首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
研究了以全池泼洒的投药方式,孔雀石绿(MG)(池塘中MG的理论浓度为1 mg/L)及其主要代谢物隐性孔雀石绿(LMG)在斑点叉尾(Ietalurus punetaus)肌肉和皮肤以及养殖水体和底泥中的残留消除规律。采用高效液相色谱串联质谱法(HPLC-MS/MS)分析MG及其代谢物LMG在斑点叉尾体内及环境中的浓度水平。结果显示:肌肉、皮肤中MG于用药后第1天最高浓度分别为:(42.77±5.26)μg/kg和(6.36±0.11)μg/kg,消除半衰期T1/2分别为57.76 d、31.51 d;皮肤和肌肉中LMG分别在用药后第3天和第1天达到最高(502.27±20.43)μg/kg和(125.26±12.76)μg/kg,消除半衰期T1/2分别为33.01 d、38.51 d。这表明MG在斑点叉尾体内会迅速转化为LMG,且LMG残留在皮肤中的浓度大于肌肉中的浓度。养殖环境底泥中同时存在MG和LMG,以LMG为主,并且LMG呈现蓄积的趋势,在第360天出现最高浓度(5.92±1.23)μg/kg;水体中MG最高浓度出现在第1天,为(46.44±7.39)μg/L,随后急剧降至1μg/L左右,水体中几乎不存在LMG。  相似文献   

2.
对淡水水体和沉积物中孔雀石绿(MG)及无色孔雀石绿(LMG)的高效液相色谱串联质谱(LC-MS/MS)检测方法进行改进。主要对水及沉积物中孔雀石绿及无色孔雀石绿提取试剂进行优化探索,结果表明:二氯甲烷作为提取试剂提取效果最佳,两种待测物线性范围为0.20~100ng/mL,r~2≥0.999,空白水体在2.0、10、25ng/L 3个加标水平下的平均回收率为78.3%~88.8%,相对标准偏差(RSD)为1.2%~3.3%,检出限(LOD)和定量下限(LOQ)分别为0.20ng/L和0.40ng/L。空白沉积物基质在0.2、2.0、10μg/kg 3个加标水平下,平均回收率为78.9%~86.7%,RSD为0.6%~3.3%,检出限(LOD)和定量下限(LOQ)分别为0.020μg/kg和0.040μg/kg。该方法灵敏度高、选择性好,适用于淡水养殖环境水体和沉积物中MG和LMG的残留测定。  相似文献   

3.
为了解孔雀石绿及其有毒代谢产物无色孔雀石绿在鱼体中的蓄积与消除规律,达到对孔雀石绿的禁用监控,本试验对初始体重为12.42±2.18 g的欧洲鳗鲡进行0.1 mg/L药浴24 h,再转移到清水中养殖120d,采用高效液相色谱法测定血液、肝脏、肾脏和肌肉组织中孔雀石绿(MG)及其代谢物无色孔雀石绿(LMG)的残留。结果表明:在药浴开始阶段,肝脏、肾脏和肌肉中的MG含量迅速上升,肝脏、肾脏和血液于浸浴6 h时即达到最高平均值,分别为859.8±127.0μg/kg、589.2±40.0μg/kg和88.6±51.3μg/kg,肌肉于浸浴12h时达最高值(720.5±192.6μg/kg),随后含量下降。鳗鲡各组织中LMG高峰出现时间都晚于MG,血液、肝脏和肾脏中的LMG都是在浸浴12 h时,达到最高平均值,分别为1 135.0±376.4μg/kg、1 730.9±538.5μg/kg和238.9±105.5μg/kg;肌肉组织LMG的高峰出现时间更晚,是清水养殖3 d(72 h)时,为960.1±251.0μg/kg。血液中的MG消除最快,于清水养殖的第2天(48 h)检测不到残留。肾脏于养殖10 d(240 h)、肝脏于养殖45 d(1 080 h)时检测不到残留MG,而肌肉中的MG在养殖90 d时才检测不到。LMG在鳗鲡血液和肌肉组织中消除时间与MG相比显著延长,血液中的LMG消除时间是养殖90 d(2 160 h),而肌肉中于养殖120 d时,仍能检测到一定含量的LMG。除了肾组织在整个试验阶段和肌肉组织在浸浴过程中,所含平均MG比LMG高以外,其余情况下都是LMG平均含量明显高于MG平均值。本试验表明,可以通过对鳗鲡肌肉中的无色孔雀石绿残留的检测达到对孔雀石绿禁用的监控。  相似文献   

