首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Souar lithologic formation in semi-arid Tunisia is undergoing severe gully erosion which is threatening soil and water resources. Soil conservation strategies have focused more on terracing than on gully control techniques, since the contribution of gully sediment yield in the overall soil loss from watersheds is unknown. The paper reports investigations into the sediment yield provided by head-cut as well as sidewall–floor erosion of first order gullies on gentle and steep slope catchments underlined by the Souar lithologic formation. We measured mean field sediment volumes evacuated by different headward reaches of 10 and 9 gullies located on gentle and steep slope catchments, respectively. Two equations between the length of the gully head cutting and the corresponding volume of evacuated sediment were established. The treatment with a Geographic Information System (Arc View) of air photographs of six flights from 1952 to 2000 allowed the calculation of the volume of sediment provided both by head cutting and gully sidewalls–floor erosion through the following up of gully extension in eight catchments during the five periods separating the dates of these flights. Total gully erosion was on average 1.66 m3 ha− 1 year− 1 for the gentle slopes and 5.603 m3 ha− 1 year− 1 for the steep slopes. Sidewalls–floor contribution in total erosion was on average 81.5% for the gentle slopes and 77.8% for the steep slopes. We found out that the mean annual rainfall resulting from 40 mm daily rainfall threshold explained better the variation of annual head cutting sediment yield for these five periods than any other annual rainfall resulting from lower daily rainfall thresholds. Two equations between these two variables were established both for gentle and steep slope catchments.  相似文献   

2.
Gully development in the Moldavian Plateau of Romania   总被引:1,自引:0,他引:1  
Ion Ionita   《CATENA》2006,68(2-3):133
Gully erosion has been recognized as an important environmental threat in the Moldavian Plateau of Eastern Romania. The main objective of this study was to define the process-based gully development by providing quantitative information from long-term field measurements in small catchments.Three main areas of monitoring gullies were explored: aerial photographs of flights in 1960 and 1970, classical leveling and repeated survey through a particular close stakes grid after 1980. The Caesium-137 technique has been used effectively in the areas of deposition of gully sediments to obtain reliable information on dating specific levels of sediments and to provide chronological measures of gully development.Most of the discontinuous gullies exhibit both proper gullying, mainly if not exclusively by gully head advance, and aggradation of the gully basin floor. Results indicated that the mean gully head retreat was 0.92 m year− 1 and the mean areal gully growth was 17.0 m2 year− 1. Both values indicate a slow erosion rate for this area. The average annual regime of gullying is pulsatory, one that is best described by great fluctuations. Conventional measurements on sedimentation over the period 1987–1997 indicate a higher rate of aggradation in the upper half of the gully floor. Information on the Caesium-137 depth profile was used to provide estimates of a mean sedimentation rate of 4.4 cm year− 1 over the period 1963–1996 and 2.5 cm year− 1 after 1986 for the short successive discontinuous gullies. A new classification of the discontinuous gullies based on two criteria, respectively, the field patterns and the rate of aggradation within the gully basin floor was established.For continuous gullies, linear gully head retreat, areal gully growth and eroded material rates were quantified for three periods (1961–1970, 1971–1980 and 1981–1990). Results indicate that gully erosion has decreased since 1960. This gullying decline is due to the rainfall distribution, and the increased influence of soil conservation practices. The mean gully head retreat of 12.5 m year− 1 between 1961–1990 was accompanied by a mean areal gully growth of 366.8 m2 year− 1 and a mean erosion rate of 4168 t year− 1. As with discontinuous gullies, continuous gullies showed pulsatory development.The critical period for gullying over 1981–1996 covers 4 months from Mid March to Mid July in an area with mean annual precipitation around 500 mm. Another main finding of this 16-year stationary monitoring was that 57% of the total gullying occurred during the cold season, with the remainder during the warm season. Of the total gully growth, 66% results from only four years (1981, 1988, 1991 and 1996), when a greater amount of precipitation fell.  相似文献   

