首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为建立黑水虻幼虫与收集、输送、分离等机械工作部件间发生碰撞时的碰撞模型,基于黑水虻幼虫生物特性,应用Hertz弹性碰撞理论推导了黑水虻幼虫碰撞过程动力学方程,结合运动学方程原理构建了黑水虻幼虫恢复系数的测定装置并进行了黑水虻幼虫恢复系数测定试验。试验针对第5龄期的黑水虻幼虫,采用L16(44×23)混合正交试验方案研究了碰撞材料、材料厚度、下落高度、碰撞角、跌落方向、含水率等因素对黑水虻幼虫恢复系数的影响,然后对碰撞材料、材料厚度、下落高度、碰撞角、跌落方向进行单因素试验,并获得了材料厚度、下落高度、碰撞角对恢复系数的影响规律与回归方程,且方程的决定系数均不小于0.9427。试验结果表明,影响黑水虻幼虫恢复系数的因素影响由大到小为:碰撞材料、下落高度、碰撞角、跌落方向、碰撞材料厚度、含水率,其中含水率对恢复系数影响不显著。单因素试验结果可得:黑水虻幼虫与Q235钢、铝合金、有机玻璃、橡胶等碰撞材料间的恢复系数依次降低,随下落高度的增大而逐渐减小,随材料厚度的增加而逐渐增大,恢复系数随碰撞角的增大而整体呈增大趋势,且横向跌落方向大于纵向跌落方向。该文研究结果可为黑水虻幼虫收集、输送、分离等机械相关工作部件优化设计提供参考依据。  相似文献   

2.
为获得杂粮籽粒与接触材料在收获及加工过程中碰撞时所需的关键参数,测定5种杂粮籽粒的恢复系数。采用中心组合正交旋转设计试验,通过自制恢复系数测定装置研究谷子、苦荞、甜荞、燕麦及青稞5种杂粮籽粒的含水率、碰撞材料厚度、下落高度对籽粒碰撞后恢复系数的影响。结果表明:下落高度对恢复系数影响极显著(P0.000 1),下落高度在一定范围内(340~690 mm),5种杂粮籽粒的恢复系数随下落高度的增大而减小;材料厚度对恢复系数影响显著(P0.05),材料厚度在一定范围内(1~6 mm),5种杂粮籽粒的恢复系数随材料厚度的增大而增大;含水率对恢复系数影响不显著(P0.05)。因此相关机械的设计时,可忽略含水率对其恢复系数的影响。谷子、甜荞、苦荞、燕麦及青稞籽粒的恢复系数分别在0.471~0.612、0.491~0.601、0.540~0.667、0.445~0.548、0.493~0.629之间,结果可为杂粮联合收获机、播种机及相关加工机械的关键部件的设计、仿真及参数优化提供理论依据。  相似文献   

3.
针对苹果在清洗、分级和包装等采后加工过程中损伤率较高的问题,以红富士苹果为试验材料,利用自制的苹果跌落试验台,研究跌落高度、果实质量、碰撞材料对苹果碰撞损伤的影响。通过3因素3水平正交试验,分析试验因素对苹果碰撞损伤体积影响显著性;并通过试验确定苹果在2种碰撞材料下的碰撞损伤临界跌落高度。试验结果表明:影响苹果碰撞损伤体积的因素显著性由高到低依次为跌落高度、碰撞材料、果实质量;3种质量苹果与2种碰撞材料的碰撞损伤临界跌落高度为150 g苹果与普通碳素钢、PE板碰撞损伤临界跌落高度值分别为59.06 mm和70.93 mm;200 g苹果与普通碳素钢、PE板碰撞损伤临界跌落高度值分别为51.70 mm和63.03 mm;250 g苹果与普通碳素钢、PE板碰撞损伤临界跌落高度值分别为41.65 mm和49.88 mm。  相似文献   

