首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapeseeds contain cruciferin (11S globulin), napin (2S albumin), and oleosin (oil body protein) as major seed proteins. The effects of oil expression and drying conditions on the extraction of these proteins from rapeseed meal were examined. The conditions strongly affected the extraction of oleosin and only weakly affected the extraction of cruciferin and napin. The protein chemical and physicochemical properties of cruciferin, the major protein present, were compared with those of glycinin (soybean 11S globulin) under various conditions. In general, cruciferin exhibited higher surface hydrophobicity, lower thermal stability, and lower and higher solubility at mu= 0.5 and mu = 0.08, respectively, than did glycinin. At the pHs (6.0, 7.6, and 9.0) and ionic strengths (mu= 0.08 and 0.5) examined, the emulsifying ability of cruciferin was worse than that of glycinin, except at mu= 0.08 and pH 7.6. The emulsifying abilities of cruciferin and glycinin did not correlate with thermal stability and surface hydrophobicity. Higher protein concentration, higher heating temperature, higher pH, and lower ionic strength were observed to produce harder gels from cruciferin. Gel hardness partly correlated with the structural stability of cruciferin.  相似文献   

2.
The 7S/11S glycinin equilibrium as found in Lakemond et al. (J. Agric. Food Chem. 2000, 48, xxxx-xxxx) at ambient temperatures influences heat denaturation. It is found that the 7S form of glycinin denatures at a lower temperature than the 11S form, as demonstrated by a combination of calorimetric (DSC) and circular dichroism (CD) experiments. At pH 7.6, at which glycinin is mainly present in the 11S form, the disulfide bridge linking the acidic and the basic polypeptides is broken during heat denaturation. At pH 3.8, at which glycinin has dissociated partly into the 7S form, and at pH 5.2 this disruption does not take place, as demonstrated by solubility and gel electrophoretic experiments. A larger exposure of the acidic polypeptides (Lakemond et al., 2000) possibly correlates with a higher endothermic transition temperature and with the appearance of an exothermic transition as observed with DSC. Denaturation/aggregation (studied by DSC) and changes in secondary structure (studied by far-UV CD) take place simultaneously. Generally, changes in tertiary structure (studied by near-UV CD) occur at lower temperatures than changes in secondary structure.  相似文献   

3.
In heat denaturation studies conducted in the past the genetic variants of glycinin have been considered as a homogeneous group of proteins. In this work the validity of this assumption was tested. It was found by calorimetric studies that glycinin denatures heterogeneously at pH 7.6. When the temperature of isothermal treatment is increased from 70 to 82 degrees C the proportion of glycinin remaining native progressively decreases from 95% to 5% while the denaturation temperature of the glycinin remaining native increases from 88.5 to 95 degrees C. Similar trends were found for pH 3.8. Fractionation and subsequent analysis (MALDI-TOF and CE) of isothermally treated samples demonstrated that at pH 7.6 the heterogeneous denaturation is caused by differences in thermal stability of the genetic variants of glycinin. The stability increases in the order G2/G3/G1< A(4)< G5 < G4.  相似文献   

4.
We have previously cloned and characterized the cDNAs of three isoforms of the 8S globulin of mungbean, expressed the major 8Salpha isoform in Escherichia coli, and purified and successfully crystallized it (Bernardo, A. E. N.; Garcia, R. N.; Adachi, M.; Angeles, J. G. C.; Kaga, A; Ishimoto, M.; Utsumi, S.; Tecson-Mendoza, E. M. J. Agric. Food Chem. 2004, 52, 2552-2560). Herein, we report the physicochemical and emulsifying properties of the native 8S and recombinant 8Salpha globulin or vicilin. The circular dichroism spectra analysis of the native 8S and recombinant 8Salpha globulins revealed that the recombinant 8Salpha formed a secondary structure close to that of the native 8S. Further, gel filtration analysis showed that 8Salpha was able to assemble into trimers. The native 8S and recombinant 8Salpha globulins were soluble at pH 3.4 and at pH 7.4-9.0 at low ionic strength, mu = 0.08. Interestingly, the native 8S was more soluble at pH 7.0 and pH 7.4 than the recombinant 8Salpha at mu = 0.08. Both forms were very soluble at pH 3.4-9.0 at high ionic strength, mu = 0.50. The native form exhibited a higher T(m) (69.2, 79.5, and 83.8 degrees C) than the recombinant form (65.6, 71.6, 77.5 degrees C) at mu = 0.1, 0.2, and 0.5, respectively. The recombinant form was found to have greater surface hydrophobicity than the native form. There was little difference in the emulsifying ability between the native 8S and 8Salpha at pH 3.4 and pH 7.6. The results indicate that the presence of N-linked glycans is not essential in the assembly and stable conformation of the mungbean vicilin. However, the N-linked glycans might have contributed to the higher solubility at low ionic strength, greater thermal stability, and decreased surface hydrophobicity of the native vicilin as compared to the recombinant 8Salpha. On the other hand, the N-linked glycans showed little effect on the emulsifying ability of the protein.  相似文献   

