首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied few soil physical indicators after eighth cropping cycle of rice-wheat. The experiment was laid out in split-split plot design with two tillage (rice: puddling vs. non-puddling; wheat: conventional tillage vs. no-tillage), three water management (rice: submergence vs. drainage; wheat: five/three/two irrigations) and nine nutrient (N) management treatments (inorganic vs. integrated nutrient management). The bulk density (t m?3) in non-puddled soil (1.33) was significantly less than puddled soil (1.59); while mean weight diameter (0.55 mm) and saturated hydraulic conductivity (0.43 cm h?1) were higher in the former treatment. Irrigation after 3-days of drainage was found to enhance soil aggregation (0.54 mm) and moisture retention (71.6%) during rice. No-tillage in wheat had overall positive impact. Organic sources of nutrients increased soil water retention (biofertilizer for rice), water conductivity and aggregate stability (combined organics for rice and wheat). Interactions between (tillage × N), (water × N), (tillage × water) revealed crop-wise variations. The saturated hydraulic conductivity and soil aggregation for rice; and bulk density, water retention and saturated hydraulic conductivity for wheat were identified as sensitive soil physical indicators. We suggest an effective combination of no tillage and intermittent irrigation with integrated nutrient management for sustaining soil physical quality in rice-wheat rotation.  相似文献   

2.
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

3.
Conservation tillage practices are intended to minimize soil erosion. Yet little is known concerning changes in physical properties of subarctic soils subject to tillage practices. This study ascertained whether physical properties of a newly cleared subarctic soil are altered after 7 years of continuous barley (Hordeum vulgare L.) using different tillage and straw management strategies. Tillage and straw treatments were established in 1983 near Delta Junction, Alaska, and consisted of conventional fall and spring disk, fall chisel plow, spring disk, and no-tillage. Tillage plots were split by straw management practices, which included straw and stubble, stubble only, and no straw or stubble. Soil samples were collected from the upper 0.15 m of the profile in the spring of 1990 to assess water content, bulk density, saturated hydraulic conductivity, dry aggregate and mechanical stability, penetration resistance, water retention, and particle size distribution. Percent non-erodible aggregates, mechanical stability, and penetration resistance were greater for no-tillage compared to conventional tillage, chisel plow, and spring disk. No-tillage soils were also typically wetter, denser, and had a greater hydraulic conductivity. The spring disk treatment was least susceptible to erosion and also conserved soil water compared with chisel plow. Straw maintained on the surface conserved water and promoted soil stability.  相似文献   

4.
《Soil & Tillage Research》2007,92(1-2):82-88
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

5.
The effects of tillage implement distrubance on the physical properties of soil have been widely studied. However, because soil properties resulting from the use of a given implement vary due to implement factors (depth and speed of tillage) and soil factors (water content, texture, residue cover, etc.), soil properties for a given operation are difficult to visualize, let alone predict. This report summarizes the ranges of selected soil property responses observed in previous tillage studies and identifies factors that must be considered in developing useful models to predict the effects of tillage on soil properties that are related to soil and water conservation. Considered are soil mechanical properties (surface micro-relief, aggregate size distribution and bulk density) and hydraulic properties and processes (water retention, saturated conductivity, infiltration and evaporation). For future literature reports on tillage to be useful for developing comprehensive relationships between tillage and soil properties, the reports should include information on: soil classification, texture, water content (or time of precipitation), bulk density, mechanical impedance and organic matter concentration; tillage method, depth and speed of operation; previous crop, including availability of crop residues; and previous soil management history (compacted soil, irrigated or dryland, etc.).  相似文献   