4.
为提高法半夏离散元粉碎仿真试验的准确性,结合台架试验与仿真试验对四川产法制旱半夏的仿真参数进行标定。基于多球聚合模型构建半夏的离散元模型,采用弹跳试验标定半夏-不锈钢碰撞恢复系数;分别开展斜面滑移试验和斜坡滚动试验,通过二次多项式拟合得到半夏-不锈钢的静摩擦系数与滚动摩擦系数。基于半夏的堆积试验及仿真数据,采用响应面法构建半夏间接触参数与堆积角相对误差的多元回归模型。以堆积角相对误差最小为优化目标,采用萤火虫算法进行寻优,并与遗传算法、响应面优化寻优结果进行对比,获得半夏之间最佳碰撞恢复系数、静摩擦系数与滚动摩擦系数组合。采用侧壁坍塌试验进行接触参数准确性验证。通过上述方法得到半夏-不锈钢的碰撞恢复系数、静摩擦系数和滚动摩擦系数分别为:0.567、0.649和0.103;半夏间的碰撞恢复系数、静摩擦系数和滚动摩擦系数分别为:0.584、0.293和0.084。验证试验的结果表明,5次仿真试验休止角相对误差均小于5%,表明该半夏离散元模型及接触参数可为半夏的离散元仿真分析提供参考。  相似文献   

5.
为减少马铃薯在分选过程中的跌落损伤,探讨分选机的工作条件对马铃薯跌落损伤的影响,以“荷兰15”马铃薯为试验材料,以马铃薯分选机的输送速度、剔除力、马铃薯的下落高度和含水率为试验因素,以马铃薯的跌落损伤等级为响应值,进行二次回归正交旋转试验,通过Design-Expert 8.0.6软件对试验结果畸形方差分析,并通过响应面探究各试验因素对马铃薯的跌落损伤等级的影响规律,确定马铃薯分选机的最佳工作参数。跌落试验结果表明:对马铃薯跌落损伤等级的影响程度主次顺序为马铃薯含水率、下落高度、输送速度、剔除力。当马铃薯输送速度为0.3 m/s,剔除力为15 N,下落高度为45 cm,含水率为75.36%时,在该参数组合下分选机对马铃薯跌落损伤等级最小。试验所得马铃薯的实际跌落损伤等级为0.84,该结果与马铃薯跌落损伤预测等级具有良好的拟合性。  相似文献   

6.
针对平贝母鳞茎收获筛分过程中的碰撞损伤问题展开研究,平贝母收获机筛分装置的滚动筛结构尺寸设为已知,滚动筛滚动的速度会直接影响平贝母鳞茎在滚动筛内的抛出速度和高度。抛出的高度和速度越大,鳞茎与滚动筛壁的碰撞速率越大,碰撞力就越大,平贝母鳞茎损伤的几率也越大。根据运动速度对撞击损伤的影响,取不同高度值对外形尺寸相近的新鲜平贝母鳞茎进行抛出碰撞试验,检验碰撞损伤效果;以不同速率对外形尺寸相近的新鲜平贝母鳞茎进行挤压碰撞试验;利用ANSYS软件建立力学模型,分析平贝母鳞茎挤压碰撞,并获取应力等值图,将理论分析结果与挤压试验结果以及跑出碰撞试验效果相比较。结果表明:平贝母鳞茎的抛出高度为400mm、速度为47.1m/min时,其极限碰撞应力最接近平贝母鳞茎的损伤应力,此时平贝母鳞茎跌落后损伤率5%。所获得的实验数值为平贝母收获机筛分装置滚动筛转动速率进一步优化提供了可靠参考。  相似文献   

7.
为解决甜菜联合收获机分离输送过程中甜菜块根含杂率高、损伤率高的问题,设计了一种六行甜菜联合收获机的三级分离输送装置,阐述了该装置的主要结构及工作原理,并确定关键参数。通过对分离输送过程中土壤、甜菜的运动学分析及甜菜在碰撞过程中的能量分析,确定了影响甜菜含杂和损伤效果的主要因素及各因素的试验取值范围。以拨送板转速、杆条式链筛输送速度和橡胶尾筛倾角为试验因素,以含杂率和损伤率为试验指标,进行二次回归正交旋转组合试验,利用Design-Expert 8.0.6软件对试验结果进行分析,得到试验因素与各指标的回归方程。通过响应面分析各因素对评价指标的影响规律,得出优化参数组合为:拨送板转速100.0r/min、杆条式链筛输送速度1.4m/s和橡胶尾筛倾角39.0°。验证试验结果表明,经过三级分离输送后甜菜含杂率为3.4%,损伤率为2.6%,各项指标均符合国家行业标准要求。  相似文献   

