首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
In most microalgal species, triacyglycerols (TAG) contain mostly saturated and monounsaturated fatty acids, rather than PUFA, while PUFA-enriched oil is the form most desirable for dietary intake. The ability of some species to produce LC-PUFA-enriched oil is currently of specific interest. In this work, we investigated the role of sodium bicarbonate availability on lipid accumulation and n-3 LC-PUFA partitioning into TAG during batch cultivation of Pavlova lutheri. Maximum growth and nitrate uptake exhibit an optimum concentration and threshold tolerance to bicarbonate addition (~9 mM) above which both parameters decreased. Nonetheless, the transient highest cellular lipid and TAG contents were obtained at 18 mM bicarbonate, immediately after combined alkaline pH stress and nitrate depletion (day nine), while oil body and TAG accumulation were highly repressed with low carbon supply (2 mM). Despite decreases in the proportions of EPA and DHA, maximum volumetric and cellular EPA and DHA contents were obtained at this stage due to accumulation of TAG containing EPA/DHA. TAG accounted for 74% of the total fatty acid per cell, containing 55% and 67% of the overall cellular EPA and DHA contents, respectively. These results clearly demonstrate that inorganic carbon availability and elevated pH represent two limiting factors for lipid and TAG accumulation, as well as n-3 LC-PUFA partitioning into TAG, under nutrient-depleted P. lutheri cultures.  相似文献   

2.
The production of polyunsaturated fatty acids (PUFA) in Tisochrysis lutea was studied using the gradual incorporation of a 13C-enriched isotopic marker, 13CO2, for 24 h during the exponential growth of the algae. The 13C enrichment of eleven fatty acids was followed to understand the synthetic pathways the most likely to form the essential polyunsaturated fatty acids 20:5n-3 (EPA) and 22:6n-3 (DHA) in T. lutea. The fatty acids 16:0, 18:1n-9 + 18:3n-3, 18:2n-6, and 22:5n-6 were the most enriched in 13C. On the contrary, 18:4n-3 and 18:5n-3 were the least enriched in 13C after long chain polyunsaturated fatty acids such as 20:5n-3 or 22:5n-3. The algae appeared to use different routes in parallel to form its polyunsaturated fatty acids. The use of the PKS pathway was hypothesized for polyunsaturated fatty acids with n-6 configuration (such as 22:5n-6) but might also exist for n-3 PUFA (especially 20:5n-3). With regard to the conventional n-3 PUFA pathway, Δ6 desaturation of 18:3n-3 appeared to be the most limiting step for T. lutea, “stopping” at the synthesis of 18:4n-3 and 18:5n-3. These two fatty acids were hypothesized to not undergo any further reaction of elongation and desaturation after being formed and were therefore considered “end-products”. To circumvent this limiting synthetic route, Tisochrysis lutea seemed to have developed an alternative route via Δ8 desaturation to produce longer chain fatty acids such as 20:5n-3 and 22:5n-3. 22:6n-3 presented a lower enrichment and appeared to be produced by a combination of different pathways: the conventional n-3 PUFA pathway by desaturation of 22:5n-3, the alternative route of ω-3 desaturase using 22:5n-6 as precursor, and possibly the PKS pathway. In this study, PKS synthesis looked particularly effective for producing long chain polyunsaturated fatty acids. The rate of enrichment of these compounds hypothetically synthesized by PKS is remarkably fast, making undetectable the 13C incorporation into their precursors. Finally, we identified a protein cluster gathering PKS sequences of proteins that are hypothesized allowing n-3 PUFA synthesis.  相似文献   

3.
The marine oleaginous diatom Fistulifera solaris JPCC DA0580 is a candidate for biodiesel production because of its high lipid productivity. However, the substantial eicosapentaenoic acid (EPA) content in this strain would affect the biodiesel quality. On the other hand, EPA is also known as the essential health supplement for humans. EPAs are mainly incorporated into glycerolipids in the microalgal cell instead of the presence as free fatty acids. Therefore, the understanding of the EPA biosynthesis including the incorporation of the EPA into glycerolipids especially triacylglycerol (TAG) is fundamental for regulating EPA content for different purposes. In this study, in order to identify the biosynthesis pathway for the EPA-containing TAG species, a lipidomic characterization of the EPA-enriched polar lipids was performed by using direct infusion electrospray ionization (ESI)-Q-TRAP-MS and MS/MS analyses. The determination of the fatty acid positional distribution showed that the sn-2 position of all the chloroplast lipids and part of phosphatidylcholine (PC) species was occupied by C16 fatty acids. This result suggested the critical role of the chloroplast on the lipid synthesis in F. solaris. Furthermore, the exclusive presence of C18 fatty acids in PC highly indicated the biosynthesis of EPA on PC. Finally, the PC-based acyl-editing and head group exchange processes were proposed to be essential for the incorporation of EPA into TAG and chloroplast lipids.  相似文献   

