首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
White spot syndrome virus (WSSV) is a large double-stranded DNA virus, causing considerable mortality in penaeid shrimp and other crustaceans. WSSV produces five major structural proteins, including two major envelope proteins, VP28 and VP19. To produce VP28 and VP19 as a single protein for antibody production, DNA sequences encoding both open reading frames were fused together and cloned into pET-22b(+) expression vector. The fusion protein, VP(19+28), was expressed in Escherichia coli, purified using Ni2+ His affinity chromatography and injected into a rabbit. Antiserum collected from the immunized rabbit was tested in vivo for ability to protect crayfish, Cambarus clarkii, from disease caused by WSSV. Fifteen days after challenge with WSSV, treatment with VP(19+28) antiserum gave 100% protection against disease in the ambient temperature range of 15-22 degrees C and 65% protection at a constant temperature of 26 degrees C. These results demonstrated VP(19+28) antiserum is effective in protection of crayfish from WSSV and confirmed that VP19 and VP28 play an important role in WSSV host infection. Targeting both VP19 and VP28 may be effective for the design of both immunotherapeutic medicines and reagents to detect WSSV.  相似文献   

2.
ABSTRACT:   The potentiality of injection vaccine against white spot syndrome virus (WSSV) in crayfish Procambarus clarkii was investigated. WSSV envelope proteins VP19 and VP28 were expressed in yeast Pichia pastoris GS115. The purified recombinant proteins (2 µg/g of crayfish) were injected intramuscularly, and the same dose injected as a booster shot on fifth day after vaccination. The vaccinated crayfish were divided into two even groups and later challenged orally by WSSV-infected dead crayfish muscle (2 g/individual) on the third and 21st days after the booster shot. The relative percent survival (RPS) in the third-day group was the highest in VP28 (91%), followed by VP19 + VP28 (84%), and VP19 (45%). The RPS for the 21st-day group was the highest in VP28 (78%), followed by VP19 + VP28 (76%), and VP19 (17%). Development of vaccine by using recombinant proteins VP19 and VP28 expressed in yeast is feasible.  相似文献   

3.
养殖克氏原螯虾体内白斑综合征病毒的绝对定量分析   总被引:2,自引:1,他引:1  
兰江风  代云佳  林蠡 《水产学报》2016,40(3):318-325
近年来克氏原螯虾的养殖受到WSSV的威胁,病毒在宿主组织中的绝对定量对于了解病毒的致病性具有重要意义,但克氏原螯虾组织中WSSV的绝对定量分布还有待研究。实验调查了湖北省5个主养区克氏原螯虾WSSV的感染率,结果表明80%以上克氏原螯虾都携带有WSSV。采用WSSV-VP28蛋白特异性抗体对克氏原螯虾提取蛋白进行Western Blot检测,在WSSV-PCR阳性样品中可检测到VP28特异性条带,在WSSV-PCR阴性样品中没有检测到相应条带。采用实验室建立的WSSV绝对定量PCR方法,对携带病毒的克氏原螯虾6个组织(鳃、胃、肠、血淋巴细胞、肝胰腺和心脏)进行检测。结果表明,在鳃、胃和肠可检测到较多病毒量(约108拷贝/mg),其次是血淋巴细胞(107拷贝/mg)、肝胰腺(106拷贝/mg),在心脏中病毒的含量最低(103拷贝/mg),表明病毒的复制存在组织特异性。结果显示WSSV主要存在于消化系统中,预示着克氏原螯虾可能主要在摄食过程中感染WSSV;不同地区克氏原螯虾组织病毒携带量表现出一定差异,预示着WSSV感染可能受到环境因素的影响。  相似文献   