8.
颗粒物料恢复系数简易测量方法及其应用   总被引:4,自引:0,他引:4  
介绍了一种简易的基于运动学原理的颗粒物料恢复系数测量方法.通过调整碰撞板被碰撞点离底座上表面的高度测量得到两种不同高度所对应的投射距离,从而计算出颗粒物料在不同条件下的恢复系数.以杂交水稻稻种为例,测量了3种稻种在不同影响因素及水平条件下的恢复系数,效果较好.通过正交表的工程平均,并进行回归分析,得到了一定含水率稻种的恢复系数与下落高度之间的回归方程.  相似文献   

9.
为有效避免枇杷采摘、运输及保存过程中受到碰撞、振动及挤压等造成的机械损伤,降低枇杷的受损率,结合枇杷力学特性,采用感压胶片试验分析枇杷跌落高度、果实质量及碰撞表面材料与损伤因子(枇杷碰撞面积、损伤比例及损伤应力等)的关系。枇杷碰撞试验表明:枇杷跌落受损程度与跌落高度、果实质量呈正相关;枇杷撞击能量较大时(E0.147J,即枇杷质量在60~70g且跌落高度为0.3~0.5m时),以泡沫板作为枇杷采收集果装置材料效果最佳;枇杷最大安全跌落高度为0.4m,并以此作为枇杷采收装置集果装置的设计参考,建议采摘头与集果装置的垂直距离应不大于0.4m。枇杷果实的跌落损伤因子及碰撞损伤特性的试验研究,可为枇杷采收装置的优化设计及储存搬运防损提供理论依据。  相似文献   

10.
针对现有的小型马铃薯收获机筛面土块破碎效果不佳而影响分离效率和收获品质等问题,结合北方马铃薯主产区收获模式和常用杆条式分离装置,设计了一款马铃薯收获机扰动分离装置。在阐述总体结构及工作原理基础上,结合马铃薯的碰撞特性和土块的破碎过程分析,得到影响薯块损伤和土块破碎的主要因素为扰动深度、偏心轮转速和偏心距;通过EDEM-RecurDyn耦合构建仿真模型,单因素试验得到扰动杆数量最优为4,以扰动深度、偏心轮转速和偏心距为试验因素,以马铃薯碰撞力和土块破碎率为评价指标,运用Box-Behnken中心组合设计方法进行仿真试验,对试验结果进行方差分析,利用响应面分析了各交互因素对试验指标的影响规律,结合实际工况确定影响因素最佳取值。验证试验表明:当收获机分离筛运行速度为0.7m/s、扰动深度为51.5mm、偏心轮转速通过调速器设为2.3r/s、偏心距为31mm时,土块破碎率为60.7%,电子马铃薯采集的碰撞加速度峰值平均值为790.66m/s2,小于马铃薯临界损伤阈值。  相似文献   

11.
轮勺式半夏精密排种器设计与试验   总被引:1,自引:0,他引:1  
针对半夏种子形状不规则、表皮易破损造成播种中充种困难、易伤种等问题,在测定半夏种子物料特性的基础上,设计一种轮勺式半夏精密排种器,分析了半夏种子在充种区和清种区的受力情况,阐述了轮勺式精密排种器的工作原理。通过离散元单因素仿真试验,对排种器的种勺数量、取种轮转速、种层高度以及种勺型孔半径进行分析,并以取种轮转速、种层高度和种勺型孔半径为试验因素,以合格指数、重充指数、漏充指数为试验指标,进行了二次回归正交旋转组合台架试验,建立3个指标的回归模型,并利用回归模型进行排种器的设计参数优化。试验结果表明:影响合格指数的主次顺序为取种轮转速、种层高度、种勺型孔半径;当种勺型孔半径为7.5mm,取种轮转速为17.0~19.0r/min、种层高度为123.0~133.0mm,合格指数大于95.5%、漏充指数小于1.0%、重充指数小于3.5%,满足中药材半夏种植要求。  相似文献   