3.
In order to assess its potential for estimating soil redistribution rates, the naturally occurring fallout radionuclide 210Pbex has been used in parallel with 137Cs, derived from the atmospheric testing of nuclear weapon testing in the 1950s to 1970s, to estimate rates of soil redistribution on a sloping field with traditional erosion control measures located near Jiajia Village, Jianyang County, in the Sichuan Hilly Basin of China. The local 210Pbex reference inventory of 12,860 Bq m− 2 is higher than those reported for many other areas of the world and may reflect the influence of cloudy weather in preventing 210Pb released to the atmosphere across the local region moving up into the upper troposphere, where is would be more widely dispersed. The mean 210Pbex and 137Cs inventories measured in cores collected from the upper part of the field with an average slope of 10° were 8028 Bq m− 2 and 993 Bq m− 2, respectively, and the equivalent values for the lower part of the field, where the slopes are steeper (20°) were 11,388 Bq m− 2 and 1299 Bq m− 2. The pattern of post-fallout 210Pbex and 137Cs redistribution on the sloping field reflects not only the effects of water erosion and redistribution by tillage, but also the local traditional practice of “Tiaoshamiantu”, whereby sediment trapped in the ditches is returned to the fields by the farmer. The estimates of annual rates of soil loss provided by the 210Pbex measurement are closely comparable with those derived from the 137Cs measurements and are consistent with existing knowledge for the study area. The results obtained from this study confirm the potential for using 210Pbex measurement to estimate soil erosion rates over medium-term timescale of 50–100 years. By combining the estimates of erosion rates provided by the 210Pbex and 137Cs measurements, the weighted mean net soil loss was estimated to be 48.7 t ha− 1 year− 1 from the upper subfield and 16.9 t ha− 1 year− 1 from the lower subfield. These rates are considerably lower than the erosion rates obtained from runoff plot measurements in the local area. It is suggested that the traditional erosion control practices and the practice of “Tiaoshamiantu” have a significant effect in reducing soil loss and conserving valuable cultivated soil on sloping fields in the Sichuan Hilly Basin.  相似文献   

4.
《CATENA》2001,45(2):123-161
A method based on dendrochronology to estimate gully erosion rates was developed as an alternative of traditional methods for assessing medium-term gully retreat rates, such as field monitoring of headcuts or aerial-photo interpretation of gully retreat. The method makes use of trees or parts of a tree affected by gully erosion revealing information on the history of the erosion process by datable deviations of their normal growth pattern, hence defined as ‘datable objects’. These include roots exposed by erosion; browsing scars made by ungulates on exposed roots or on above-ground parts of fallen trees; exposed and dead root ends; root suckers; stems, branches and leading shoots of fallen trees; and a sequence of trees within a gully. The method is based on the differentiation between three main conditions depending on the relation between the dynamics of the datable object (part of the tree) and the development of the gully. The first condition implies that the datable object was created before erosion of the gully volume to be dated, e.g. exposed tree roots. According to the second condition, the datable object developed as an immediate consequence of the erosion event, e.g. growth reactions of a fallen tree. The third condition implies that the datable object was created some time after the erosion event took place, e.g. trees colonising the gully bed. Each principle has consequences for the accuracy and the correct interpretation of the estimated erosion rate, i.e. whether the true erosion rate is underestimated, exact or overestimated. In spite of methodological limitations and dendrochronological dating problems, the method was successfully applied in southeast Spain. Conservative estimations of gully-head retreat rate resulted in an average medium-term (3–46 years) value of 6 m3 year−1 (n=9). For gully sidewall processes, the average minimum erosion rate per unit sidewall length amounted 0.1 m3 year−1 m−1 (n=9). A strong correlation was found between the headcut retreat rate (vm(ortho), m3 year−1) and the drainage–basin area (A, m2) of the gullies, expressed by vm(ortho)=0.02A0.57 (R2=0.93, n=9). Comparing the findings from this study with those obtained by short-term headcut retreat monitoring suggests a high reliability of the estimated retreat rates, supporting the applicability of the developed dendrochronological method.  相似文献   