4.
Envelope protein VP28 has been suggested as a candidate vaccine component to evoke a better protection against white spot syndrome virus (WSSV). We have reported that Bacillus subtilis spores harbouring VP28 (rVP28‐bs) can specifically protect shrimp against WSSV. However, the mechanism that supports the production of unique molecules induced by rVP28‐bs to trigger specific immunity is originally unknown. It has recently been suggested that Dscam (Down syndrome cell adhesion molecule) plays an essential role in the alternative adaptive immunity of invertebrates. In this study, we compared the diversity of Litopenaeus vannamei Dscam (LvDscam) variable regions by different antigens immunization. A total of 13, 15 and 11 expressed alternative sequences were identified for N‐terminal Ig2, N‐terminal Ig3 and the entire Ig7 domain, respectively. More than half of the unique variants (16 out of 22) were found in the Ig2/Ig3 domains. Further analysis of the interaction between VP28 and unique Ig2/Ig3 variants was confirmed by both yeast two‐hybrid and GST pull‐down approach. We also found that the percentage of haemocytes phagocytosing WSSV was significantly higher (P < 0.001) in the shrimp injected with control‐siRNA (43.8 ± 2.2) than those with Dscam‐siRNA (11.3 ± 5.4) in the rVP28‐bs groups. With Dscam‐siRNA injection, survivorship significantly decreased (P < 0.001) in the rVP28‐bs group after WSSV challenge. Our data suggested that LvDscam‐mediated pathway may be involved in the specific immune response of shrimp against WSSV induced by rVP28‐bs.  相似文献   

5.

为了鉴定对虾白斑病综合征病毒(WSSV)囊膜蛋白VP110在中国明对虾(Fenneropenaeus chinensis)鳃细胞中的结合蛋白, 运用pET-32(a)+载体构建了1段含RGD模体的截短VP110原核重组表达质粒, 转化大肠杆菌诱导表达后获得分子量为41 kD的截短重组VP110蛋白(rVP110)。以rVP110作为诱饵蛋白, 运用pull-down实验结合蛋白质谱分析鉴定rVP110结合蛋白, 结果显示, 中国明对虾鳃细胞中的肌动蛋白和精氨酸激酶(arginine kinase,AK)rVP110具有结合作用。利用PCR扩增中国明对虾AK编码基因, 将其与表达载体pGEX-4T-1连接后转化大肠杆菌诱导表达获得重组AK蛋白(rAK), 通过pull-down实验进一步证实rAK可与rVP110发生结合。克氏原螯虾(Procambarus clarkia)体内中和实验结果显示, rAKWSSV感染克氏原螯虾具有一定的中和作用, 能延缓螯虾的死亡进程。另外, 中国明对虾在人工感染WSSV, 荧光定量PCR检测结果显示, AK基因表达水平显著上调, 18 h时达到峰值, 然后下降至正常水平; 酶底物法检测结果同样显示, 鳃细胞中AK酶活性在感染WSSV后发生显著上调。本研究旨在为深入了解WSSV囊膜蛋白VP110WSSV感染宿主过程中的作用提供基础依据。

  相似文献   

6.
White spot syndrome virus (WSSV) was first reported in farmed Litopenaeus vannamei stocks in Sinaloa and Sonora, Mexico during 1999 and continues to cause severe shrimp losses. WSSV genes encoding nucleocapsid (VP26 and VP15) and envelope proteins (VP19 and VP28) of a Mexican isolate were cloned in the pMosBlue vector. The nucleotide sequences of these genes were compared with WSSV isolates in GenBank. VP15 is highly conserved, and VP26 showed 99% homology to a Chinese isolate. The VP28 fragment demonstrated 100% homology to the majority of the isolates analysed (UniProt accession no. Q91CB7), differing from two Indian WSSV and one Chinese WSSV isolates by two non-conserved and one conserved replacements, respectively. Because of their highly conserved nature, these three structural proteins are good candidates for the development of antibody-based WSSV diagnostic tools or for the production of recombinant protein vaccines to stimulate the quasi-immune response of shrimp. In contrast, VP19 of the Mexican isolate was distinguishable from almost all isolates tested, including an American strain of WSSV (US98/South Carolina, GenBank accession no. AAP14086). Although homology was found with isolates from Taiwan (GenBank accession no. AAL89341) and India (GenBank accession no. AAW67477), VP19 may have application as a genetic marker.  相似文献   