6.
轮耕对土壤物理性状和冬小麦产量的影响   总被引:25,自引:12,他引:25  
针对华北地区土壤连续单一耕作存在的主要问题,进行了土壤轮耕效应的研究。试验选择冬小麦夏玉米玉两熟区连续5 a免耕田,设置免耕、翻耕和旋耕3种轮耕处理(即免耕一免耕,免耕一翻耕和免耕一旋耕),冬小麦播种前进行耕作处理。研究结果表明:多年免耕后进行土壤耕作(翻耕、旋耕)可以显著降低土壤体积质量;旋耕显著降低0~10 cm土壤体积质量,翻耕则降低0~20 cm体积质量;随时间变化各处理土壤体积质量差异逐渐降低。翻耕、旋耕均显著增加了0~10 cm土壤总孔隙,同时翻耕显著增加了10~20 cm土壤总孔隙;翻耕、旋耕显著提高了5~10 cm毛管孔隙。0~10 cm土壤饱和导水率表现为旋耕>翻耕>免耕,翻耕、旋耕在5%水平上显著高于免耕;10~20、20~30 cm土层均表现为翻耕>旋耕>免耕,且10~20 cm翻耕5%水平上显著高于免耕;饱和导水率与体积质量呈显著线性负相关。翻耕、旋耕有效穗数与免耕相比分别提高了24.1%、22.3%;冬小麦的实际产量表现为:旋耕>翻耕>免耕,翻耕、旋耕分别比免耕增产11.8%、16.9%。总之,长期免耕后进行土壤耕作有利于改善土壤物理性状,提高作物产量。  相似文献   

7.
In the present work the effect of several tillage methods on the physical properties of a sandy clay loam (Haploxeralf) from Seville province (SW Spain) has been studied in order to establish the optimum management for water intake and conservation in the soil.

The following tillage methods were considered during the period 1984–1987: disc ploughing; mouldboard ploughing; cultivator application; disc harrowing; no-tillage. Two crops were used in rotation, wheat and sunflower. In each treatment, soil susceptibility to compaction and systematic measurements of resistance to penetration, bulk density, hydraulic conductivity and infiltration rate in the top layer were carried out. Changes in water profiles through the experimental period were also followed. The results presented in this paper correspond to the period autumn 1986–July 1987, the third year of rotation. They show important differences in soil physical properties as well as in the rate of replenishment and depletion of soil water storage as a result of treatments. Differences in crop response have also been observed.  相似文献   


8.
[目的]研究宁南山区冬小麦农田休闲期保护性农业措施对土壤水分的影响,为该区降雨资源的高效利用以及保护性农业的可持续发展提供理论依据。[方法]基于不同时期多个保护性农业试验土壤水分数据比较分析。[结果](1)在干旱的情况下,免耕留茬处理能够显著增加土壤表层(0—20cm)含水量。(2)在免耕的情况下,随着秸秆留茬高度的增加,土壤水分呈现增加趋势。(3)在降雨量较大且降雨量具有连续性的情况下,常规耕作处理在土壤表层保蓄了较多的土壤水分(0—20cm),免耕秸秆覆盖处理能够增加土壤20—80cm土壤水分含量。(4)冬小麦休闲期种植豆科作物,降低了土壤水分,其降低幅度与降雨量以及种植密度有关,种植密度越大,对土壤水分的影响越大。[结论]免耕+留茬耕作措施能够提高冬小麦农田休闲期土壤水分含量,覆盖作物降低了休闲期土壤水分含量。  相似文献   

9.
为有效防治坡耕地水土流失,持续利用坡耕地,于2007-2010年在黄土高原西部坡耕地上研究保护性耕作对水土流失的影响,重点探讨传统耕作与免耕秸秆覆盖2种耕作措施下春小麦、鹰嘴豆、马铃薯与紫花苜蓿间作的水土流失规律。结果表明:(1)各处理8月份的径流量分别占观测时段内总径流量的46.46%~51.29%,侵蚀量分别占观测时段内总侵蚀量的40.10%~61.22%。(2)降雨量与径流量、侵蚀量间呈现多元多项式关系。(3)2007-2010年不同种植模式下径流总量和侵蚀总量的变化趋势是一致的,均表现出NTSPL相似文献   