5.
In the Eastern Rif of N Morocco, soil conservation is seriously threatened by water erosion. Large areas of soil have reached an irreversible state of degradation. In this study, the 137Cs technique was used to quantify erosion rates and identify the main factors involved in the erosion process based on a representative catchment of the Eastern Rif. To estimate erosion rates in terms of the main factors affecting soil losses, samples were collected taking into account the lithology, slope and land use along six selected transects within the Boussouab catchment. The transects were representative of the main land uses and physiographic characteristics of that Rif sector. The reference inventory for the area was established at a stable, well preserved, matorral site (value of 4250 Bq m− 2). All the sampling sites were eroded and 137Cs inventories varied widely (between 245 and 3670 Bq m− 2). The effective soil losses were also highly variable (between 5.1 and 48.8 t ha− 1 yr− 1). Soil losses varied with land use. The lowest average values were on matorral and fallow land (10.5 and 15.2 t ha− 1 yr− 1, respectively) but much higher with alfa vegetation or cereal crops (31.6 and 27.3, respectively). The highest erosion rate was on a badland transect at the more eroded part of the catchment, with rates exceeding 40 t ha− 1 yr− 1 and reaching a maximum of 48.8 t ha− 1 yr− 1.The average soil losses increased by more than 100% when the slope increased from 10° (17.7 t ha− 1 yr− 1) to 25° (40. 8 t ha− 1 yr− 1). Similar results were obtained when comparing erosion rates in soils that were covered by matorral with respect to those under cultivation. Lithology was also a key factor affecting soil loss. Soils on marls were more erodible and the average erosion rates reached 29.36 t ha− 1 yr− 1, which was twice as high as soils on the glacis and old fluvial terraces (average rates of 14.98 t ha− 1 yr− 1). The radiometric approach was very useful to quantify erosion rates and to examine the pattern of soil movement. The analysis of main erosion factors can help to promote rational soil use and establish conservation strategies in the study area.  相似文献   

6.
The introduction of agriculture in the late 1800s and early 1900s brought about many changes in the natural prairie landscape of western Canada. The objective of this research project is to evaluate landscape response to land use change by relating observed changes in the sedimentary record of a lake drainage basin to documented land use change that has occurred since the onset of settlement. A 52 cm lake sediment core was sectioned into 1 cm layers. The sediment was separated into allogenic and authigenic fractions using a wet chemical extraction technique. Close interval 210Pb dating enabled the calculation of sediment and elemental influx rates. Prior to European settlement, erosion rates were low (< 0.1 Mg ha− 1 year− 1). In the 1910s, when the first settlers arrived in the area, erosion rates increased, and in the 1920s and 1930s, when the area of improved land rapidly increased and conditions were dry, erosion rates reached peaks of 1.5 and 2.2 Mg ha− 1 year− 1. Erosion rates in the latter part of the 20th Century range from 0.6 to 0.7 Mg ha− 1 year− 1. The composition of the allogenic fraction in the most recent, black sediment at the top of the core shows high concentrations of Ti and Zr, indicating a large contribution of topsoil to the allogenic fraction. In addition, elevated concentrations of Zn, Ni, Mo and U are likely explained by the application of phosphate fertilizers. Because of sediment deposition within the basin, e.g., on concave footslopes and on the valley floor, the erosion rates derived from the Thunstrom Lake core should be interpreted as net rates that likely mask values that are much higher locally within the basin. As a result, this study provides information on the erosional response of the prairie landscape to recent changes in land use at the scale of the Thunstrom Lake basin, but not necessarily on the sustainability of the soil as a resource, which would require information at the much smaller scale of the individual field.  相似文献   

7.
Particulate phosphorus (P) can be transported via soil erosion in overland flow to waters, where it provides a long-term source of P for aquatic biota, and can accelerate freshwater eutrophication. Hence, knowledge of P sources is important for good environmental management. However, data on P, and related Fe, losses from various structures of a post-mining landscape are lacking. A year-long monitoring, and ten short rainfall simulations on plot scale, at ridges and rills and a combination of them, revealed high erosion from bare lignite mining dumps at Schlabendorf-North, Lusatia, Germany. The mean annual soil erosion rate from the year-long monitoring site was 18 × 106 kg km− 2 yr− 1, corresponding to 0.034 g m− 2 min− 1. The erosion rates were lowest at rill plots (1.9–4.4 g m− 2 min− 1), intermediate at ridge plots (14.3–37.1 g m− 2 min− 1), and highest at a combined rill and ridge plot (48.7–63.4 g m− 2 min− 1). These differences in extent were due to small scale differences in morphology and extreme water repellency. The hydrophobicity leads to very low infiltration, thus generating surface runoff even at low rainfall intensities. Loss rates of P and Fe, as deduced from the year-long erosion rate, were 470–650 kg km− 2 yr− 1, and 37.9 × 103–71 × 103 kg km− 2 yr− 1 respectively. However, these P inputs from lignite mining dump erosion, consisting of P-poor (17–90 μg g− 1) tertiary spoil materials, into aborning mining lakes, are negligible since they are accompanied by high Fe inputs, which favour an efficient P co-precipitation in the water column.  相似文献   

