首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of midday vertical atmospheric CO2 distributions reveal annual-mean vertical CO2 gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial carbon from tropical to northern latitudes. The three models that most closely reproduce the observed annual-mean vertical CO2 gradients estimate weaker northern uptake of -1.5 petagrams of carbon per year (Pg C year(-1)) and weaker tropical emission of +0.1 Pg C year(-1) compared with previous consensus estimates of -2.4 and +1.8 Pg C year(-1), respectively. This suggests that northern terrestrial uptake of industrial CO2 emissions plays a smaller role than previously thought and that, after subtracting land-use emissions, tropical ecosystems may currently be strong sinks for CO2.  相似文献   

2.
Fate of fossil fuel carbon dioxide and the global carbon budget   总被引:2,自引:0,他引:2  
The fate of fossil fuel carbon dioxide released into the atmosphere depends on the exchange rates of carbon between the atmosphere and three major carbon reservoirs, namely, the oceans, shallow-water sediments, and the terrestrial biosphere. Various assumptions and models used to estimate the global carbon budget for the last 20 years are reviewed and evaluated. Several versions of recent atmosphere-ocean models appear to give reliable and mutually consistent estimates for carbon dioxide uptake by the oceans. On the other hand, there is no compelling evidence which establishes that the terrestrial biomass has decreased at a rate comparable to that of fossil fuel combustion over the last two decades, as has been recently claimed.  相似文献   

3.
Sensitivity of boreal forest carbon balance to soil thaw   总被引:6,自引:0,他引:6  
We used eddy covariance; gas-exchange chambers; radiocarbon analysis; wood, moss, and soil inventories; and laboratory incubations to measure the carbon balance of a 120-year-old black spruce forest in Manitoba, Canada. The site lost 0.3 +/- 0.5 metric ton of carbon per hectare per year (ton C ha-1 year-1) from 1994 to 1997, with a gain of 0.6 +/- 0.2 ton C ha-1 year-1 in moss and wood offset by a loss of 0.8 +/- 0.5 ton C ha-1 year-1 from the soil. The soil remained frozen most of the year, and the decomposition of organic matter in the soil increased 10-fold upon thawing. The stability of the soil carbon pool ( approximately 150 tons C ha-1) appears sensitive to the depth and duration of thaw, and climatic changes that promote thaw are likely to cause a net efflux of carbon dioxide from the site.  相似文献   

4.
Measurements of the concentrations and carbon-13/carbon-12 isotope ratios of atmospheric carbon dioxide can be used to quantify the net removal of carbon dioxide from the atmosphere by the oceans and terrestrial plants. A study of weekly samples from a global network of 43 sites defined the latitudinal and temporal patterns of the two carbon sinks. A strong terrestrial biospheric sink was found in the temperate latitudes of the Northern Hemisphere in 1992 and 1993, the magnitude of which is roughly half that of the global fossil fuel burning emissions for those years. The challenge now is to identify those processes that would cause the terrestrial biosphere to absorb carbon dioxide in such large quantities.  相似文献   

5.
Most inverse atmospheric models report considerable uptake of carbon dioxide in Europe's terrestrial biosphere. In contrast, carbon stocks in terrestrial ecosystems increase at a much smaller rate, with carbon gains in forests and grassland soils almost being offset by carbon losses from cropland and peat soils. Accounting for non-carbon dioxide carbon transfers that are not detected by the atmospheric models and for carbon dioxide fluxes bypassing the ecosystem carbon stocks considerably reduces the gap between the small carbon-stock changes and the larger carbon dioxide uptake estimated by atmospheric models. The remaining difference could be because of missing components in the stock-change approach, as well as the large uncertainty in both methods. With the use of the corrected atmosphere- and land-based estimates as a dual constraint, we estimate a net carbon sink between 135 and 205 teragrams per year in Europe's terrestrial biosphere, the equivalent of 7 to 12% of the 1995 anthropogenic carbon emissions.  相似文献   

6.
Recent time-series measurements of atmospheric O2 show that the land biosphere and world oceans annually sequestered 1.4 +/- 0.8 and 2.0 +/- 0.6 gigatons of carbon, respectively, between mid-1991 and mid-1997. The rapid storage of carbon by the land biosphere from 1991 to 1997 contrasts with the 1980s, when the land biosphere was approximately neutral. Comparison with measurements of delta13CO2 implies an isotopic flux of 89 +/- 21 gigatons of carbon per mil per year, in agreement with model- and inventory-based estimates of this flux. Both the delta13C and the O2 data show significant interannual variability in carbon storage over the period of record. The general agreement of the independent estimates from O2 and delta13C is a robust signal of variable carbon uptake by both the land biosphere and the oceans.  相似文献   