4.
以0.5 ppm的孔雀石绿浸泡3天再清水养殖的鲫鱼为研究对象,研究孔雀石绿(MG)及其代谢物隐性孔雀石绿(LMG)在鲫鱼肌肉及各组织中的分布及消除情况.在浸泡结束后的第0、7、14、21天,分别取鲫鱼肌肉、肾脏、肝胰脏、脾脏、血液、性器官,采用高效液相质谱法检测孔雀石绿及隐性孔雀石绿的浓度水平,并分析其在各组织中的分布情况及消除规律.结果表明,在浸泡结束后的第0天,孔雀石绿及隐性孔雀石绿主要蓄积在肌肉和肾脏,其孔雀石绿浓度分别为1043.86μg/kg、1618.05μg/kg;隐性孔雀石绿浓度分别为1650.62μg/kg、1228.32μg/kg.随着清水养殖实验的进行,孔雀石绿及隐性孔雀石绿在鲫鱼各组织中逐渐消除,到21天,肾脏、脾脏、肝胰脏、血液中均没有检测到药物残留,而肌肉和性器官中仍然检测到残留,孔雀石绿浓度分别为6.16μg/kg、3.3μg/kg;隐性孔雀石绿浓度分别为11.13μg/kg、5.49μg/kg.清水养殖21天,孔雀石绿及隐性孔雀石绿在肌肉中的消除率分别是99.4%、99.3%;在性器官中的消除率分别是90.8%、98.7%.  相似文献   

5.
建立了QuECHERS结合UPLC-MS/MS快速测定鳜体内孔雀石绿(MG)及其代谢物残留量的方法,该方法在0.1~100.0 ng/mL质量浓度范围内线性关系良好,相关系数r大于0.999 8, MG和隐色孔雀石绿(LMG)在鳜肌肉中的检出限(Limit of detection, LOD)和定量限(Limit of quantitation, LOQ)分别为0.10和0.30μg/kg。在添加水平分别为0.30、1.50和5.00μg/kg条件下,鳜肌肉中MG和LMG平均回收率范围分别为(96.40±5.34)%~(104.00±1.75)%和(92.40±2.54)%~(107.00±8.42)%,精密度范围分别为1.68%~5.54%和2.75%~7.87%,回收率和精密度均符合残留检测要求。采用本研究建立的残留分析方法研究了阳性养殖环境中鳜体内MG和LMG残留消除规律,结果表明,阳性养殖环境中[沉积物中MG和LMG残留量为(233.48±17.07)μg/kg和(73.38±5.98)μg/kg],鳜体内MG残留以LMG为主,其残留含量均在10.0μg/kg以下,LMG呈现先增加后降低的趋势且消除较慢,10 d时达到最高含量(9.94μg/kg),随后呈波动式下降,直至240 d时未检出。推断若阳性养殖环境中残留MG或LMG则会造成鳜体内LMG长时间残留,易对鳜食用安全性造成隐患。为了保障鳜的食用安全性,建议对鳜养殖环境中MG和LMG残留量进行测定,确保养殖环境中无MG和LMG残留,并适当延长养殖周期。  相似文献   