12.
马铃薯收获机辊组式薯土分离装置设计与试验   总被引:2,自引:0,他引:2  
针对目前传统马铃薯收获机分离装置存在伤薯率高、去土率低以及分离装置结构形式单一且调节不便的问题,设计了一款由聚氨酯材料构成的左右螺旋对称式去土辊与可调节式光辊交替排列组合的马铃薯收获机辊组式输送分离装置。通过针对机体结构的动力学分析、薯土分离的耦合机理分析和去土过程马铃薯之间碰撞离散分析,确定了影响马铃薯收获机辊组式输送分离装置伤薯率和去土率的关键因素,并对其进行试验,以伤薯率和去土率为试验指标,以去土辊和光辊间距和转速、输送分离装置倾斜角为试验因素,根据正交试验结果建立数学回归模型并进行响应面分析和参数化分析,确定当去土辊与光辊间距为16.5 mm、去土辊转速为100 r/min、光辊转速为100 r/min、分离装置倾斜角为8°时,伤薯率为0.64%,去土率为97.1%。与传统马铃薯收获机分离装置相比,伤薯率下降0.12个百分点,去土率上升2.6个百分点,该装置能更好地满足输送分离要求。  相似文献   

13.
马铃薯挖掘机升运分离过程块茎损伤机理分析与试验   总被引:1,自引:0,他引:1  
针对马铃薯挖掘机升运过程马铃薯块茎机械损伤严重的问题,通过对马铃薯升运过程进行运动学分析和撞击过程能量学分析,建立了损伤能量的数学模型,确定了影响马铃薯机械损伤的主要因素及各因素的试验取值范围。以损伤综合指数和伤薯率为评价指标,以跌落高度、二级升运链倾角和二级升运链线速度为试验因素,进行二次正交旋转回归试验,建立各指标与因素间的回归数学模型,分析各因素对评价指标的影响规律,根据回归模型进行参数优化。结果表明,当二级升运链线速度1.42 m/s、二级升运链倾角27°、跌落高度220 mm时,损伤综合指数为0.43,伤薯率为3.6%,明显低于未经参数优化的马铃薯挖掘机薯块机械损伤情况,满足马铃薯收获作业要求。  相似文献   

14.
绿豆种子离散元仿真参数标定与排种试验   总被引:2,自引:0,他引:2  
为提高绿豆精密排种过程离散元仿真模拟试验所用仿真参数的准确度,进一步优化排种部件,基于绿豆种子的本征参数,采用Hertz Mindlin with bonding粘结模型建立种子仿真模型,分别采用自由落体碰撞法、斜面滑动法、斜面滚动法对绿豆种子与接触材料(有机玻璃、Somos8000树脂)间仿真参数进行标定,结果表明:绿豆与有机玻璃碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.445、0.458、0.036,与Somos8000树脂碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.434、0.556、0.049。以种间接触参数为因素,以实测堆积角与仿真堆积角相对误差为指标,进行了最陡爬坡试验、三因素五水平旋转组合设计试验,以最小相对误差为优化目标,对试验数据寻优分析得到:绿豆种间碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.3、0.23、0.03。对标定结果进行排种验证试验,结果表明:仿真试验漏吸率与台架试验漏播率最大相对误差为4.71%、重吸率与重播率最大相对误差为4.94%、单粒率与合格率最大相对误差为0.98%,证明标定结果可靠。该研究结果可为绿豆精密排种装置的设计与仿真优化提...  相似文献   