5.
The effects of high hydrostatic pressure (HHP) treatment (100-500 MPa) on solubility and structural properties of ethanol (EtOH)-denatured soy β-conglycinin and glycinin were investigated using differential scanning calorimetry, Fourier transform infrared and ultraviolet spectroscopy. HHP treatment above 200 MPa, especially at neutral and alkaline pH as well as low ionic strength, significantly improved the solubility of denatured soy proteins. Structural rearrangements of denatured β-conglycinin subjected to high pressure were confirmed, as evidenced by the increase in enthalpy value (ΔH) and the formation of the ordered supramolecular structure with stronger intramolecular hydrogen bond. HHP treatment (200-400 MPa) caused an increase in surface hydrophobicity (F(max)) of β-conglycinin, partially attributable to the exposure of the Tyr and Phe residues, whereas higher pressure (500 MPa) induced the decrease in F(max) due to hydrophobic rearrangements. The Trp residues in β-conglycinin gradually transferred into a hydrophobic environment, which might further support the finding of structural rearrangements. In contrast, increasing pressure induced the progressive unfolding of denatured glycinin, accompanied by the movement of the Tyr and Phe residues to the molecular surface of protein. These results suggested that EtOH-denatured β-conglycinin and glycinin were involved in different pathways of structural changes during HHP treatment.  相似文献   

6.
Soybean proteins have shown great potential for applications as renewable and environmentally friendly adhesives. The objective of this work was to study physicochemical and adhesion properties of soy glycinin subunits. Soybean glycinin was extracted from soybean flour and then fractionated into acidic and basic subunits with an estimated purity of 90 and 85%, respectively. Amino acid composition of glycinin subunits was determined. The high hydrophobic amino acid content is a major contributor to the solubility behavior and water resistance of the basic subunits. Acidic subunits and glycinin had similar solubility profiles, showing more than 80% solubility at pH 2.0-4.0 or 6.5-12.0, whereas basic subunits had considerably lower solubility with the minimum at pH 4.5-8.0. Thermal analysis using a differential scanning calorimeter suggested that basic subunits form new oligomeric structures with higher thermal stability than glycinin but no highly ordered structures present in isolated acidic subunits. The wet strength of basic subunits was 160% more than that of acidic subunits prepared at their respective isoelectric points (pI) and cured at 130 degrees C. Both pH and the curing temperature significantly affected adhesive performance. High-adhesion water resistance was usually observed for adhesives from protein prepared at their pI values and cured at elevated temperatures. Basic subunits are responsible for the water resistance of glycinin and are a good starting material for the development of water-resistant adhesives.  相似文献   

7.
This study examined the immunogenic response of glycinin under varying conditions of pH and ionic strength using enzyme-linked immunosorbent assay. Differential scanning calorimetric (DSC) analysis and Fourier transform infrared spectroscopy (FTIR) were used to investigate the conformational changes induced as a result of these conditions, and the correlation with the changes observed in glycinin immunoreactivity were determined. A highly purified glycinin obtained by isoelectric precipitation followed by native preparative continuous flow electrophoresis was used for these studies. Purity was confirmed by two-dimensional-polyacrylamide gel electrophoresis and mass spectroscopy. DSC and FTIR results suggest that glycinin immunoreactivity is affected by changes in the tertiary and secondary packing of the protein, when flexibility, stability, and accessibility of certain substructures are modified. Aggregation and/or increased compactness of glycinin subcomponents could have potentially prevented epitopes from reacting with the IgG antibodies.  相似文献   

8.
Legume seeds contain 7S and/or 11S globulins as major storage proteins. The amino acid sequences of them from many legumes are similar to each other in the species but different from each other, meaning that some of these proteins from some crops exhibit excellent functional properties. To demonstrate this, we compared protein chemical and functional properties (thermal stability, surface hydrophobicity, solubility as a function of pH, and emulsifying properties) of these proteins from pea, fava bean, cowpea, and French bean with those of soybean as a control at the same conditions. The comparison clearly indicated that the 7S globulin of French bean exhibited excellent solubility (100%) at pH 4.2-7.0 even at a low ionic strength condition (mu = 0.08) and excellent emulsion stability (a little phase separation after 3 days) at pH 7.6 and mu = 0.08, although the emulsions from most of the other proteins separated in 1 h. These results indicate that our assumption is correct.  相似文献   