8.
Y. Avni   《CATENA》2005,63(2-3):185
Gully incision has been eroding the alluvial sediments and loess soils deposited and developed along the valleys in the arid and semiarid regions of Israel. This phenomenon is critical in the arid regions of the Negev Highlands where the agricultural fields, the main floral biomass and the areas which have the highest grazing value, are limited to narrow valleys filled with redeposited loessial sediments. The headcut migration and gully development in the region were studied between 1990 and 2001 in three representative drainage basins (Zipporim, Revivim and Sekher). During flood events, the runoff penetrates the alluvial cover of the valleys, forming vertical headcuts, which gradually retreat up the valley. The runoff is channeled into narrow gullies, preventing the floodwater from spreading over the whole width of the valley. The change in irrigation efficiency along the valleys is reflected in a sharp estimated drop of 70–90% in the floral biomass, causing the reduction of the range value by 83–99%. During the monitoring time interval (1990–2001), the linear gully retreat in the study area ranged between 12.3 and 250 m an average rate of 1.12–22.7 m year− 1 for each gully head. The process is accompanied by erosion of soil, which has high agricultural and range value. The total soil losses in these sites ranged between 800 and 9000 m3 at an average rate of 81–818 m3 year− 1 for each gully head, which is equivalent to 121–1227 Mg year− 1. During the monitoring period, approximately 0.11–0.87 ha of land lost its agricultural and range value in each basin under study, at an average rate of 0.01–0.079 ha year− 1. Since the Byzantine period (1400 BP), approximately 6.5 ha, which is 10% of the land that had high agricultural and range value in the Zipporim valley, lost its value due to gully erosion. No recovery effects of the gully channels were found in the nearby region. The soil erosion is generated by a long-term natural dynamic change in the soil / rock ratio evolving within the drainage basins through time since the termination of the last glacial phase. The loessic sediments, originally deposited within the drainage basins during the late Pleistocene glacial stage, are being removed under the present Holocene climate in several erosion stages. This ongoing phenomenon is causing degradation of soil and biomass and is severely reducing the agricultural and range potential of the region. These parameters indicate that an ongoing process of desertification is active in the arid environment of the Negev Highlands, and is advancing in proportion to the headcut retreat rates in the region. The soil erosion and headcut retreat have been active in the Negev Highlands for the last few millennia. If these processes continue in the future, the Negev Highlands region will lose its agricultural potential within a few millennia. However, the fact that the ancient inhabitants of the region implemented successful long-term land conservation techniques already 3000 years ago, implies that a sustainable land management policy can be adapted to the Negev Highlands, as well as to other semi-arid regions in the Middle East.  相似文献   

9.
Surface runoff, soil loss, suspended sediment concentration (SSC), texture of eroded soils and suspended sediment were determined on slightly eroded chernozems (mouldboard fall-ploughed) during years with different amounts of snow in three areas of southern West Siberia (Predsalairye, Priobye and Kuznetsk hollow). These areas have different geomorphological and climatic characteristics and soils. Observations were made from 1969 to 2007. The soil loss during very low-snow and low-snow years did not exceed 2 t ha− 1. After winters with normal amounts of snow, the runoff led to slight soil loss (2–5 t ha− 1). Soil losses in high-snow and very high-snow years varied from slight to severe (4.8–15.8 t ha− 1) depending on studied area. The main sediment exported during intensive snowmelt and the 1 mm of runoff transported from 35 to 150 kg ha− 1 of soil material. The removal of soil particles < 0.01 mm (especially clay) prevailed during the initial and final stages of snowmelt. Clay removal by meltwater from the ploughed layer in high-snow and very high-snow years varied from 3300 to 4200 kg ha− 1 and, in the initial and final stages of snowmelt clay removal, accounted for 1260–1,500 kg ha− 1. Among the three studied regions, Predsalairye had decreased soil erosion resistance and was the area with the greatest danger of erosion.  相似文献   