7.
The VP28 gene of white spot syndrome virus (WSSV) was cloned into pRSET B expression vector. The VP28 protein was expressed as a protein with a 6-histidine taq in Escherichia coli GJ1158 with NaCl induction. Antiserum was raised against this recombinant-VP28 protein in rabbits and it recognized VP28 protein in naturally and experimentally WSSV-infected shrimp, marine crabs, freshwater prawns and freshwater crabs. The antiserum did not recognize any of the other known WSSV structural proteins. Various organs such as eyestalks, head muscle, gill tissue, heart tissue, haemolymph, tail tissue and appendages were found to be good materials for detection of WSSV using the antiserum and detection of WSSV was successful in experimentally infected Penaeus monodon and P. indicus at 12 and 24 h post-infection (p.i.), respectively. The antiserum was capable of detecting WSSV in 5 ng of total haemolymph protein from WSSV-infected shrimp.  相似文献   

8.
Two kinds of specific chicken egg yolk immunoglobulins (IgYs), IgY‐WSSV and IgY‐VP28, were, respectively, raised against the 2 mM binary ethylenimine (BEI)‐inactivated white spot syndrome virus (WSSV) and a principal envelope protein VP28. The activity of purified specific IgYs was stable under the conditions of 20–70 °C, pH 3.0–10.0 and 0–700 g L?1 sucrose solution. In the neutralization assay, these high‐affinity IgY antibodies can specifically bind with the virus particles to protect shrimp (Fenneropenaeus chinensis) against WSSV infection. After oral delivery for 20 days, the IgY‐WSSV exerted a higher protection effect (RPS: 71.5%) than IgY‐VP28 (RPS: 63.7%). Moreover, an increase in RPS (79.2%) was found on addition of IgY‐WSSV:VP28 (0.1% IgY‐VP28 plus 0.2% IgY‐WSSV). This may indicate that neutralization of WSSV refers to the multiple‐hit model. By time‐course study of the levels of the specific IgYs in vivo, the data showed that the titre was enhanced to a relatively high level (P/N=8.35±0.45) at 3 days post administration, declined slightly (P/N=7.13±1.01) at 7 days post administration and then remained stable for further investigation. The stable antibody level potentially contributes towards blocking a large number of WSSV particles from entering and infecting on the major tissues at the early and late stages after challenge in shrimp.  相似文献   

9.
Shih  Wang  Tan  & Chen 《Journal of fish diseases》2001,24(3):143-150
Three hybridoma clones secreting monoclonal antibodies (MAbs) were produced from mouse myeloma and spleen cells immunized with white spot syndrome virus (WSSV) isolated and purified from Penaeus monodon (Fabricius), collected from north-eastern Taiwan. By sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), the protein profile of this isolate contained four major proteins with sizes of approximately 35 (VP35), 28 (VP28), 24 (VP24), and 19 kDa (VP19). Western blot analysis revealed that two MAbs (1D7 and 6E1) recognized epitopes on VP28 and one MAb (3E8) recognized an epitope on VP19. The MAb 6E1 isotyped to the IgG1 class was used in both an indirect immunofluorescence assay (IFA) and in an immunochemical staining protocol for successful identification and localization of WSSV in infected shrimp tissues. Antigenic similarity of isolates from Indonesia and Malaysia to the Taiwan isolate was illustrated by IFA with MAb 6E1. A MAb (2F6) which bound specifically to two shrimp proteins, 75 and 72 kDa, and reacted to the healthy and non-target tissues of WSSV in infected shrimp, such as hepatopancreas, is also described here and shows the necessity for specific identification of antibodies.  相似文献   