9.
The seed of cowpea (Vigna unguiculata L.) is rich in protein and the amino acid profiles of the meal are suitable for human dietary products, but little is known about the structure and chemical properties of the protein extracted from this legume. This study determined the functional properties of two selected cowpea cultivars and their solubility, emulsifying capacity, surface hydrophobicity, and thermal stability. Seeds of red and black cowpea were surface sterilized and the 7s globulin was isolated and purified using column chromatography with Sephacryl S‐300 (Hi‐Prep 26/60) gel column. Also, SDS‐PAGE and protein structure were analyzed using biochemical procedures. At high ionic strength (μ = 0.5), cowpea 7s globulin fraction exhibited better solubility for a wide range of pH levels, higher emulsifying capacities, and greater thermal stability than those obtained at low ionic strength (μ = 0.08). The lowest solubility was observed at pH 5.3–6.4 at the low ionic strength. Emulsifying capacities at high protein concentration were greater when compared with low protein concentration. Tm values of black cowpea globulin fraction were higher than those of red cowpea globulin fraction, whereas the surface hydrophobicity of the globulin fraction in red cowpea was larger than that in black cowpea.  相似文献   

10.
The influence of pH and ionic strength on gel formation and gel properties of soy protein isolate (SPI) in relation to denaturation and protein aggregation/precipitation was studied. Denaturation proved to be a prerequisite for gel formation under all conditions of pH and ionic strength studied. Gels exhibited a low stiffness at pH >6 and a high stiffness at pH <6. This might be caused by variations in the association/dissociation behavior of the soy proteins on heating as a function of pH, as indicated by the different protein compositions of the dissolved protein after heating. At pH 3-5 all protein seems to participate in the network, whereas at pH >5 less protein and especially fewer acidic polypeptides take part in the network, coinciding with less stiff gels. At pH 7.6, extensive rearrangements in the network structure took place during prolonged heating, whereas at pH 3.8 rearrangements did not occur.  相似文献   

11.
Foaming properties of native and chemically modified glycinin were evaluated. Effects of ionic strength and glycinin composition and concentration on foam formation and stabilization were studied. Glycinin was modified by means of combined treatments: cold or hot acidic treatments, with or without later disulfide bridges reduction. Modified proteins obtained from glycinin present different degrees of dissociation, deamidation, and as consequence, varied surface hydrophobicity and molecular size. Parameters of forming and stabilizing of foam were correlated with both deamidation and dissociation degrees of modified and native glycinin samples. A positive relationship was observed between surface behavior and foaming properties of different protein species. Results show that dissociation, deamidation, and reduction have produced structural changes on glycinin (increased surface hydrophobicity, increased net charge, decreased molecular size) which enhance the adsorption and anchorage of proteins at the air-water interface and, consequently, improve the foam forming and stabilizing capacities.  相似文献   

12.
Extraction of soil with CaCl2, has been recommended as a measure of bioavailability of heavy metals. Interpretation of soil extraction data in terms of plant uptake potential may improve when the chemical behaviour of heavy metals in these extracts is ascertained. The effect of pH, Cd complexation by Cl, and competition between Cd and Ca on Cd sorption was studied at an ionic strength of 0.03 m . Sorption of cadmium was measured in 0.01 m CaCl2, in 0.01 m Ca(NO3)2, in a mixture of 0.02 m NaCl and 0.01 m NaNO3, and in 0.03 m NaNO3, at different values of pH ranging from 3.8 to 4.9. Adsorption isotherms were all linear, with a negative intercept on the y-axis. This intercept indicated (linear) desorption of only part of the initial soil Cd content. About 50% of the Cd in solution was complexed in the presence of 0.02 m Cl at ionic strength of 0.03. Due to competition between Cd and Ca, sorption of Cd was reduced by 80% in the Ca-electrolytes as compared with the Na-electrolytes. Sorption was highly sensitive to pH as each 0.5 unit increase in pH resulted in twice as much sorption of Cd. An empirical factor in the sorption equation that accounts for this effect of pH showed a similar response to changes in pH as a mechanistic factor. This mechanistic factor was developed by assuming that Cd and protons sorb onto the same sites and that a two-site Langmuir sorption isotherm for protons was able to describe the titration curve of the soil. This similarity may explain the successful application of the empirical factor in this and previous studies.  相似文献   