10.
Bardenas Reales is an erosive depression 415 km2 in area located in the central-western part of the Ebro Depression. Tertiary sediments crop out in the margin of the basin whereas Quaternary sediments, Holocene in age, occur only in its centre. These Holocene sediments (clays and silts) are the result of the erosion and weathering of the Tertiary clays and are made up of 3 different stratigraphic units. Erosion is clearly the dominant process in the centre of the depression, generating gullies up to 10 km in long and 8 m deep. In order to analyse and quantify the erosion rates of the studied area, erosion was measured on two Soil Erosion Plots with volumetric and instrumental techniques that have been supplied for the last 12 years. The results show that the estimated erosion rates depend extrinsically on the used method and intrinsically on the time of the year in which they are measured. The most accurate values are those obtained by means of collector devices. The values obtained by the microtopographic profile gauge are overestimated, while the results of the measurement with erosion pins are clearly lower. The study area is located in a semi-arid environment, with two pluviometric maximums, in spring and autumn, associated with convective storms. In summer and winter, rainfall is related to Atlantic cyclonal fronts. Soil loss is significant during the pluviometric maximums when rainfall quantity and intensity are higher. During cyclonal periods, in contrast, water erosion is null or scarce and soil loss is related to mudflows. In addition, the erosion rates of each Holocene unit are different. The C2 Holocene unit has undergone greater erosion because of its physico-chemical properties. All the stratigraphic units have similar characteristics regarding Tertiary materials. Since 1993 the average erosion rate measured by the collector device on the Tertiary materials is 32 Mg ha− 1 year− 1 and 77 Mg ha− 1 year− 1 in the Holocene.  相似文献   

11.
《CATENA》2001,44(2):133-161
In this study, short-term headcut retreat was monitored from 46 active bank gullies, selected in the Guadalentin and the Guadix basin in Southeast Spain. The measurements were carried out manually using an orthogonal reference system fixed by erosion pins around the gully heads, between April 1997 and April 1999 with a 1-year interval. The average volumetric retreat rate for all gullies was 4.0 m3 year−1, corresponding with an average linear retreat rate of 0.1 m year−1, but more erosion took place during the first monitored year (1997–1998) compared to the second (1998–1999). An interplay of spatial variations in rainfall distribution and tension crack activity is assumed to be responsible for the important difference in annual headcut retreat, compared to the small difference in annual rainfall amounts. Statistical analysis showed that the present drainage-basin area (Ap) was the most important topographical factor explaining average gully headcut retreat rate, both in terms of annual eroded volume (Ve) and annual linear retreat (Rl), and expressed by the power relationships Ve=0.04Ap0.38 (R2=0.39) and Rl=0.01Ap0.23 (R2=0.39). The VeAp relationship was compared with the relationship between original drainage-basin area (Ao) and total eroded bank gully volume (Vol), i.e. Vol=1.71Ao0.60 (R2=0.65). The importance of runoff generation from a drainage basin is shown by the positive correlation of linear headcut retreat and the runoff curve number (CN), representative for the conditions in the drainage basin. High CN values tend to coincide with higher annual eroded volumes in the relationship between present drainage-basin area (Ap) and annual eroded volume (Ve), but this effect was not observed in the relationship between original drainage-basin area (Ao) and total eroded bank gully volume (Vol). Stepwise multiple regression selected the relevant environmental parameters explaining annual eroded volume and linear retreat. In both equations, the present drainage-basin area explained the largest part of the variation. The CN was selected as another common parameter. Height of the headcut was the second most important variable explaining annual eroded volume, indicating the role of energy transfers and undercutting at the headcut. Linear retreat was further explained by the average slope of the present drainage-basin area, representing the effect of decreasing transmission losses and increasing flow velocity with steeper catchment slopes, and by the sand content, decreasing the cohesion of the soil material, promoting soil fall and headcut retreat. Spatial extrapolation of the measured volumetric retreat rate of 4.0 m3 year−1 revealed that active bank gully heads contribute up to 6% of the sediment yearly filling up the Puentes reservoir. Estimated gully ages (i) based on the ergodic principle, and (ii) by linear extrapolation of actual gully retreat rates in the past, range between 63 years and 1539 and between 64 and 1720 years, respectively. The high correlation between the gully ages estimated by the two methods is attributed to the fact that most gullies have not reached the evolutionary stage of significantly declining retreat rates. Since medium-term gully retreat rates are more dependent on drainage-basin area compared to the short-term retreat rates obtained in this study, the estimated gully ages represent maximum values, assuming that present land-use and climate conditions prevailed over the last two millennia.  相似文献   