10.
The current cropping system of excessive tillage and stubble removal in the northwestern Loess Plateau of China is clearly unsustainable. A better understanding of tillage and surface cover management on surface soil structure is vital for the development of effective soil conservation practices in the long term. Changes in surface soil structure and hydraulic properties were measured after 4 years of straw and plastic film management under contrasting tillage practices (no tillage vs. conventional tillage) in a silt loam soil (Los Orthic Entisol) which had been under conventional management for hundred of years in the northwestern Loess Plateau, China. Surface soil (0–10 cm) under no tillage with straw cover had the highest water stability of macro-aggregates (>250 μm) and the highest saturated hydraulic conductivity. Compared with straw cover, plastic film cover did not change macro-aggregate stability and the soil had the lowest saturated hydraulic conductivity (Ksat) but the highest % <50 μm soil particles. Significant correlation was found between water stable macro-aggregates and soil organic carbon content, indication the importance of the latter on soil structural development. No tillage on its own (without straw cover) was not sufficient to improve structural stability probably due to lack of organic carbon input. While use of plastic film cover might lead to short term yield increases, results indicated that it did little to improve soil physical fertility. On the other hand, no tillage with straw cover management should lead to long-term improvement of physical quality of this structurally fragile soil.  相似文献   

11.
为了探讨不同覆盖耕作方式对农田土壤物理性状及作物产量的影响,该试验研究了免耕、常规2种耕作方式和4种留茬高度的玉米秸秆还田处理,对麦-玉两熟农田土壤含水率、容重、孔隙度以及作物产量的影响。结果表明:在0~40cm土层内,秸秆还田的集雨和保水效果显著,免耕留茬0.5m还田处理的含水率比免耕无覆盖处理增加了15.95%。秸秆还田量对0~40cm内土壤贮水量的影响不同。耕作措施显著影响了土壤容重,小麦播种前常规留茬1m还田、常规全量还田处理容重低至1.0g/cm3左右。秸秆还田能增加土壤总孔隙度、降低毛管与非毛管孔隙度的比值。单一免耕处理降低了作物产量,而免耕覆盖能增产,其留茬1m还田处理比无还田处理增产22.44%,比常规留茬0.5m还田处理高3.64%。因此,免耕留茬1m还田处理在改善农田土壤物理性状和增加作物产量方面显著,该研究可为农田管理过程中耕作措施和秸秆还田量的选择提供参考依据。  相似文献   

12.
以1992年设置于山西省临汾市尧都区的保护性耕作试验基地为基础,研究了长期保护性耕作对旱地小麦产量、土壤理化性质及剖面水分含量的影响。结果表明,11年免耕覆盖和15年免耕覆盖分别比传统耕作平均增产192%和276%; 丰水年份增产率为52%和117%,而干旱年份增产率高达850%和976%,表现为实施保护性耕作年限越长、越是干旱,保护性耕作的增产效果越显著。保护性耕作能降低土壤容重,增加土壤孔隙度,提高土壤剖面水分含量和土壤贮水量,提高表层010 cm土壤有机质、碱解氮和速效钾含量, 但不利于有效磷含量的提高。11年免耕覆盖和15年免耕覆盖,表层010 cm土壤有效磷含量比传统耕作降低68和63 mg/kg,降低了561%和519%,应注意磷肥的施用。  相似文献   