7.
The North Atlantic is believed to represent the largest ocean sink for atmospheric carbon dioxide in the Northern Hemisphere, yet little is known about its temporal variability. We report an 18-year time series of upper-ocean inorganic carbon observations from the northwestern subtropical North Atlantic near Bermuda that indicates substantial variability in this sink. We deduce that the carbon variability at this site is largely driven by variations in winter mixed-layer depths and by sea surface temperature anomalies. Because these variations tend to occur in a basinwide coordinated pattern associated with the North Atlantic Oscillation, it is plausible that the entire North Atlantic Ocean may vary in concert, resulting in a variability of the strength of the North Atlantic carbon sink of about +/-0.3 petagrams of carbon per year (1 petagram = 10(15) grams) or nearly +/-50%. This extrapolation is supported by basin-wide estimates from atmospheric carbon dioxide inversions.  相似文献   

8.
Arctic tundra has large amounts of stored carbon and is thought to be a sink for atmospheric carbon dioxide (CO(2)) (0.1 to 0.3 petagram of carbon per year) (1 petagram = 10(15) grams). But this estimate of carbon balance is only for terrestrial ecosystems. Measurements of the partial pressure of CO(2) in 29 aquatic ecosystems across arctic Alaska showed that in most cases (27 of 29) CO(2) was released to the atmosphere. This CO(2) probably originates in terrestrial environments; erosion of particulate carbon plus ground-water transport of dissolved carbon from tundra contribute to the CO(2) flux from surface waters to the atmosphere. If this mechanism is typical of that of other tundra areas, then current estimates of the arctic terrestrial sink for atmospheric CO(2) may be 20 percent too high.  相似文献   

9.
Regional changes in carbon dioxide fluxes of land and oceans since 1980   总被引:2,自引:0,他引:2  
We have applied an inverse model to 20 years of atmospheric carbon dioxide measurements to infer yearly changes in the regional carbon balance of oceans and continents. The model indicates that global terrestrial carbon fluxes were approximately twice as variable as ocean fluxes between 1980 and 1998. Tropical land ecosystems contributed most of the interannual changes in Earth's carbon balance over the 1980s, whereas northern mid- and high-latitude land ecosystems dominated from 1990 to 1995. Strongly enhanced uptake of carbon was found over North America during the 1992-1993 period compared to 1989-1990.  相似文献   

10.
A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1860 and 1980 was between 135 x 10(15) and 228 x 10(15) grams. Between 1.8 x 10(15) and 4.7 x 10(15) grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the release from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 x 10(15) grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed.  相似文献   

11.
Paleoatmospheric records of trace-gas concentrations recovered from ice cores provide important sources of information on many biogeochemical cycles involving carbon, nitrogen, and oxygen. Here, we present a 106,000-year record of atmospheric nitrous oxide (N2O) along with corresponding isotopic records spanning the last 30,000 years, which together suggest minimal changes in the ratio of marine to terrestrial N2O production. During the last glacial termination, both marine and oceanic N2O emissions increased by 40 +/- 8%. We speculate that our records do not support those hypotheses that invoke enhanced export production to explain low carbon dioxide values during glacial periods.  相似文献   

12.
Old-growth forests can accumulate carbon in soils   总被引:4,自引:0,他引:4  
Zhou G  Liu S  Li Z  Zhang D  Tang X  Zhou C  Yan J  Mo J 《Science (New York, N.Y.)》2006,314(5804):1417
Old-growth forests have traditionally been considered negligible as carbon sinks because carbon uptake has been thought to be balanced by respiration. We show that the top 20-centimeter soil layer in preserved old-growth forests in southern China accumulated atmospheric carbon at an unexpectedly high average rate of 0.61 megagrams of carbon hectare-1 year-1 from 1979 to 2003. This study suggests that the carbon cycle processes in the belowground system of these forests are changing in response to the changing environment. The result directly challenges the prevailing belief in ecosystem ecology regarding carbon budget in old-growth forests and supports the establishment of a new, nonequilibrium conceptual framework to study soil carbon dynamics.  相似文献   

13.
Carbon dioxide supersaturation in the surface waters of lakes   总被引:9,自引:0,他引:9  
Data on the partial pressure of carbon dioxide (CO(2)) in the surface waters from a large number of lakes (1835) with a worldwide distribution show that only a small proportion of the 4665 samples analyzed (less than 10 percent) were within +/-20 percent of equilibrium with the atmosphere and that most samples (87 percent) were supersaturated. The mean partial pressure of CO(2) averaged 1036 microatmospheres, about three times the value in the overlying atmosphere, indicating that lakes are sources rather than sinks of atmospheric CO(2). On a global scale, the potential efflux of CO(2) from lakes (about 0.14 x 10(15) grams of carbon per year) is about half as large as riverine transport of organic plus inorganic carbon to the ocean. Lakes are a small but potentially important conduit for carbon from terrestrial sources to the atmospheric sink.  相似文献   