12.
Application of crop residues to soil and reduced or no tillage are current management practices in order to achieve better water management, increase soil fertility, crop production and soil erosion control. This study was carried out to quantify the effect of wheat straw mulching in a no tilled Fluvisol under semi-arid conditions in SW Spain and to determine the optimum rate in terms of cost and soil protection. After a 3-years experiment, mulching application significantly improved physical and chemical properties of the studied soil with respect to control, and the intensity of changes was related to mulching rate. The organic matter content was generally increased, although no benefit was found beyond 10 Mg ha1 year1. Bulk density, porosity and aggregate stability were also improved with increasing mulching rates, which confirmed the interactions of these properties. Low mulching rates did not have a significant effect on water properties with respect to control, although the available water capacity increased greatly under high mulching rates. After simulated rainfall experiments (65 mm h1 intensity), it was found that the mulch layer contributed to increase the roughness and the interception of raindrops, delaying runoff generation and enhancing the infiltration of rain water during storms. Mulching contributed to a reduction in runoff generation and soil losses compared to bare soil, and negligible runoff flow or sediment yield were determined under just 5 Mg ha1 year1 mulching rate. It was observed that during simulations, the erosive response quickly decreases with time after prolonged storms (30 min) due to the exhaustion of available erodible particles. These results suggest that the erosive consequences of intermediate intensity 5-years-recurrent storms in the studied area could be strongly diminished by using just 5 Mg ha1 year1 mulching rates.  相似文献   

13.
Recent research has shown a lack of long-term monitoring for detailed analysis of gully erosion response to climate characteristics. Measures carried out from 1995 to 2007 in a wheat-cultivated area in Raddusa (Sicily, Italy), represent one of the longest series of field data on ephemeral gully, EG, erosion. The data set collected in a surface area of almost 80 ha, permits analysis of the influence of rainfall on EG formation and development. Ephemeral gullies formed in the study area were measured on a yearly scale with a Post-Processing Differential GPS for length and with a steel tape for the width and depth of transversal sections. Ephemeral gully formation was observed for 8 years out of 12, which corresponds to a return period of 1.5 years. The measurements show strong temporal variability in EG erosion, in agreement with the rainfall characteristics. The total eroded volumes ranged between 0 and ca. 800 m3 year−1, with a mean of ca. 420 m3 year−1, corresponding to ca. 0.6 kg m−2 year−1. Ephemeral gully erosion in the study area is directly and mainly controlled by rainfall events. An antecedent rainfall index, the maximum value of 3-days rainfall (Hmax3_d), is the rain parameter which best accounts for EG erosion. This index is used here as a simple surrogate for soil water content. An Hmax3_d threshold of 51 mm was observed for EG formation. The return period of the Hmax3_d threshold is almost the same as the return period for EG formation. Although a mean of seven erosive rain events were recorded in a year, EG formation and development generally occur during a single erosive event, similarly to other semiarid environments. The most critical period is that comprised between October and January, when the soil is wetter and the vegetation cover is scarce. Empirical models for EG eroded volume estimation were obtained using the data set collected at this site. A simple power-type equation is proposed to estimate the eroded volumes using Hmax3_d as an independent variable. This equation shows an R2 equal to 0.67 and a standard error of estimation of 0.79.  相似文献   

14.
Starting in the 1980's, the Rainbow Smelt (Osmerus mordax) population of the Boyer River (Canada) gradually declined due to water eutrophication and excessive siltation in the spawning area. Sediments and agricultural nutrients reach hydrosystems through runoff and soil erosion. The objectives of the study were to quantify the soil and sediment loss from agricultural fields and to identify the areas at risk, using 137Cs measurements. Using a Geographical Information Systems (GIS), the watershed was subdivided into 6 isosectors presenting specific soil/slope combinations. Representative fields from each isosector were sampled for 137Cs. Using GIS, the data for individual fields were extrapolated to isosectors and the whole cultivated area of the watershed. Based on this approach, it was estimated that around 30% of the arable lands of the watershed show erosion rates higher than 6 t ha− 1 yr− 1, which is considered as a tolerable level for Canadian soils, and that 45% of the residual area presents an erosion rate close to that limit. The average sediment production at the edge of fields was estimated at 2.8 t ha− 1 yr− 1, for an annual production of more than 60 000 t of material. Loamy soils with a slope higher than 2% were estimated to generate the highest sediment rate (6.9 t ha− 1 yr− 1) and nearly 40% of the overall sediment production.  相似文献   