13.
Double cropping of soybean has progressed less rapidly in the U.S. Southeastern Coastal Plains than expected by the ample rainfall and long frost-free season. Post-emergence herbicides, the management of plant residues to reduce water use by cover crops, and a no-till planter with a combination subsoiler are the innovations that have facilitated this new production. Full-season soybean (Glycine max L.) was planted following a grazed cover crop of winter rye (Secale cereale L.) or late-season soybean was planted following winter wheat harvest. In both cases, a special planter was used with an integral subsoil shank ahead of the opener. Full-season soybean under conservation tillage produced yields equal to or better than yields in conventional clean tillage. In a dry summer, soybean yields under conservation tillage exceeded conventional tillage because of suppressed early biomass production which conserved stored soil water and favored growth during the reproduction phase of the crop-cycle. Late-season soybean yields behind wheat favored the conservation tillage practice of in-row subsoil-planting into stubble. However, planting in burned-off wheat stubble produced the highest yields in this study. In a dry spring, the cover crop accelerated soil water use which resulted in lower soybean yields under conservation tillage. Comparisons of 76 vs. 97 cm row spacing were inconclusive, but the trend suggests that wider rows conserve water under periods of drought and that the narrower-row configuration favors adequate water regimes.  相似文献   

14.
In Indian Punjab, rice–wheat is a dominant cropping system in four agro‐ecosystems, namely undulating subregion (zone 1), Piedmont alluvial plains (zone 2), central alluvial plains (zone 3), and southwestern alluvial plains (zone 4), varying in rainfall and temperature. Static and temporal variabilities in soil physical and chemical properties prevail because of alluvial parent material, management/tillage operations, and duration of rice–wheat rotation. A detailed survey was undertaken to study the long‐term effect of rice–wheat rotation on soil physical (soil separates, bulk density, modulus of rupture, saturated and unsaturated hydraulic conductivities, soil water content, and suction relations) and chemical (organic carbon, pH, electrical conductivity) properties of different textured soils (sandy clay loam, loam, clay loam, and silty clay loam) in these four zones of Punjab. Soil samples (of 0‐ to 30‐cm depth) from 45 sites were collected during 2006 and were analyzed for physical and chemical properties. The results showed that sand content and pH increased whereas silt and organic carbon decreased significantly from zones 1 to 4. Compared to other textures, significantly greater organic carbon, modulus of rupture, and pH in silty clay loam; greater bulk density in clay loam, and greater saturated hydraulic conductivity in sandy clay loam were observed. Irrespective of zone and soil texture, in the subsurface soil, there was a hard pan at 15–22.5 cm deep, which had high soil bulk density, modulus of rupture, more silt and clay contents (by 3–5%) and less organic carbon and hydraulic conductivity than the surface (0–15 cm) layer. These properties deteriorated with fineness of the soil texture and less organic carbon content. Continuous rice–wheat cropping had a deleterious effect on many soil properties. Many of these soils would benefit from the addition of organic matter, and crop yields may also be affected by the distinct hardpan that exists between 15 and 22.5 cm deep.  相似文献   

15.
It is widely recognized that saturated hydraulic conductivity is dominated by the micromorphology of soil pores rather than by the merely total porosity or dry bulk density. Nevertheless, some researchers are reporting that the decrease in saturated hydraulic conductivity of subsoil is simply associated with the decrease in soil porosity or increase in dry bulk density. Based on these understandings in published papers and on our preliminary field investigation, we assumed that micromorphology of soil pores in topsoils is subjected to be destroyed with continuous disturbance by frequent tillage while subsoils tend to be compacted without serious changes of micromorphology of soil pores. Thus, we focused on finding the dependence of saturated hydraulic conductivity on dry bulk density by separating the soils into tilled layer and compacted layer. The objective of this study was to describe the relationship between saturated hydraulic conductivity and dry bulk density using a theoretical model, the non-similar media concept (NSMC) model, capable of predicting saturated hydraulic conductivities of soils with different values of dry bulk densities. The study area was located near the Tone River in Saitama Prefecture, Japan, where the soils were classified into Haplic Brown Lowland Soils according to the Classification of Cultivated Soils in Japan (Eutric Fluvisol according to FAO/UNESCO). Two sites, where the topsoils were seasonally tilled while the subsoils were sustained as it is, and another site where the topsoil was seasonally tilled, too, but extra deep tillage (1 m tillage depth) had been done, were chosen for the measurements. The saturated hydraulic conductivities and dry bulk densities of undisturbed soil cores from different depths were measured in the laboratory. The NSMC model was carefully applied only when the soil textures were the same among samples. The well-known conventional equations formulated by Kozeny–Carman and by Campbell, were used to compare the applicabilities with the NSMC model. The NSMC model succeeded in predicting the saturated hydraulic conductivities in the compacted subsoils. On the other hand, the NSMC model was not applicable to the tilled topsoils and to the deeply tilled subsoil. The saturated hydraulic conductivity of tilled topsoils and deeply tilled subsoil was always lower than that of compacted subsoils at the same dry bulk densities. The Kozeny–Carman and Campbell equations both failed in the prediction of saturated hydraulic conductivity in subsoil. It was concluded that the saturated hydraulic conductivity of subsoils under compaction without extreme disturbance is well related with its dry bulk density by the NSMC model.  相似文献   