6.
为了准确评估渔业生态环境中的孔雀石绿(MG)及其代谢产物隐性孔雀石绿(LMG)的残留状况,建立了3种渔业环境基质(水体、底泥和底泥-水体混合物)中MG和LMG的高效液相色谱-串联质谱(HPLC-MS/MS)检测方法。通过考察不同前处理方法对不同基质中MG和LMG回收率的影响,优化仪器性能,确定了色谱和质谱分析条件。具体方法是:水体过滤后采用PRS固相萃取柱进行净化、富集;底泥采用乙腈-二氯甲烷(1∶1,v/v)提取,再旋蒸、富集;底泥-水体混合物用二氯甲烷提取后,采用PRS固相萃取柱净化、富集。采用Thermo C18色谱柱对待测物进行分离,以乙腈-0. 2%乙酸铵(1∶1,v/v)为流动相洗脱,电喷雾-多反应正离子监测模式监测,内标法定量。结果表明,3种不同基质中的MG和LMG在1~8 ng/m L范围内线性显著,其相关系数r~2值大于0. 999;加标回收率分别为90. 0%~104. 2%、79. 9%~90. 3%和74. 1%~86. 3%,相对标准偏差为3. 3%~5. 8%、4. 9%~8. 6%和3. 2%~8. 3%; MG的检出限(LOD,S/N=3)分别为0. 24 ng/L、0. 02μg/kg和0. 06μg/kg,定量限(LOQ,S/N=10)分别为0. 79 ng/L、0. 07μg/kg和0. 21μg/kg; LMG的检出限(LOD,S/N=3)分别为1. 14 ng/L、0. 17μg/kg和0. 12μg/kg,定量限(LOQ,S/N=10)分别为4. 72 ng/L、0. 56μg/kg和0. 39μg/kg。该法可应用于渔业环境中MG及LMG的定性定量检测,具有较好的实用性。  相似文献   

7.
为了解鳜(Siniperca chuatsi)食用含有孔雀石绿(malachite green,MG)的饵料鱼后,其体内MG及其代谢物无色孔雀石绿(leucomalachite green,LMG)的残留消除规律,以期为孔雀石绿的监管提供基础数据,本实验模拟了自然养殖条件,对饲养于池塘网箱中的鳜连续投喂10 d经1 mg/L MG溶液浸泡2 min后的鲮(Cirrhinus molitorella),投喂量为5%(m/m),于停药后0、6、12 h及1、3、6、10、15、20、30、40、50、70、90、120、150和180 d采集鳜肌肉样品,各采集点随机取6尾以上鳜,采用液相色谱串联质谱法测定鳜肌肉中MG和LMG的残留量。结果发现,阳性饵料鱼投喂结束后,鳜体内未检出MG,LMG残留浓度也较低,在0 h鳜肌肉中LMG的浓度为8.62μg/kg,随后缓慢降低,10 d时鳜肌肉中检测不到LMG。本研究表明,养殖过程中,阳性饵料鱼体内的MG会通过食物链传递给鳜,造成鳜体内LMG检出,建议执法部门对鳜的饵料鱼进行监控,以确保鳜的食用安全。  相似文献   

8.
养殖水体中孔雀石绿的快速检测技术   总被引:1,自引:0,他引:1  
利用筛选柱快速检测养殖水体中孔雀石绿,发现当水样中孔雀石绿浓度为5.0 ng/mL和10.0 ng/mL时,检测过程中未发现颜色变化;当水样中孔雀石绿浓度为50.0 ng/mL或以上时,检测过程中颜色变化较明显,该结果能满足广大基层养殖户快速筛选的需求。  相似文献   