4.
Thraustochytrids are the most promising microbial source for the commercial production of docosahexaenoic acid (DHA) for its application in the human health, aquaculture, and nutraceutical sectors. The present study isolated 127 thraustochytrid strains from mangrove habitats of the south Andaman Islands, India to study their diversity, polyunsaturated fatty acids (PUFAs), and biotechnological potential. The predominant strains were identified as belonging to two major genera (Thraustochytrium, Aurantiochytrium) based on morphological and molecular characteristics. The strain ANVKK-06 produced the maximum biomass of 5.42 g·L−1, while ANVKK-03 exhibited the maximum total lipid (71.03%). Omega-3 PUFAs such as eicosapentaenoic acid (EPA) accumulated up to 11.03% in ANVKK-04, docosapentaenoic acid (DPA) up to 8.65% in ANVKK-07, and DHA up to 47.19% in ANVKK-06. ANVKK-06 showed the maximum scavenging activity (84.79 ± 2.30%) while ANVKK-03 and ANVKK-10 displayed the highest antibacterial activity against human and fish pathogens, S. aureus (18.69 ± 1.2 mm) and V. parahaemolyticus (18.31 ± 1.0 mm), respectively. All strains were non-toxic as evident by negative blood agar hemolysis, thus, the thraustochytrids are suggested to be a potential source of DHA for application in the health care of human and fish.  相似文献   

5.
Fish vary in their ability to biosynthesise long-chain polyunsaturated fatty acids (LC-PUFA) depending upon the complement and function of key enzymes commonly known as fatty acyl desaturases and elongases. It has been reported in Solea senegalensis the existence of a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid (DHA) from eicosapentaenoic acid (EPA), which can be modulated by the diet. The present study aims to evaluate the combined effects of the partial replacement of fish oil (FO) with vegetable oils and reduced environmental salinity in the fatty acid composition of relevant body compartments (muscle, hepatocytes and enterocytes), the enzymatic activity over α-linolenic acid (ALA) to form n-3 LC-PUFA through the incubation of isolated hepatocytes and enterocytes with [1-14C] 18:3 n-3, and the regulation of the S. senegalensis fads2 and elovl5 in the liver and intestine. The presence of radiolabelled products, including 18:4n-3, 20:4n-3 and EPA, provided compelling evidence that a complete pathway enabling the biosynthesis of EPA from ALA, establishing S. senegalensis, has at least one Fads2 with ∆6 activity. Dietary composition prevailed over salinity in regulating the expression of fads2, while salinity did so over dietary composition for elovl5. FO replacement enhanced the proportion of DHA in S. senegalensis muscle and the combination with 20 ppt salinity increased the amount of n-3 LC-PUFA in hepatocytes.  相似文献   

6.
Triacylglycerol-estolides are components of the storage oil of certain plant and fungal species and are generally associated with the presence of fatty acids containing hydroxyl groups. These unusual acyl-glycerols can easily go undetected when oils are analyzed by gas chromatography of fatty acid methyl esters, or by thin layer chromatography if the TAG-estolides and TAG have similar polarity. We describe the detection of TAG-estolides in intact seeds of Lesquerella lyrata and whole sclerotia of the ergot fungus Claviceps purpurea using 1H MAS-NMR for nondestructive analysis. We also conducted analysis of small amounts of oil by MALDI-TOF MS to clearly show the presence of TAG-estolides and to rapidly characterize their acyl composition. The matrix used in this work was 2,4,6-trihydroxyacetophenone (THAP) made up in sodium chloride-saturated solvent. We were able to confirm the presence of TAG-estolides with no free hydroxyl groups in the fungal oil, and TAG-estolides with free hydroxyl groups in the oil of L. lyrata. The development of a technique for the rapid identification of TAG-estolides in oil samples will simplify the detection of these novel lipids in plant and fungal species.  相似文献   

