT) set-up with at 3.0 mol m?3 NO3? concentration. Dry matter and nitrogen (N) accumulation were registered during growth and NO3? uptake rates were measured during a day-night cycle, using 15N as 15NO3?. In both experiments the hourly estimated N-NO3? accumulation rates are near to the measured uptake rates of 15NO3? and nitrate uptake decrease during the day and increase in the night, in contrast with the herbaceous plants. Results are discussed on the basis of N plant demand and carbohydrates availability.  相似文献   

10.
A field study was conducted in the sub-humid tropical region of India to examine the effect of different nitrogen (N) management strategies on nitrate leaching, nitrous oxide (N2O) emission and N use efficiency in aerobic rice. Treatments were: control (no N), 120 kg N ha?1 applied as prilled urea (PU) in conventional method, 120 kg N ha?1 applied as neem coated urea (NCU) in conventional method, N applied as PU on the basis of leaf colour chart (LCC) reading, N applied as NCU on the basis of LCC reading, and 120 kg N ha?1 applied as PU and farm yard manure (FYM) in 1:1 ratio. Results showed that 3.4–16.1 kg NO3-N ha?1 was leached below 45 cm depth and 0.61–1.12 kg N2O-N ha?1 was emitted from aerobic rice during the growing season. NCU when applied conventionally reduced nitrate-nitrogen (NO3-N) leaching and N2O emission by 18.6% and 21.4%, respectively However when applied on the basis of LCC reading NCU reduced NO3-N leaching by 39.8% as compared to PU applied in conventional method. NCU when applied on the basis of LCC reading synchronized N supply with demand and reduced N loss, which resulted in higher yield and N use efficiency.  相似文献   

11.
ABSTRACT

The present study was performed to characterize the interaction between nitrogen (N) form and availability with respect to growth, water relations, and mineral nutrition of wild swiss chard (Beta macrocarpa Guss). Plants were cultured hydroponically with two levels of N concentrations, high-N (2.5 mM) or low-N (0.5 mM), added as nitrate (NO? 3) or ammonium (NH+ 4). At high N, growth was affected significantly by N form. If the NO? 3 medium was considered as control, the use of NH+ 4 decreased dry matter production and leaf area by ca. 35%. Use of NH+ 4 led to water economy and did not affect the nutrient content of the plant tissues. Compared to growth with high N, plants growth fell in either low- NO? 3 or low- NH+ 4 medium. In this case, the difference between the two N sources was not significant. Our results showed that the replacement of NO? 3 by NH+ 4 as the N source decreased the NO? 3 concentration in consumable leaves and increased the water use efficiency.  相似文献   

12.
Abstract

The effects of potassium chloride (KCl) as a potassium (K) source in fertigation solution on growth, yield and quality of tomato (cv. Durinta) in a controlled greenhouse were compared with potassium nitrate (KNO3)—the conventional K source for vegetable fertigation. The treatments consisted of four levels of KCl: (1) 0% KCl (100% KNO3), (2) 40% KCl (40% KCl and 60% KNO3), (3) 60% KCl (60% KCl and 40% KNO3), and (4) 100% KCl (0% KNO3) in fertigation solution in the season 1999–2000. In 2000–2001, early (12 days after planting) and late (47 days after planting) applications of 100% KCl and 0% KCl were tested. The concentrations of K and other major nutrients were similar in all the treatments. Ammonium nitrate (NH4NO3), calcium nitrate [Ca(NO3)2] and nitric acid (HNO3) were used as nitrogen (N) sources in KCl treatments. Electrical conductivity (EC) of all solutions ranged from 1.8 to 2.1 dS m?1; pH range was from 6.6 to 7.1. Perlite was used as a neutral growing medium. Plant height, time to anthesis, time to harvest, and leaf nutrient content were monitored. Total yield, average fruit weight and number, and fruit size were measured after harvest. The appearance and quality of the fruits were rated following cold storage simulation for export conditions. None of the plants showed chloride (Cl) toxicity symptoms. No significant differences in yield components and plant growth were recorded among the treatments. Fruit dry matter, total soluble solids (TSS), glucose, titrable acidity (TA), pH, and EC of juice after simulation storage were not affected by the K source. Interestingly, fruit firmness, and freshness of calyx were significantly improved, while the number of rotten and blotchy fruits was significantly decreased in KCl treatments. The fruit nitrate (NO3) content was decreased whereas iron (Fe) content was significantly increased in KCl treatments. The results show that KCl can be used as a substitute for KNO3 without detrimental effects on plant development and yield, while significantly improving some important quality parameters. It is concluded that KNO3 can be replaced fully or partially (depending on water quality) by KCl in tomato production while improving the quality of fruits.  相似文献   