16.
耕作对坡耕地水土流失和冬小麦产量的影响   总被引:9,自引:5,他引:9  
在模拟降雨和自然降雨条件下研究长期(6年)定位耕作措施对豫西早区坡耕地水分保持、土壤流失以及冬小麦产量的影响。耕作措施包括少耕、免耕覆盖、深松覆盖和常规耕作。田间模拟降雨试验用来测定不同耕作措施对径流和土壤流失的影响,自然降雨小区主要用来验证模拟试验结果,同时测定不同耕作措施对冬小麦产量的影响。模拟试验结果表明:不同耕作措施下的土壤饱和导水率没有明显差异,雨前土壤含水量和降雨强度均显著影响地表径流。在试验条件下,免耕覆盖处理未产生径流和土壤流失,水土保持效果最好。与常规耕作比较,深松覆盖处理分别减少径流和土壤流失50%和90%。尽管少耕可以有效降低土壤流失,但其产生的径流量和常规耕作相近。在自然降雨条件下,免耕覆盖和深松覆盖的水土保持效果从第3年开始显著。深松覆盖在任何年型均能够显著提高冬小麦的产量。相比较常规耕作,深松覆盖平均增产9.4%。免耕覆盖除丰水年也能显著提高冬小麦产量.但增产效果不如深松覆盖显著。少耕无明显增产效果。由于产量对农民来说是评判一个耕作措施效果的重要依据,同时考虑到深松覆盖显著的水土保持效果,我们认为深松覆盖是适合当地早作农业的一个有效耕作措施。  相似文献   

17.
In a long-term experiment on a vertisol in southern Queensland, depression of vegetative growth of barley (Hordeum vulgare L.) by stubble retention was far greater with zero tillage than with mechanical tillage of the fallow. The possible phytotoxic effects of stubble on barley and wheat (Triticum aestivum L.) were investigated in seedling bioassays. Stubble collected from field plots just prior to planting did not reduce germination of wheat or barley seed but markedly reduced coleoptile length at 4 days. This effect of stubble became less apparent after 6 and 8 days, and was overcome by increasing water volume in the bioassay dish. Stubble absorbed 4.5–6 times its own weight of water and thereby competed with the germinating seed. Filtrates of stubble macerates in water, collected either before or after incubation of the saturated stubble, had no effect on coleoptile length indicating the absence of a water-soluble phytotoxin.

Brown lesions on wheat coleoptiles (most apparent at 8 days) and roots were decreased by stubble but increased by more water in the bioassay dish. Alternaria sp. and two types of bacteria were associated with the coleoptile lesions, and Fusarium sp. and several types of bacteria were associated with root lesions. Surface sterilisation of seed reduced root lesions but not coleoptile lesions. Filtrates of both incubated and unincubated stubble macerates reduced coleoptile lesions.