10.
白斑综合征病毒囊膜蛋白VP19及VP28的研究进展   总被引:1,自引:1,他引:0  
自二十世纪90年代,白斑综合征病毒(WSSV)就因其暴发范围广、致死率高得到了广泛的关注。研究主要集中在确定该病毒蛋白的结构及功能,以及利用其囊膜蛋白制备亚单位疫苗、研发DNA疫苗等来提高对虾抵抗白斑综合征病毒的能力,尽管免疫防治目前在实验室阶段已取得了显著的保护效果,但因其给药方式局限以及成本较高等因素一直没有应用于实际生产中。VP19和VP28是白斑综合征病毒主要的囊膜蛋白,在WSSV感染对虾的过程中起着非常重要的作用。本文从WSSV的基因组学、VP19和VP28的蛋白质结构及其在免疫防治中的应用等方面概述了VP19和VP28的研究进展,包括蛋白亚单位疫苗、DNA疫苗、RNA疫苗以及相关抗体的研究。在总结了不同类型疫苗的保护效果后发现,VP19和VP28的双价疫苗的保护率较高,为今后制定有效的WSSV控制方法提供了参考。  相似文献   

11.
通过酶联免疫吸附法(ELISA)测定不同稀释度对虾白斑综合征病毒(WSSV)与已制备的WSSV囊膜蛋白单克隆抗体结合的OD值。利用克氏原螯虾Cambarus proclarkii动物模型,将不同稀释度病毒与单抗1:1混合孵育2h后,肌肉注射克氏原螯虾(50μl/只),观察记录螯虾的死亡情况。ELISA结果显示,在1×10^-3病毒稀释度下两种单抗均足量。在螯虾体内中和实验中,当病毒浓度为1×10^-3、1×10^-4、1×10^-5和1×10^-6稀释度时,MAb1D6(VP28)螯虾组最终死亡率分别为100%、90%、16.7%和6.7%,而MAb2E9(VP19)螯虾组最终死亡率分别为100%、100%、100%和93.3%。这表明随病毒浓度的降低,MAb1D6(VP28)的中和效果越明显。而MAb2E9(VP19)并无明显的中和效果。  相似文献   

12.
White spot syndrome virus (WSSV) is one of the most important pathogens of penaeid shrimp. It is widely distributed in most Asian countries where penaeid shrimp are cultured, as well as in the Gulf of Mexico and SE USA. The virulence of six geographic isolates of WSSV was compared using Litopenaeus vannamei postlarvae and Farfantepenaeus duorarum juveniles. The six geographic isolates of WSSV originated from China, India, Thailand, Texas, South Carolina, as well as from crayfish maintained at the USA National Zoo. For challenge studies, virus infected tissues were given per os to L. vannamei postlarvae and Fa. duorarum juveniles. Resultant WSSV infections were confirmed by histological examination. The cumulative mortality of L. vannamei postlarvae reached 100% after challenge with each of the six geographic isolates of WSSV. However, the Texas isolate caused mortalities more rapidly than did the other shrimp isolates; the crayfish WSSV isolate was the slowest. In marked contrast, cumulative mortalities of juvenile Fa. duorarum reached only 35–60%, and varied among the geographic isolates of WSSV. Interestingly, in Fa. duorarum, the Texas WSSV isolate was also the most virulent, while the crayfish WSSV was the least virulent. The findings suggest that slight differences in virulence exist among geographic isolates of WSSV, and that susceptibility may vary with species and lifestages of the host.  相似文献   