9.
尼罗罗非鱼(Tilapia nilotica)和大口黑鲈(Micropterus salmoide)是中国主要的淡水经济鱼类,其养殖过程中常遇到微囊藻毒素(Microcystin,MC)与孔雀石绿(Malachite green,MG)的危害。MC和MG通过食物链在人体中富集,给人类的健康造成了严重的威胁。研究测定了人工饲养的尼罗罗非鱼和大口黑鲈在含有MC和MG的水体中的行为反应。结果表明,尼罗罗非鱼和大口黑鲈在0.2和0.5μg/L MC-LR的水体中处理60min内,其游泳行为相对于对照组无显著性差异,然而,在0.5mg/L MG的水体中处理30min后,尼罗罗非鱼胸鳍摆动频显著上升,大口黑鲈胸鳍摆动频率也在25、30、45min等3个不连续的时间点出现显著的变化。说明尼罗罗非鱼和大口黑鲈对天然毒素MC具有较强的抵抗能力,而对人工毒素MG较为敏感;胸鳍摆动频率可作为尼罗罗非鱼和大口黑鲈一个较为敏感的反映环境变化的行为指标。  相似文献   

10.
尼罗罗非鱼(Tilapia nilotica)和大口黑鲈(Micropterus salmoide)是中国主要的淡水经济鱼类,其养殖过程中常遇到微囊藻毒素(Microcystin,MC)与孔雀石绿(Malachite green,MG)的危害。MC和MG通过食物链在人体中富集,给人类的健康造成了严重的威胁。研究测定了人工饲养的尼罗罗非鱼和大口黑鲈在含有MC和MG的水体中的行为反应。结果表明,尼罗罗非鱼和大口黑鲈在0.2和0.5μg/L MC-LR的水体中处理60min内,其游泳行为相对于对照组无显著性差异,然而,在0.5mg/L MG的水体中处理30min后,尼罗罗非鱼胸鳍摆动频显著上升,大口黑鲈胸鳍摆动频率也在25、30、45min等3个不连续的时间点出现显著的变化。说明尼罗罗非鱼和大口黑鲈对天然毒素MC具有较强的抵抗能力,而对人工毒素MG较为敏感;胸鳍摆动频率可作为尼罗罗非鱼和大口黑鲈一个较为敏感的反映环境变化的行为指标。  相似文献   

11.
孔雀石绿对日本鳗鲡的背景污染试验   总被引:1,自引:0,他引:1  
用高压液相色谱法检测孔雀石绿和隐性孔雀石绿,研究了水体使用孔雀石绿后,池塘底泥孔雀石绿残留和泥土背景污染导致的鳗鲡肌肉中孔雀石绿的残留和消除.连续使用三次孔雀石绿24 h后,水体中无孔雀石绿残留.池塘使用孔雀石绿溶液浸泡后,导致池底泥沙中孔雀石绿残留,部分采样点检测到隐性孔雀石绿于泥沙中残留.池底孔雀石绿的残留,将导致鳗鲡孔雀石绿在肌肉中的残留,隐性孔雀石绿将长期于肌肉中滞留.孔雀石绿背景污染的池塘,应改造至无背景污染后使用,才能保障鳗鲡无孔雀石绿残留.  相似文献   

12.
为了解蓝藻水华期间微囊藻毒素在罗非鱼体内的分布及累积传递过程,2008年6月至8月采集了高密度蓝藻池塘及太湖网箱内的鱼样及水样,用ELISA法对鱼样和水样进行微囊藻毒素MC-LR含量的检测。结果表明:池塘水体微囊藻毒素MC-LR含量变化范围在0.123~0.514ug/L间,MC-LR含量随着藻密度的下降而降低,对照组水体MC-LR浓度显著高于实验组MC-LR含量。池塘鱼体肌肉组织微囊藻毒素MC-LR累积含量在1.194~3.615ng/g间,肝脏组织微囊藻毒素MC-LR累积含量显著高于肌肉组织。将池塘与网箱罗非鱼转至无微囊藻水体中暂养,跟踪检测MC-LR含量变化,池塘和网箱鱼体肌肉组织微囊藻毒素MC-LR含量均低于人体每日可耐受摄入量,而肝脏组织藻毒素MC-LR含量则分别需要经过10~20天自然生物降解后降低至安全摄入量之下。并讨论了微囊藻毒素在鱼体内的组织分布与食物链中的累积传递。  相似文献   