7.
Thraustochytrids are well-known unicellular heterotrophic marine protists because of their promising ability to accumulate docosahexaenoic acid (DHA). However, the implications of their unique genomic and metabolic features on DHA production remain poorly understood. Here, the effects of chemical and physical culture conditions on the cell mass and DHA production were investigated for a unique thraustochytrid strain, PKU#SW8, isolated from the seawater of Pearl River Estuary. All the tested fermentation parameters showed a significant influence on the cell mass and concentration and yield of DHA. The addition of monosaccharides (fructose, mannose, glucose, or galactose) or glycerol to the culture medium yielded much higher cell mass and DHA concentrations than that of disaccharides and starch. Similarly, organic nitrogen sources (peptone, yeast extract, tryptone, and sodium glutamate) proved to be beneficial in achieving a higher cell mass and DHA concentration. PKU#SW8 was found to grow and accumulate a considerable amount of DHA over wide ranges of KH2PO4 (0.125–1.0 g/L), salinity (0–140% seawater), pH (3–9), temperature (16–36 °C), and agitation (140–230 rpm). With the optimal culture conditions (glycerol, 20 g/L; peptone, 2.5 g/L; 80% seawater; pH 4.0; 28 °C; and 200 rpm) determined based on the shake-flask experiments, the cell mass and concentration and yield of DHA were improved up to 7.5 ± 0.05 g/L, 2.14 ± 0.03 g/L, and 282.9 ± 3.0 mg/g, respectively, on a 5-L scale fermentation. This study provides valuable information about the fermentation conditions of the PKU#SW8 strain and its unique physiological features, which could be beneficial for strain development and large-scale DHA production.  相似文献   

8.
Unusual fatty acids such as ricinoleate (12-hydroxyoleic acid) occurring in Ricinus communis L. or vernoleate (12,13-epoxyoleic acid) occurring in Euphorbia lagascae L. are suitable for industrial uses. Euphorbia lathyris L. is also a potential new oilseed crop on account of its high content of oleic acid in the seeds. The objective of this work was to test in vitro the preferences of E. lathyris microsomes for its native substrates (oleoyl-CoA and diolein) and to compare with R. communis and E. lagascae systems.The diacylglycerol acyltransferase (DGAT) catalyses the final step in transferring a fatty acid moiety to a diacylglycerol (DAG) into a triacylglycerol (TAG). To study the DGAT activity in microsomes of the three euphorbs: (1) plants of the three species were grown in a glasshouse at Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (Murcia, Spain), (2) endosperms were removed from developing seeds and the tissue was extracted, (3) in vitro DGAT assays using [14C]-oleoyl-CoA with or without 1,2-diolein were carried out and 4) labelled TAG were recorded using a molecular imager and a scintillation counter.Incorporation of [14C]-oleoyl into TAG was greater in R. communis and E. lathyris (72–89% of total TAG) than in E. lagascae. Adding exogenous 1,2-diolein (1 mM) to E. lagascae microsomes increased the amount of labelled TAG to 39%, suggesting that other acyl groups were being incorporated as well. R. communis and E. lagascae microsomes gave more-polar radiolabelled TAGs than E. lathyris possibly because endogenous DAGs (not 1,2-diolein) were being used in the reaction. Although E. lathyris microsomes showed specificity towards 1,2-diolein as a substrate, the preparations from R. communis, E. lagascae and E. lathyris were able to use the acyl donor and acyl receptor, possibly suggesting that DGAT enzymes would not be a limiting factor to engineer Euphorbiaceae crops with functionalized fatty acids.  相似文献   

9.
Japanese Spanish mackerel (JSM) (Scomberomorus niphonius) is a marine fish species containing health-beneficial polyunsaturated fatty acids (PUFAs). In the present study, the quality of JSM by-products oils extracted by supercritical CO2 (SC-CO2) and organic solvent extraction was compared in terms of physico-chemical properties of the oils. Eicosapentaenoic acid (EPA) is one of the important polyunsaturated fatty acids present in SC-CO2-extracted skin and muscle oil 5.81 ± 0.69% and 4.93 ± 0.06%, respectively. The amount of docosahexaenoic acid (DHA) in SC-CO2-extracted skin and muscle oil was 12.56 ± 0.38% and 15.01 ± 0.28%, respectively. EPA and DHA are considered as important PUFAs for the development of brain function and the prevention of coronary heart diseases. Extracted oils showed considerable antioxidant activity. In the obtained oils, atherogenic index (AI) values varied from 0.72 to 0.93 and thrombogenic index (TI) ranged from 0.75 to 0.92, which is considered an acceptable level. Fatty acid composition, bio potentiality, thermogravimetric, and vitamin D analysis showed that oils extracted from JSM by-products can be a good source of oil for application in food, pharmaceutical and cosmetic industries. Therefore, the present research revealed the potentiality of green valorisation of S. niphonius by-products as a possible sustainable approach for targeting the era of zero waste.  相似文献   