13.
将VP110基因的部分序列克隆到pET-28a载体中构建pET28a-vp110b重组质粒并进行原核表达,获得重组表达的蛋白rVP110-B;用rVP110-B注射凡纳滨对虾Litopenaeus vannamei后,经WSSV感染,实验表明,该蛋白注射使凡纳滨对虾感染WSSV的半数死亡时间比对照组延长了20%。用表达纯化的该重组蛋白制备了兔抗rVP110-B多克隆抗体,该抗体用于凡纳滨对虾鳃细胞膜蛋白与rVP110-B的Far-western分析显示,凡纳滨对虾鳃细胞膜蛋白中除90 kDa左右的血蓝蛋白外,在41.7 kDa存在结合条带,经质谱分析表明这条鳃细胞膜蛋白是肌动蛋白。  相似文献   

14.
White spot disease (WSD) is an important viral disease of penaeid shrimp caused by white spot syndrome virus (WSSV). WSSV isolated from WSD outbreaks in commercial shrimp (Penaeus monodon) farms in India were propagated in the laboratory in healthy shrimp. The virus was purified from the infected tissues by sucrose gradient centrifugation. The VP28 was electroeluted from SDS-PAGE gels and was used to immunize Balb/c mice to produce hybridomas secreting monoclonal antibodies (MAb) against WSSV. A total of five hybridoma clones secreting MAbs to VP28 were produced. The MAbs were of the isotypes IgG1, IgG2b and IgM. The MAbs reacted with VP28 of WSSV and not with any other viral or shrimp protein in western blot. The MAbs were used to develop dot immunoblot assay using an immunocomb to detect WSSV from field samples. The test developed had an analytical sensitivity of 625 pg and a diagnostic sensitivity of 100% compared to single step polymerase chain reaction (PCR). The test can be used as an alternate for first step PCR to detect WSSV from field samples.  相似文献   

15.
用添加CpG寡聚核苷酸(CpG ODN)和表面展示VP28的解脂耶罗维亚酵母(VP28-yl)的饵料投喂凡纳滨对虾,进行田间中试实验。投喂30 d后进行WSSV感染实验,评估其对凡纳滨对虾的免疫保护作用。投喂实验结束后,CpG ODN投喂组对虾的相对增重率达到(65.8±7.8)% (P<0.05),这暗示CpG ODN可能具有促生长作用。WSSV攻毒后,CpG ODN和VP28-yl投喂组对虾中WSSV拷贝数与对照组相比均显著降低(P<0.05),相对免疫保护率分别可达到26.7%和36.7%。在投喂结束和WSSV刺激后,CpG ODN组对虾中的呼吸爆发水平均显著升高(P<0.05)。而在VP28-yl投喂组,WSSV引起的细胞凋亡则显著受到抑制(P<0.05)。此外,WSSV刺激后,STAT基因在CpG ODN组和VP28-yl组对虾中的表达水平均显著上调(P<0.05),分别在第5天和第3天达到最大值,而对照组中则显著下调。研究结果表明,CpG ODN和VP28-yl增强了凡纳滨对虾抗病毒免疫力,对养殖对虾病毒性疫病的防控具有显著作用,可以作为免疫增强剂添加在饵料中,具有在养殖生产中推广使用的前景。  相似文献   

16.
The VP 28 gene encoding a structural envelope protein of the white spot syndrome virus (WSSV) was cloned into a pET32a(+) expression vector for the production of the recombinant VP28 protein. A purified recombinant protein of 39.9 kDa size was used for polyclonal antibody production in rabbit. Specific immunoreactivity of the rabbit anti rVP28 antiserum to the viral antigen was confirmed by a Western blot. The specificity of this polyclonal anti‐rVP28 antiserum to detect the presence of the virus in WSSV‐infected Penaeus monodon was verified using a immunodot blot assay. Immunodot blot showed a positive reaction in infected shrimp tissues with prominent colour development using 3,3′,5,5′‐tetramethylbenzidine (TMB) as a chromogenic substrate when compared with 3–3′ diaminobenzidine tetrahydrochloride (DAB). Highest signal intensities of the immunodots were observed in infected shrimp pleopod extracts and haemolymph. On comparison with polymerase chain reaction (PCR), immunodot blot could detect 76% of PCR‐positive WSSV‐infected shrimp samples. Immunodot blot was found to be equivalent to first‐step PCR sensitivity to detect WSSV particles estimated to contain 1.0 × 105 viral DNA copies.  相似文献   