15.
This paper reports the results of soil respiration (SR, including heterotrophic and autotrophic respiration), in a presumably successional series (early, middle and advanced) of subtropical forests in Dinghushan Biosphere Reserve in Guangdong Province, China. A static chamber method was used to characterize SR in dynamics of diurnal and seasonal patterns. The relationships of SR with soil temperature (ST) at 5 cm depth and with soil moisture (SM) at 0-10 cm depth were studied in order to estimate the annual SR of each of the forests. The annual SR in a climax forest community, monsoon evergreen broad-leaved forest (MEBF) was estimated as 1163.0 g C m−2 year−1 and in its successional communities, coniferous and broad-leaved mixed forest (MF) and the Masson pine forest (MPF) were 592.1 g C m−2 year−1, 1023.7 g C m−2 year−1, respectively. In addition, removal of surface litter led to the reduction of annual SR by 27-45% in those three forests. Analysis of the results indicated that the annual SR was highly correlated with both ST and SM. Furthermore, ST and SM themselves were highly correlated with each other across season in this study area. Thus for seasonal predictive SR model, either ST or SM could be integrated. However, for SR daily change prediction, both ST and SM were required because of confounding effects of ST and SM on a diurnal time scale. The Q10 values of SR derived from ST dependence function were 2.37, 2.31 and 2.25 in the three forests: MPF, MF and MEBF, respectively, suggesting a decreasing trend of the Q10 with the degree of forest succession.  相似文献   

16.
Soil loss tolerance limit is defined as the threshold upper limit of soil erosion that can be allowed without degrading long term productivity of specific soils. In India a default soil loss tolerance limit (SLTL) of 11.2 Mg ha− 1 yr− 1 is followed for planning soil conservation activities. The objective of this investigation is to provide a methodology to estimate quantitative SLTL for the Shivalik–Himalayan region in India for suggesting suitable soil conservation measures. A quantitative model was used to integrate potential soil indicators such as infiltration rate, bulk density, water stable aggregate, organic carbon and fertility status to assess soil quality governing soil resistibility to erosion. Scaling functions were used to convert soil parameters to unit less 0 to 1 scale. Normalized values of soil parameters were then multiplied by assigned weights based on relative importance and sensitivity analysis of each indicator. Soils were grouped into 1, 2 and 3 depending on overall additive score. A general guideline developed by the USDA-Natural Resource Conservation Service (NRCS) was followed with certain modifications in depth category for estimation of SLTLs. Soil loss tolerance limits varied from 2.5 to 12.5 Mg ha− 1 yr − 1 compared to single value of 11.2 Mg ha− 1 yr − 1 being followed earlier. Consideration of the newly estimated SLTLs would facilitate site specific conservation planning and prioritising areas for watershed management activities in India.  相似文献   

17.
A Holocene sediment budget was constructed for the 758 km2 Dijle catchment in the Belgian loess belt, in order to understand long-term sediment dynamics. Hillslope sediment redistribution was calculated using soil profile information from 809 soil augerings, which was extrapolated to the entire catchment using morphometric classes. As large parts of the forests within the catchment prove to have undergone little or no erosion since medieval times, a correction was applied for the presence of forests. Total Holocene erosion amounts 817 ± 66 Mt for the catchment, of which 327 ± 34 Mt was deposited as colluvium. This corresponds with a net Holocene soil erosion rate of 10.8 ± 0.8 × 103 Mg ha− 1 for the entire Dijle catchment. Alluvial deposits were studied through 187 augerings spread over 17 cross-valley transects. The total alluvial sediment deposition equals 352 ± 11 Mt or 42% of total eroded sediment mass. Results indicate that at the scale of a medium-sized catchment the colluvial sediment sink is as important as the alluvial sediment sink and should not be neglected. As a result the estimation of erosion through alluvial storage and sediment export would yield large errors. Dating of sediment units show an important increase in alluvial deposition from medieval times onwards, indicating the important influence of agricultural activities that developed from that period. Mean sediment export rates from the catchment for the last 1000–1200 years range between 0.8 and 1.3 Mg ha− 1 a− 1 and are consistent with present suspended sediment measurements in the Dijle. Erosion for agricultural land for this period is 9.2 ± 2.2 Mg ha− 1 a− 1. Sediment budgets for the various tributary catchments provide an insight in the sources and sinks of sediment at different scales within the catchment.  相似文献   