13.
研究了不同养殖环境下孔雀石绿在凡纳滨对虾(Litopenaeu svannamei)体内的残留和消除规律。试验对虾刚0.20mg·L^-1。的孔雀石绿溶液药浴2h后转移至室内或室外水泥池中用盐度为28的海水养殖,采用高效液相色谱一串联质谱法(LC/MS/MS)测定对虾头部和肌肉中的有色孔雀石绿(MG)及其代谢产物无色孔雀石绿(LMG)的残留量。结果表明,药浴2h时对虾体内孔雀石绿的残留量达到峰值,转入清水养殖168h,2种环境养殖对虾体内的孔雀石绿残留量均降低至检测限以下,孔雀石绿在对虾体内的消除速率是室外环境养殖的快于室内环境养殖,对虾头部快于肌肉组织,且MG的消除快于LMG。  相似文献   

14.
Malachite green (MG) has been focused on as a biotreatment target and its biological properties have also been an issue in food fish aquaculture. An MG-removing bacterium was isolated from aquaculture fish pond sediment samples in Thailand. The isolate, strain T-5-2, is a Gram-negative, aerobic rod-shaped bacterium, and has been identified as a member of the Pseudomonas putida group. Proton nuclear magnetic resonance spectroscopy (1H-NMR) analysis of a broth culture medium containing MG showed that the concentration of MG decreased markedly and that other molecules, including leucomalachite green (LMG), were generated. Moreover, liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis showed that the MG concentration in the broth culture medium continuously decreased. This analysis also demonstrated that the concentration of LMG initially increased and then gradually decreased. Furthermore, gas chromatography–mass spectrometry (GC–MS) analysis showed 4-(dimethylamino)benzophenone (4DABP) as a degradation component of MG, which was confirmed by 1H-NMR and LC–MS/MS analysis. These findings suggest that this bacterial strain can remove MG in broth culture and degrade it to certain metabolites, including LMG and 4DABP. This study is the first detailed evaluation by the combination of LC–MS/MS, GC–MS, and 1H-NMR analyses of an MG-removing bacterium isolated from Thai aquaculture fish ponds.  相似文献   

15.
王玉玺 《齐鲁渔业》1995,12(1):26-27
在1.8亩池塘中进行早繁淡水鲳当年养成技术试验,在无增氧机条件下,进行淡水鲳和罗非鱼混养。经128天饲养,平均亩净产560.9kg,其中淡水鲳为281.7kg,养在规格达540g/尾,鉴定认为,当年养成这样的规格属省内领先水平。  相似文献   

16.
进行了灌溉渠道微流水养鱼试验,1992年共产鲁、罗非鱼、淡水鲳成鱼7493kg,折合亩产9658kg,总收入60459元,纯利17419元。这种方式比网箱养鱼更安全、更易管理。  相似文献   

17.
Aquaculture in Brazil has shown expressive development since the 1990s with growth rates superior to those of cattle and poultry. In order to achieve greater productivity, intensive fish cultivation systems are employed, which can cause greater susceptibility to diseases caused by viruses, bacteria, fungi, and parasites. The reduced availability of veterinary medications approved for use in aquaculture in Brazil has lead fish farmers to the indiscriminate use of several chemical substances with antimicrobial activity, such as the dye malachite green (MG). As a result of this use, residues of MG and its main biotransformation product, leucomalachite green (LMG), may be present in fish available for consumption. The presence of residues of these compounds represents a risk to human health due to their toxicity, as well as a potential impact on the environment, and could also raise barriers for commercialization in the country and for exportation. The objective of this review is to provide the context and evidence of the use of MG in aquaculture and of its toxicological and legislative aspects. A review of the analytical methods used to determine MG residues in fish, with emphasis on mass spectrometry, is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号