15.
为确定羌活种子排种器离散元仿真所需的物性参数,对羌活籽粒和珍珠岩进行物性参数测量及标定。采用斜面法测量静摩擦系数,用自由跌落法测量碰撞恢复系数,用圆筒提升法测量堆积角,通过EDEM仿真对比堆积角大小,确定滚动摩擦系数,通过对比仿真试验与田间试验的结果,确定测定参数的准确性。羌活籽粒的密度为160 kg/m3,珍珠岩密度为150 kg/m3;羌活籽粒的泊松比为0.32,珍珠岩的泊松比为0.2;羌活籽粒的剪切模量为30 MPa,珍珠岩的剪切模量为38.5 MPa;羌活籽粒与ABS塑料板的静摩擦系数为0.62,珍珠岩与ABS塑料板的静摩擦系数为0.78,羌活籽粒间的静摩擦系数为0.51,珍珠岩间的静摩擦系数0.91,羌活籽粒对珍珠岩的静摩擦系数为0.72;羌活籽粒与ABS塑料板的碰撞恢复系数为0.39,珍珠岩与ABS塑料板的碰撞恢复系数为0.28,羌活籽粒间的碰撞恢复系数为0.31,珍珠岩间的碰撞恢复系数为0.14,羌活籽粒对珍珠岩的碰撞恢复系数为0.32,珍珠岩对羌活籽粒的碰撞恢复系数为0.26;羌活籽粒的滚动摩擦系数为0.043,珍珠岩的滚动摩擦系数为0.097,珍珠岩与羌活籽粒之间的滚动摩擦系数为0.037;仿真试验与田间试验的排种结果曲线基本一致,平均相对误差分别为5.6%和3.8%,表明测定的物性参数具有可靠性。本研究为羌活籽粒和珍珠岩的离散元仿真提供理论参考,为羌活播种机的设计优化提供理论参考。  相似文献   

16.
沈中华  黄博 《农机化研究》2019,(3):171-175,182
甘蔗收获机普遍使用的双圆盘切割台系统在收获过程中存在明显"居中堵塞现象"。为了合理利用收获机物流通道空间,使喂入的甘蔗流主动分流居中并行且均匀输出,设计了一种新型的甘蔗收获机喂入分流系统,通过三维设计软件Pro/E建立了甘蔗喂入分流机构虚拟样机模型,并导入多体动力学仿真软件ADAMS,在不同的分流转速、分流辊上的橡胶管按不同的角度安装及选择不同的橡胶管与甘蔗的摩擦因数进行了虚拟仿真试验并在仿真的基础上进行了物理样机实验。仿真与样机实验表明:当此机构分流辊机构转速为300r/min、分流辊上偏置胶管的偏置角度为30°,且偏置胶管与甘蔗间的静摩擦因数f0=0.3 5、动摩擦因数f1=0.2 5时,在保证甘蔗进给速度的前提下,可以使甘蔗流分布较为理想。  相似文献   

17.
针对大蒜联合收获机拉拔收获特点与鳞茎定位要求,为提高输送成功率、降低鳞茎损伤率,设计了一种浮动式夹持装置,阐述了其主要结构与工作机理。通过茎秆受力变形与植株运动分析,明确了试验台浮动轮弹性系数、间距及链条输送速度等关键作业影响参数的取值范围。构建了茎秆流变模型,并根据不同载荷下的茎秆蠕变曲线拟合了茎秆的粘弹性参数,明析了关键作业参数与输送装置夹持力、输送损失及鳞茎损伤的关系。以浮动轮弹性系数、间距及链条输送速度为试验因素,以成功率和损伤率为试验指标,用Design-Expert软件进行试验数据分析,由Origin软件生成3D响应曲面,得到各因素对指标的影响次序。结果表明,当浮动轮弹性系数、间距及链条输送速度分别为2 N/mm、83 mm和520 mm/s时,装置性能最优,夹持成功率和损伤率分别为97.42%和1.36%。对优化因素进行试验验证,试验与优化结果基本一致,满足大蒜联合收获浮动夹持高成功率与低损伤率的作业要求。  相似文献   

18.
针对麻山药收获机械化水平低、机械挖掘根茎损伤率高及人工拔出根茎劳动强度大等问题,结合麻山药收获农艺需求与麻山药的物理机械性质,设计了4F-2型麻山药收获机的振动松土装置。确定了振动松土装置的设计方案,建立了振动松土装置的特征模型;并运用ADAMS软件对机组前进速度、偏心轮转动速度和偏心距进行运动仿真分析,结果表明:机组前进速度为3m/min、偏心轮转动速度为540r/min、偏心距为50mm时性能最优。优化后振动松土装置的麻山药收获机田间试验结果表明:人工拔出根茎轻松省力,根茎的损伤率为3. 5%,满足企业标准《Q/JL001-2016麻山药收获机》相关要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号