13.
The structure and solubility of helianthinin, the most abundant protein of sunflower seeds, was investigated as a function of pH and temperature. Dissociation of the 11S form (hexamer) into the 7S form (trimer) gradually increased with increasing pH from 5.8 to 9.0. High ionic strength (I = 250 mM) stabilizes the 11S form at pH > 7.0. Heating and low pH resulted in dissociation into the monomeric constituents (2-3S). Next, the 7S and 11S forms of helianthinin were isolated and shown to differ in their secondary and tertiary structure, and to have denaturation temperatures (T(d)) of 65 and 90 degrees C, respectively. Furthermore, the existence of two populations of the monomeric form of helianthinin with denaturation temperatures of 65 and 90 degrees C was described. This leads to the hypothesis that helianthinin can adopt two different conformational states: one with T(d) = 65 degrees C and a second with T(d) = 90 degrees C.  相似文献   

14.
Acid-induced cold gelation of soy protein hydrolysates was studied. Hydrolysates with degrees of hydrolysis (DH) of up to 10% were prepared by using subtilisin Carlsberg. The enzyme was inhibited to uncouple the hydrolysis from the subsequent gelation; the latter was induced by the addition of glucono-delta-lactone. Visual observations, confocal scanning laser microscopy images, and the elasticity modulus showed that hydrolysates gelled at higher pH values with increasing DH. The nonhydrolyzed soy protein isolate gelled at pH approximately 6.0, whereas a DH = 5% hydrolysate gelled at pH approximately 7.6. Gels made from hydrolysates had a softer texture when manually disrupted and showed syneresis below a pH of 5-5.5. Monitoring of gelation by measuring the development of the storage modulus could be replaced by measuring the pH onset of aggregate formation (pH(Aggr-onset)) using turbidity measurements. The rate of acidification was observed to also influence this pH(Aggr-onset). Changes in ionic strength (0.03, 0.2, and 0.5 M) had only a minor influence on the pH(Aggr-onset), indicating that the aggregation is not simply a balance between repulsive electrostatic and attractive hydrophobic interactions, but is much more complex.  相似文献   

15.
The effect of different acid and alkali treatments followed by pH readjustment on solubility and conformation of trout hemoglobins was investigated. At low pH (1.5-3.5) hemoglobin was unfolded at faster rates as the pH was lowered. Inclusion of 500 mM NaCl at low pH significantly increased the rate of unfolding. At alkaline pH (10-12) the conformation of hemoglobin was much less affected than at acid pH, and the presence of salt had little additional effect. When hemoglobin solutions were adjusted to neutrality at different stages of unfolding, the recovery of native structure on refolding was proportional to the extent of unfolding prior to pH readjustment: the more unfolded the protein, the less was the recovery of native structure. The presence of salt led to a smaller recovery of native structure. The more improperly unfolded the hemoglobin was (and hydrophobic), the lower was its solubility. Results suggest that the presence of NaCl (25-500 mM) may not only interfere with the refolding process but also enhance the hydrophobic interactions of improperly refolded hemoglobin, possibly due to charge screening. These results show that proper control of unfolding and refolding time and ionic strength in processes using highly acidic or alkaline conditions can minimize loss of hemoglobin solubility.  相似文献   

16.
The soluble potato proteins are mainly composed of patatin and protease inhibitors. Using DSC and both far-UV and near-UV CD spectroscopy, it was shown that potato proteins unfold between 55 and 75 degrees C. Increasing the ionic strength from 15 to 200 mM generally caused an increase in denaturation temperature. It was concluded that either the dimeric protein patatin unfolds in its monomeric state or its monomers are loosely associated and unfold independently. Thermal unfolding of the protease inhibitors was correlated with a decrease in protease inhibitor activities and resulted in an ionic strength dependent loss of protein solubility. Potato proteins were soluble at neutral and strongly acidic pH values. The tertiary structure of patatin was irreversibly altered by precipitation at pH 5. At mildly acidic pH the overall potato protein solubility was dependent on ionic strength and the presence of unfolded patatin.  相似文献   