13.
Nitrogen (N) and potassium (K) fertilization play a key role in forage crops and can significantly increase yields of ‘Marandu’ palisadegrass [Brachiaria brizantha (Hochst. exA. Rich.) Stapf.], one of the most important forage crops in Brazil. This study aimed to identify the concentrations of total N and K, nitrate (NO3?), and ammonium (NH4+), chlorophyll meter readings (SPAD), and nitrate reductase activity (At-RNA) required to maximize yield. Plants were grown in quartz substrate and treated with nutrient solutions that ranged from 2 to 33 mmol L?1 for N and 0.5 to 11 mmol L?1 for K. Dry matter production and At-RNA increased with increasing N and K supplies. SPAD readings correlated strongly with N leaf concentration and dry matter production and can be used to assess the N status of this species. The supply of N and K in the fertilization promoted high yield and adequate N and K concentration for plant metabolism.  相似文献   

14.
Abstract

Nitrate (NO3 ?) meters have been used effectively for crop nitrogen (N) management in many crops, including corn and cabbage. The use of a Cardy NO3 ? meter to assess the N status of the carrot crop could improve the utilization of applied N, but critical NO3‐N concentrations are required. Two carrot cultivars were grown on mineral and organic soils over 3 years at five N application rates to establish critical sap and soil NO3‐N concentrations and to identify the effects of soil type and cultivar. Although a yield response to N application occurred on mineral soil in 2 of 3 years, consistent critical sap NO3‐N concentrations could not be established because of variability among years, cultivars, and soil types. Critical soil nitrate concentrations were highly variable, but values of 31 to 36 mg · L?1 NO3‐N could be established for the early sampling date to 30 cm deep. Sap NO3‐N concentrations cannot be used alone for N analysis of carrots, but early‐season soil NO3‐N assessment could be useful in adjusting N‐fertilization practices.  相似文献   

15.
One aluminum (Al)-sensitive (B-73) and two Al-tolerant (F-2 and L-2039) maize genotypes were subjected to Al stress (100 μM Al) under two nitrogen (N) treatments [13.2 mM nitrate (NO3?) and 8.3 mM NO3? + 4.9 mM ammonium (NH4+)]. Growth parameters, chlorophyll, root N and NO3? contents, root nicotinamide adenine dinucleotide (NADH-) and nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate reductase, glutamine synthetase, and glutamate dehydrogenase activities were determined. Aluminum significantly decreased growth and chlorophyll content in Al-sensitive genotype. Nitrate accumulation in roots was increased by Al in tolerant plants. In the sensitive genotype, Al suppressed all enzymes in NO3? plants, while in NO3?/NH4+ plants the suppression was less severe, and NADPH-nitrate reductase was even stimulated. In tolerant NO3?plants, glutamate dehydrogenase was stimulated in F-2 and glutamine synthetase suppressed in L-2039 genotype. In tolerant NO3?/NH4+- plants, all enzymes were stimulated by Al, which may be attributed to their participation in defense mechanisms.  相似文献   

16.
Abstract

Combined nitrogen [nitrate (NO3‐), ammonium (NH4+), and urea] will inhibit all components of symbiotic nitrogen (N2) fixation if present in sufficient concentrations. It is generally accepted that nitrate is particularly inhibitory to nodule growth and nitrogenase activity, and somewhat less inhibitory to the infection process. This project examined whether providing low (0.1 ‐ 0.5 mM) static concentrations of NO3‐ to pea (Pisum sativum L. cv. Express), seedlings could avoid the period of N hunger experienced prior to the establishment of N2 fixation, without delaying or reducing the symbiotic N2 fixation. All concentrations of NO3 ? tested significantly inhibited all measured components of N2 fixation. The nodulation process as measured by nodule number was inhibited to a similar degree as the other parameters. A concentration dependent response was evident, with 0.1 mM NO3 ? causing less inhibition than the 0.2 or 0.5 mM concentrations. Our results indicate the within the concentrations of 0.1 mM and 0.5 mM NO3 ?, it is not possible to stimulate the growth of pea plants without inhibiting nodulation and N2 fixation.  相似文献   