18.
Soil erosion in southeast Spain is a complex process due to strong interactions between biophysical and human components. Significant progress has been achieved in the understanding of soil hydrological behavior, despite the fact that most investigations were focused on the experimental plot scale. Although experimental plots allow exploring the effect of multiple biophysical and anthropogenic factors, they provide limited insights in the combined effect of all factors acting together at the landscape scale. In this study, area-specific sediment yields (SSY) have been estimated based on the volume of sediment trapped behind 36 check dams in the southeast of Spain. Low SSY-values were reported (mean = 1.40 t ha−1 year−1: median = 0.61 t ha−1 year−1). SSY variability could be explained for 67% by catchment characteristics such as drainage area, soil characteristics, land cover, average catchment slope, and annual rainfall. The low SSY values are probably caused by the agricultural abandonment that occurred over the past decades and allowed the recovery of natural vegetation. Furthermore, our results suggest that the soils have eroded in the past to such an extent that nowadays not much sediment is detached by overland flow due to residual enrichment of clay and stones. Also, sediment is to a large extent trapped locally in the catchment, as indicated by the negative relationship between SSY and catchment area.  相似文献   

19.
《Soil biology & biochemistry》2007,39(8):1978-1989
Soil organic matter (SOM) quality and biodegradability the permafrost underlying Siberian wet tussock tundra (Kolyma river basin, northeast Siberia) were analyzed and compared to the characteristics of the contemporary active layer. For this purpose, three permafrost affected soil cores (down to 3 m depth) and seven active layer soil cores (down to 0.3 m depth) were sampled. The samples were divided into particular layers, which were analyzed separately. SOM stability was assessed using a simple chemical fractionation (sequential extraction by cold and hot water, and hot acid). SOM biodegradability and soil mineralization potentials were tested in short-term laboratory incubations. The active layer contained 24 kg C m−2 and 70 kg C m−2 was preserved in 3 m of permafrost. The chemical quality and biodegradability of permafrost SOM were very similar to that of the active layer mineral horizon, and independent from depth. The only exceptions were (1) higher solubility of permafrost SOM in water, indicating its higher mobility and potential leakage after permafrost thawing and (2) higher nutrient (N, P) concentrations available to a dense permafrost microbial community, which could support decomposition of more complex substrates under suitable temperature conditions after thawing. The mineralization potential of the upper 1 m deep permafrost, which could melt by 2100 according to permafrost degradation models, was 6.7 g C m−2 d−1 (optimum conditions of 20 °C, field water capacity), which is comparable to that of the contemporary active layer of 0.5 m depth (7.5 g C m−2 d−1). Under field conditions, SOM mineralization rate would reasonably be significantly lower due to prevailing anoxia (high water table) and diffusion constraints in the deep and flooded soil profile.We conclude from our results that the permafrost (1) cryopreserves a high SOM amount, which is distributed to considerable depths, being of similar chemical quality and biodegradability to that of the active layer mineral horizon SOM, and (2) contains a dense living microbial community, which is able to decompose the present SOM rapidly without any obvious chemical limitation under suitable conditions.  相似文献   

20.
Impacts of 22-year organic and inorganic N managements on total organic carbon (TOC), water-soluble organic C (WSOC), microbial biomass C (MBC), particulate organic C (POC) and KMnO4 oxidized organic C (KMnO4-C) concentrations, C management index (CMI), and C storage in surface soil (0–20 cm) were investigated in a maize (Zea may L.) field experiment, Northeast China. The treatments included, CK: unfertilized control, M: organic manure (135 kg N ha− 1 year− 1), N: inorganic N fertilizer (135 kg N ha− 1 year− 1) and MN: combination of organic manure (67.5 kg N ha− 1 year− 1) and inorganic N fertilizer (67.5 kg N ha− 1 year− 1). TOC concentration and C storage were significantly increased under the M and MN treatments, but not under the inorganic N treatment. The organic treatments of M and MN were more effective in increasing WSOC, MBC, POC and KMnO4-C concentrations and CMI than the N treatment. The M treatment was most effective for sequestrating SOC (10.6 Mg ha− 1) and showed similar increase in degree of grain yield to the N and MN treatments, therefore it could be the best option for improving soil productivity and C storage in the maize cropping system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号