17.
White spot syndrome virus (WSSV) occurs worldwide and causes high mortality and considerable economic damage to the shrimp farming industry. Considering the global environmental, the economic and sociological importance of shrimp farming, and the constraints of high intensity cultivation, development of novel control measures against the outbreak of WSSV become inevitable. In this study, we have explored the protective efficacy of DNA vaccination and tissue distribution of the recombinant plasmid in immunized Litopenaeus vannamei. The VP28 gene was cloned in the eukaryotic expression vector pVAX1, and the construct vector was named as lpv28. The protective effect of lpv28 against WSSV was evaluated in L. vannamei by injecting lpv28 construct and later challenging with WSSV. Expression of these proteins from the recombinant plasmids was confirmed in vitro by RT-PCR and Western blot analysis. The result of vaccination trials showed that a survival rate in shrimp vaccinated with lpv28 was 52.5% at most compared to control groups (100% mortality). The immunological parameters analyzed in the vaccinated and control groups showed that the vaccinated groups owned a high level of lysozyme, alkaline phosphatase, and total superoxide dismutase when compared to the control group. Furthermore, protein expression analysis indicated that VP28 can be detected in gill, muscle and head soft tissue of the shrimps in the immunized group after 14th day injection. Thus, the result indicated that DNA vaccination strategy has a potential utility against WSSV.  相似文献   

18.
近年来,重组 VP28和 VP26蛋白作为蛋白亚单位疫苗,在增强对虾抗白斑综合征病毒(WSSV)感染的过程中具有重要作用。本研究根据GenBank中WSSV的基因序列设计引物,以WSSV粗提液为模板进行普通PCR扩增,得到VP28和VP26基因,再用引物悬挂法将EcoRⅠ和XbaⅠ酶切位点分别添加到 VP28和 VP26基因的5¢端和3¢端。目的基因经双酶切后插入到表达载体pGAPZαA,转化TOP10大肠杆菌,经博莱霉素(Zeocin)抗性筛选阳性重组酵母表达载体。AvrⅡ酶切线性化之后,电击转化 X-33毕赤酵母感受态细胞,经 Zeocin 抗性筛选得到阳性重组酵母。SDS-PAGE电泳分析重组酵母表达上清液的目的蛋白,没有检测到VP28和VP26重组蛋白。随后,采用蛋白质银染法,结果显示,与空载pGAPZαA组相比,VP28和VP26表达上清液组有明显的条带,证明VP28和VP26在毕赤酵母中成功表达,蛋白分子量大小约为32 kDa。  相似文献   

19.
20.
The giant fresh water prawn Macrobrachium rosenbergii is known to be highly tolerant to white spot syndrome virus (WSSV) infections when compared to the widely cultured marine tiger shrimp Penaeus monodon. At present, the exact mechanism of tolerance by M. rosenbergii to WSSV is not known. In this study, we attempt to study the effect of WSSV injections on the hemagglutination activity of the hemolymph serum of both P. monodon and M. rosenbergii and look for changes if any, on their hemolymph serum protein electrophoretic patterns. Our results show that M. rosenbergii had significantly (p < 0.05) higher hemagglutinating activity against mouse erythrocytes when compared to P. monodon. As the infection progressed to 48 h there was a further increase (p < 0.05) in the hemagglutination activity in M. rosenbergii, while it decreased in P. monodon. 12% SDS-PAGE analysis of the hemolymph serum of M. rosenbergii infected with WSSV did not show any new protein bands, whereas few bands with decreased intensity was observed in moribund P. monodon where the hemagglutinating activity was also observed to be decreased. The results indicate that hemolymph hemagglutinin levels are modulated in crustaceans as a response to viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号