17.
In this study, a process has been proposed whereby the sulfide required for autotrophic denitrification is supplied by reducing the sulfate of influent water without the need to add an external sulfide source. The molar ratio of nitrate-to-sulfide was maintained at 1.6. The proposed system was operated continuously for 6 months, including two anoxic and anaerobic reactors with upward flow. The results indicate that the average amount of nitrate declined by 74%. The pH of 7–8 was more effective than a pH of 6 in removing the nitrate. As the hydraulic retention time was prolonged from 1.5 to 3 and was further prolonged to 5 h, the system efficiency was enhanced by removing the nitrate. An alkalinity consumption rate of 1.15 mg (as CaCO3) per mg of removed NO3 ?-N was achieved. In the effluent water, the increased sulfate was 6.7 mg per mg of removed NO? 3-N, while the hardness was diminished by 2.85 mg (as CaCO3).  相似文献   

18.
Nitrogen is taken up by most plant species in the form of nitrate and ammonium. The objective of this study was to investigate the effect of different nitrogen forms on the growth of watermelon seedlings. Plants were grown in hydroponic culture with five nitrate (NO3?)/ammonium (NH4+) ratios (100/0, 75/25, 50/50, 25/75, 0/100). When the proportion of NH4+ was increased, the leaf number, leaf area, shoot height, net photosynthesis, biomass, and root growth were significantly decreased. Higher concentrations of nitrogen (N) and phosphorus (P) were observed when plants were supplied with mixed NO3? and NH4+ compared to NO3? or NH4+ alone, whereas the concentrations of potassium (K), calcium (Ca), and magnesium (Mg) were decreased with increasing NH4+. The microelements concentrations were generally increased with more NH4+ added. In addition, plants fed with higher NO3?/NH4+ ratios resulted in more minerals accumulation.  相似文献   

19.
High arsenic (As), cadmium (Cd), lead (Pb), and nitrate (NO3?) concentrations in soil pose a risk for the human population and compromise food safety. The goal of this study was to obtain preliminary approximations for the expected mean values of As, Cd, Pb, and N-NO3 in three leafy vegetables (lettuce, spinach, and chard) grown in the central farming regions of Chile. Representative samples (n = 148) of these crops were collected from the Coquimbo, Valparaíso, and Metropolitana Regions. Water extraction and an ion-selective electrode were used to determine NO3? contents, while total As, Cd, and Pb contents were determined by atomic absorption spectroscopy. The recorded values were 23.8%, 59.2%, and 97.9% below detection limits for As, Cd, and Pb, respectively. Furthermore, As and Cd intake by leafy vegetables reached 0.26 and 2.30% of the daily intake levels estimated by Chilean authorities. The daily NO3? intake by leafy vegetables was 0.44 mg per kg of bodyweight per day (kgbw?1day?1), or 12% of the WHO-recommended intake. No analyses were performed for Pb due to highly left-censored data. While the recorded NO3?, As, and Cd concentrations in lettuce, spinach, and chard do not apparently pose a health risk, further detailed studies are suggested.  相似文献   

20.
Diverting the infiltrating water away from the zone of N application can reduce nitrate–nitrogen (NO3–N) leaching losses to groundwater from agricultural fields. This study was conducted from 2001 through 2005 to determine the effects of N-application methods using a localized compaction and doming (LCD) applicator and spoke injector on NO3–N leaching losses to subsurface drainage water and corn (Zea mays L.)–soybean (Glycine max L.) yields. The field experiments were conducted at the Iowa State University’s northeastern research center near Nashua, Iowa, on corn–soybean rotation plots under chisel plow system having subsurface drainage ‘tile’ system installed in 1979. The soils at the site are glacial till derived soils. The N-application rates of 168 kg-N ha?1 were applied to corn only for both the treatments each replicated three times in a randomized complete block design. For combined 5 years, the LCD N-applicator in comparison with spoke injector showed lower flow weighted NO3–N concentrations in tile water (16.8 vs. 20.1 mg L?1) from corn plots, greater tile flow (66 vs. 49 mm), almost equivalent NO3–N leaching loss with tile water (11.5 vs. 11.3 kg-N ha?1) and similar corn grain yields (11.17 vs. 11.37 Mg ha?1), respectively, although treatments effects were found to be non-significant (p?=?0.05) statistically. The analysis, however, revealed that amount and temporal distribution of the growing season precipitation also affected the tile flow, NO3–N leaching loss to subsurface drain water, and corn–soybean yields. Moreover, the spatial variability effects from plot to plot in some cases, resulted in differences of tile flow and NO3–N leaching losses in the range of three to four times despite being treated with the same management practices. These results indicate that the LCD N-applicator in comparison with spoke injector resulted in lower flow weighted NO3–N concentrations in subsurface drain water of corn plots; however, strategies need to be developed to reduce the offsite transport of nitrate leaching losses during early spring period from March through June.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号