14.
Tropical forests and the global carbon cycle   总被引:2,自引:0,他引:2  
New data on the three major determinants of the carbon release from tropical forest clearing are used in a computer model that simulates land use change and its effects on the carbon content of vegetation and soil in order to calculate the net flux of carbon dioxide between tropical ecosystems and the atmosphere. The model also permits testing the sensitivity of the calculated flux to uncertainties in these data. The tropics were a net source of at least 0.4 x 10(15) grams but not more than 1.6 x 10(15) grams of carbon in 1980, considerably less than previous estimates. Decreases in soil organic matter were responsible for 0.1 x 10(15) to 0.3 x 10(15) grams of the release, while the burning and decay of cleared vegetation accounted for 0.3 x 10(15) to 1.3 x 10(15) grams. These estimates are lower than many previous ones because lower biomass estimates and slightly lower land clearing rates were used and because ecosystem recovery processes were included. These new estimates of the biotic release allow for the possibility of a balanced global budget given the large remaining uncertainties in the marine, terrestrial, and fossil fuel components of the carbon cycle.  相似文献   

15.
Wong CS 《Science (New York, N.Y.)》1978,200(4338):197-200
The atmospheric input of carbon dioxide from burning wood, in particular from forest fires in boreal and temperate regions resulting from both natural and man-made causes and predominantly from forest fires in tropical regions caused by shifting cultivation, is estimated to be 5.7 x 10(15) grams of carbon per year as gross input and 1.5 x 10(15) grams of carbon per year as net input. This is a significant amount as compared to the fossil fuel carbon dioxide produced from the utilization of oil, gas, coal, and limestone, and bears on the hypothesis of the enhanced sedimentation of marine detritus as a removal mechanism of excess atmospheric carbon dioxide.  相似文献   

16.
Freshwater methane emissions offset the continental carbon sink   总被引:7,自引:0,他引:7  
Inland waters (lakes, reservoirs, streams, and rivers) are often substantial methane (CH(4)) sources in the terrestrial landscape. They are, however, not yet well integrated in global greenhouse gas (GHG) budgets. Data from 474 freshwater ecosystems and the most recent global water area estimates indicate that freshwaters emit at least 103 teragrams of CH(4) year(-1), corresponding to 0.65 petagrams of C as carbon dioxide (CO(2)) equivalents year(-1), offsetting 25% of the estimated land carbon sink. Thus, the continental GHG sink may be considerably overestimated, and freshwaters need to be recognized as important in the global carbon cycle.  相似文献   

17.
The oceanic sink for anthropogenic CO2   总被引:6,自引:0,他引:6  
Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.  相似文献   

18.
Forests have a key role as carbon sinks, which could potentially mitigate the continuing increase in atmospheric carbon dioxide concentration and associated climate change. We show that carbon dioxide enrichment, although causing short-term growth stimulation in a range of European tree species, also leads to an increase in soil microbial respiration and a marked decline in sequestration of root-derived carbon in the soil. These findings indicate that, should similar processes operate in forest ecosystems, the size of the annual terrestrial carbon sink may be substantially reduced, resulting in a positive feedback on the rate of increase in atmospheric carbon dioxide concentration.  相似文献   

19.
Lunar rock 66095 contains a hydrated iron oxide and has an unusual amount of water for a lunar rock (140 to 750 parts per million), 90 percent of which is released below 690 degrees C. The deltaof water released at these low temperatures varies from -75 to -140 per mil relative to standard mean ocean water (SMOW). The small amount of water released between 690 degrees and 1300 degrees C has a delta of about -175 +/-25 per mil SMOW. These delta values are not unusual for terrestrial water. The delta(18)O of water extracted from 110 degrees to 400 degrees C has a value of +5+/- I per mil SMOW, similar to the value for lunar silicates from rock 66095 and different from the value of -4 to -22 per mil found for samples of terrestrial rust including samples of rusted meteoritic iron. The amount of carbon varies from 11 to 59 parts per million with a delta(13)C from -20 to -30 per mil relative to Pee Dee belemnite. Only very small amounts of reduced species (such as hydrogen, carbon monoxide, and methane) were found, in contrast to the analyses of other lunar rocks. Although it is possible that most of the water in the iron oxide (goethite) may be terrestrial in origin or may have exchanged with terrestrial water during sample return and handling, evidence presented herein suggests that this did not happen and that some lunar water may have a deltaD that is indistinguishable from that of terrestrial water.  相似文献   

20.
A low-order physical-biogeochemical climate model was used to project atmospheric carbon dioxide and global warming for scenarios developed by the Intergovernmental Panel on Climate Change. The North Atlantic thermohaline circulation weakens in all global warming simulations and collapses at high levels of carbon dioxide. Projected changes in the marine carbon cycle have a modest impact on atmospheric carbon dioxide. Compared with the control, atmospheric carbon dioxide increased by 4 percent at year 2100 and 20 percent at year 2500. The reduction in ocean carbon uptake can be mainly explained by sea surface warming. The projected changes of the marine biological cycle compensate the reduction in downward mixing of anthropogenic carbon, except when the North Atlantic thermohaline circulation collapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号