Poor early growth of barley in the field on zero-till, stubble-retained plots was not associated with incorporation of stubble into the drill slit in contact with the seed. Poor early growth was not overcome by nitrogen fertilizer drilled into the soil 2 months before planting. The quantities of air-dried stubble on the soil surface were capable of absorbing of the order of 4 mm rainfall. It is concluded that neither phytotoxins nor water absorption by the stubble were likely causes of the problem of poor early growth.  相似文献   


18.
Subsoil compaction due to conventional tillage techniques and its relation to subsurface flow and runoff was investigated on a sloped field. The presence of a plow sole was confirmed by significantly higher penetration resistances between 20 and 40 cm depth, a significantly higher soil bulk density and a 14% decrease in drainage pore space compared to the top layer. Ring infiltrometer measurements also confirmed a significant reduction of the saturated hydraulic conductivity at 30 cm depth, indicating a limited permeability. With the use of an extensive grid of tensiometers, matric heads were monitored and the occurrence of a temporary water table on top of the plow sole was confirmed in a number of cases. Equipotential lines in the top saturated layer indicated the occurrence of subsurface flow parallel to the slope surface in a downward direction. For the whole measuring period, when a perched water table was observed, 91% of the rainfall events caused runoff and this number increased with increasing rainfall intensity. For low and medium rainfall intensities (<10 mm h−1), 66% and 63% of the runoff events were related to saturation of the top soil. Therefore, it was concluded that over a period of 20 months saturation excess runoff as a result of subsoil compaction was an important contributor to surface runoff and soil loss.  相似文献   

19.
滩涂围垦农田土壤饱和导水率的影响因素及转换函数研究   总被引:2,自引:0,他引:2  
确定苏北沿海滩涂围垦农田耕层土壤饱和导水率的影响因素,构建适合该区的土壤转换函数,是研究该区田间土壤水盐运动和盐渍化防控的重要前提。本文在该区典型地块实测土壤饱和导水率和相关土壤基本理化性质,探讨了该区土壤饱和导水率的剖面分布特点,对影响饱和导水率的土壤基本性质进行了主成分分析,并建立了用于该区饱和导水率间接估算的土壤转换函数。结果表明:滩涂围垦农田土壤饱和导水率随剖面深度增加呈表土层高、亚表层低、底土层又升高的趋势,20~40 cm土层饱和导水率最小,介于2.75~6.73 cm·d-1,属低透水强度;土壤容重随剖面深度增加表现出与饱和导水率相反的变化特点。除了容重、孔隙度、质地等物理因素外,土壤肥力、盐分等化学性质也是影响饱和导水率的重要因素;影响滩涂围垦农田土壤饱和导水率的因素可由持水特性、盐碱状况、养分特征和土壤质地4个主成分反映,其累计贡献率达78.17%。在Vereecken转换函数中引入土壤盐分后可提高预测精度,修正函数Vereecken_1是最适合滩涂围垦农区土壤、具有最佳预测精度的转换函数。本文构建的土壤转换函数,可通过较易获得的砂粒、黏粒、容重、盐分和有机质对耕层土壤饱和导水率进行较高精度的预测,其结果可为滩涂盐渍化农区田间尺度土壤饱和导水率间接估算以及水盐运动数值模拟提供支持。  相似文献   

20.
We evaluated the effect of no tillage (NT) and conventional tillage (CT) on soil penetration resistance (PR), bulk density (BD), gravimetric moisture content (MC), and saturated hydraulic conductivity (Ks) during the fallow phase of a spring wheat–fallow rotation. The study was conducted on two soils mapped as Williams loam at the Froid and Sidney sites. Soil measurements were made on 19 May, 23 June, and 4 August 2005 at the Froid site and on 6 June and 8 July 2005 at the Sidney site. Tillage had no effect on either soil properties except on the PR at Sidney. However, soil PR, MC, and BD varied significantly with depth regardless of tillage and location. Further, soil PR and MC varied with the date of sampling at both locations, and PR generally increased with decreased MC at all soil depths. Soil Ks was slightly influenced by tillage at both locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号