10.
The aims of this work were to evaluate the contribution of the free fatty acid (FA) pool to triacylglyceride (TAG) biosynthesis and to try to characterize the mechanism by which FA are assimilated into TAG in the green alga Dunaliella tertiolecta. A time-resolved lipidomic analysis showed that nitrogen (N) deprivation induces a redistribution of total lipidome, particularly of free FA and major polar lipid (PL), in parallel to enhanced accumulation of polyunsaturated TAG. The steady-state concentration of the FA pool, measured by prolonged 14C-bicarbonate pre-labeling, showed that N deprivation induced a 50% decrease in total FA level within the first 24 h and up to 85% after 96 h. The abundance of oleic acid increased from 50 to 70% of total free FA while polyunsaturated FA (PUFA) disappeared under N deprivation. The FA flux, measured by the rate of incorporation of 14C-palmitic acid (PlA), suggests partial suppression of phosphatidylcholine (PC) acyl editing and an enhanced turnover of the FA pool and of total digalactosyl-diacylglycerol (DGDG) during N deprivation. Taken together, these results imply that FA biosynthesis is a major rate-controlling stage in TAG biosynthesis in D. tertiolecta and that acyl transfer through PL such as PC and DGDG is the major FA assimilation pathway into TAG in that alga and possibly in other green microalgae. Increasing the availability of FA could lead to enhanced TAG biosynthesis and to improved production of high-value products from microalgae.  相似文献   

11.
Performance of continuously stocked Mule ewes nursing Suffolk-cross twin lambs over three grazing seasons, between April and August, was compared on swards of N-fertilized diploid perennial ryegrass (D), tetraploid perennial ryegrass (T) and tetraploid perennial ryegrass with white clover (TC), the latter receiving no fertilizer N. Sward height was maintained by variable stocking rate close to a target of 4–6 cm (constant treatment) from turnout and compared in July and August with a rising sward height treatment (target 6–8 cm). Lambs on TC swards had significantly higher (P <0·001) liveweight gains compared with lambs on T swards by 41 gd-1 in April–June and by 68gd-1 in July-August. Live weight and body condition score of ewes in August were significantly higher (P<0·001) on TC compared with T swards, by 11·3 kg and 0·75 respectively. Rising sward heights in July–August increased live-weight gain of lambs compared with constant sward heights by 102, 39 and 54gd-1 in consecutive years, associated with sward height increases of 0·9, 0·5 and 0·6cm respectively. Rising sward height increased ewe live weight and body condition score by 5·1 kg and 0·3 respectively, compared with results from constant sward heights. Effects of sward height and sward type were additive. T swards had a significantly (P<0·01) 16% greater overall lamb output than the D swards due mainly to a 10% higher achieved stocking rate. Stocking rates of ewes on TC vs T swards were 40, 13 and 12% lower in April-August in successive years. The higher liveweight gain of lambs on the TC swards resulted in lamb outputs of 76, 105 and 101% of the T swards in successive years, showing that grass/clover swards containing over 20% clover could produce similar lamb output ha-1 to grass swards given 150–180 kg N ha-1.  相似文献   

12.
Payenapara lleloneura Kurz. (Kan-zaw), an endemic medicinal plant only found in Tanintharyi Region of Myanmar, is widely used in the treatment of various cancer and different ailments. In the present research, the seeds were phytochemical investigated for their nutritional potential for their use as functional foods or novel diet oil resources. Nutritional evaluation showed that the seeds are rich in fats and carbohydrates (soluble sugars and starch). Fatty acid analyses showed that the seeds accumulate very rich α-eleostearic acid (α-ESA, 18:3Δ9cis,11trans,13trans), an important conjugated fatty acid, up to more than 70 ​% of total fatty acids. The seed oil derived from the Kan-zaw tree contains approximately 3.25 ​% β-eleostearic acid (18:3Δ9trans,11trans,13trans), an unusual conjugated fatty acid that imparts a potent anticancer application and industrially important drying qualities to Kan-zaw oil. Physicochemical properties of the Kan-zaw seeds were examined; petroleum ether (60–90 ​°C) extract of seed oils were also investigated for the saponification value, iodine value and estimation of acid value. Further, the present study investigated cytotoxic potential of ethanol, methanol, acetone, chloroform Kan-zaw seed extracts and commercial Kan-zaw oil against human cervical cancer cell line (HeLa). The Kan-zaw extracts and oil have shown significant anticancer activity on HeLa cells.  相似文献   