17.
Emulsifying properties of native and chemically modified soy glycinins were studied. The influence of ionic strength, protein sample composition and concentration, and assay conditions on the flocculation-creaming process and coalescence resistance was analyzed. Differences in these emulsifying properties were exhibited by native glycinins, which have a variable content of 4S, 11S, and 15S forms. Structure and functionality of native glycinin were modified by means of combined treatments: mild acidic treatments without heating or with heating at variable time and with or without disulfide bonds reduction. Modified glycinins presented different degrees of deamidation, surface hydrophobicity, and molecular mass. A slight enhancement of emulsifying stability at moderated deamidation degrees was observed. In different protein samples, a positive relationship between the flocculation-creaming rate constant and equilibrium oil volume fraction of emulsions with surface hydrophobicity was detected. A remarkable difference was observed between reduced and nonreduced samples, mainly with respect to behavior at low or high ionic strength.  相似文献   

18.
In the context of this study, the noncovalent binding of selected phenolic compounds (chlorogenic, ferulic, and gallic acids, quercetin, rutin, and isoquercetin) to different proteins (human serum albumin, bovine serum albumin, soy glycinin, and lysozyme) was studied with direct (Hummel-Dreyer/size exclusion chromatography) and/or indirect methods (fluorescence absorbance properties of the binding components). In the latter case, the measurement of the phenol binding was achieved by exploiting the intrinsic fluorescence emission properties of quercetin as a probe. From the data obtained, the binding constants and the number of binding sites were calculated. The binding parameters were influenced by different factors, where, e.g., increasing temperature and ionic strength as well as decreasing pH cause a diminished binding. The structures of the proteins as determined by circular dichroism indicate changes in the tertiary structure with the secondary structure remaining intact.  相似文献   

19.
In this contribution, we have analyzed the effect of sucrose on dynamic interfacial (dynamic surface pressure and surface dilatational properties) and foaming (foam capacity and foam stability) characteristics of soy globulins (7S and 11S). The protein (at 1 x 10(-3), 1 x 10(-2), 0.1, and 1 wt %) and sucrose (at 0, 0.25, 0.5, and 1.0 M) concentrations in aqueous solution and the pH (at 5 and 7), and ionic strength (at 0.05 and 0.5 M) were analyzed as variables. The temperature was maintained constant at 20 degrees C. We have observed the following. (i) The dynamics of adsorption (presence of a lag period, diffusion, and penetration at the air-water interface) of soy globulins depend on the peculiar molecular features of proteins (7S or 11S soy globulin) and the level of association/dissociation of these proteins by varying the pH and ionic strength, as well as the effect of sucrose in the aqueous phase on the unfolding of the protein. The rate of adsorption increases with the protein concentration in solution, at pH 7 compared to pH 5, at high ionic strength, and in the absence of sucrose. (ii) The surface dilatational properties reflect the fact that soy globulin adsorbed films exhibit viscoelastic behavior. The surface dilatational modulus increases at pH 7 compared to pH 5, but decreases with the addition of sucrose into the aqueous phase. (iii) The rate of adsorption and surface dilatational properties (surface dilatational modulus and phase angle) during adsorption at the air-water interface play an important role in the formation of foams generated from aqueous solutions of soy globulins. (iv) The increased interfacial adsorption (at high surface pressures) and the combined effects of interfacial adsorption and interfacial interactions between adsorbed soy globulin molecules (at high surface dilatational modulus) can explain the higher stability of the foam, with few exceptions.  相似文献   

20.
In this contribution, we have analyzed the effect of different strategies, such as change of pH (5 or 7) or ionic strength (at 0.05 and 0.5 M), and addition of sucrose (at 1 M) and Tween 20 (at 1 x 10(-4) M) on interfacial characteristics (adsorption, structure, dynamics of adsorption, and surface dilatational properties) and foam properties (foam capacity and stability) of soy globulins (7S and 11S at 0.1 wt %). We have observed that (1) the adsorption (presence of a lag period, diffusion, and penetration at the air-water interface) of soy globulins depends on the modification in the 11S/7S ratio and on the level of association/dissociation of these proteins by varying the pH and ionic strength (I), the effect of sucrose on the unfolding of the protein, and the competitive adsorption between protein and Tween 20 in the aqueous phase. The rate of adsorption increases at pH 7, at high ionic strength, and in the presence of sucrose. (2) The surface dilatational properties reflect the fact that soy globulin adsorbed films exhibit viscoelastic behavior but do not have the capacity to form a gel-like elastic film. The surface dilatational modulus increases at pH 7 and at high ionic strength but decreases with the addition of sucrose or Tween 20 into the aqueous phase. (3) The rate of adsorption and surface dilatational properties (surface dilatational modulus and phase angle) during adsorption at the air-water interface plays an important role in the formation of foams generated from aqueous solutions of soy globulins. However, the dynamic surface pressure and dilatational modulus are not enough to explain the stability of the foam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号