13.
Omega-3 polyunsaturated fatty acids are associated with a lower risk of cardiometabolic diseases. However, docosahexaenoic acid (DHA) is easily oxidized, leading to cellular damage. The present study examined the effects of an increased concentration of DHA in fish oil (80% of total fatty acids) on cardiometabolic risk factors and oxidative stress compared to coconut oil, soybean oil, and fish oil containing eicosapentaenoic acid (EPA) and DHA in a balanced ratio. Forty healthy male Sprague–Dawley rats were supplemented with corresponding oil for 10 weeks. Supplementation with the fish oil containing 80% DHA decreased plasma fat, plasma total cholesterol and muscle fat compared to the coconut oil and the soybean oil. Increasing concentrations of DHA induced incorporation of DHA and EPA in cell membranes and tissues along with a decrease in ω-6 arachidonic acid. The increase in DHA promoted lipid peroxidation, protein carbonylation and antioxidant response. Taken together, the increased concentration of DHA in fish oil reduced fat accumulation compared to the coconut oil and the soybean oil. This benefit was accompanied by high lipid peroxidation and subsequent protein carbonylation in plasma and in liver. In our healthy framework, the slightly higher carbonylation found after receiving fish oil containing 80% DHA might be a protecting mechanism, which fit with the general improvement of antioxidant defense observed in those rats.  相似文献   

14.
Docosahexaenoic acid (DHA) is one of the most important long-chain polyunsaturated fatty acids (LC-PUFAs), with numerous health benefits. Crypthecodinium cohnii, a marine heterotrophic dinoflagellate, is successfully used for the industrial production of DHA because it can accumulate DHA at high concentrations within the cells. Glycerol is an interesting renewable substrate for DHA production since it is a by-product of biodiesel production and other industries, and is globally generated in large quantities. The DHA production potential from glycerol, ethanol and glucose is compared by combining fermentation experiments with the pathway-scale kinetic modeling and constraint-based stoichiometric modeling of C. cohnii metabolism. Glycerol has the slowest biomass growth rate among the tested substrates. This is partially compensated by the highest PUFAs fraction, where DHA is dominant. Mathematical modeling reveals that glycerol has the best experimentally observed carbon transformation rate into biomass, reaching the closest values to the theoretical upper limit. In addition to our observations, the published experimental evidence indicates that crude glycerol is readily consumed by C. cohnii, making glycerol an attractive substrate for DHA production.  相似文献   

15.
Total lipids from the Brazilian brown seaweed Sargassum vulgare were extracted with chloroform/methanol 2:1 and 1:2 (v/v) at room temperature. After performing Folch partition of the crude lipid extract, the lipids recovered from the Folch lower layer were fractionated on a silica gel column eluted with chloroform, acetone and methanol. The fraction eluted with methanol, presented a strong orcinol-positive band characteristic of the presence of sulfatides when examined by TLC. This fraction was then purified by two successive silica gel column chromatography giving rise to fractions F4I86 and F4II90 that exhibited strong activity against herpes simplex virus type 1 and 2. The chemical structures present in both fractions were elucidated by ESI-MS and 1H/13C NMR analysis HSQC fingerprints based on their tandem–MS behavior as sulfoquinovosildiacylglycerols (SQDGs). The main SQDG present in both fractions and responsible for the anti-herpes activity observed was identified as 1,2-di-O-palmitoyl-3-O-(6-sulfo-α-d-quinovopyranosyl)-glycerol.  相似文献   

16.
We investigated whether a test drink enriched in pomegranate polyphenols, consumed with a high-fat meal, can reduce postprandial lipaemia and improve vascular function and blood pressure compared to placebo. Nineteen young, healthy men completed a randomized, controlled crossover trial. The active drink (containing a pomegranate extract) was consumed during a high-fat meal (ET-DUR) or 15 min before (ET-PRE), and the placebo drink (no pomegranate extract) was consumed during the high-fat meal (CONTROL). Postprandial lipaemia was assessed by venous plasma TAG 0–2 h, and capillary plasma TAG 0–4 h. Blood pressure and digital volume pulse, to measure reflection index (DVP-RI) and stiffness index (DVP-SI), were monitored at baseline, 2 and 4 h. There was no inhibition of postprandial lipaemia by the active drink compared to CONTROL. ET-PRE caused a greater increase in the venous plasma TAG at 2 h compared to CONTROL and ET-DUR (treatment effect P?=?0.001). The incremental area under the curve 0–4 h for capillary plasma TAG was not significantly different between treatments. Systolic blood pressure (SBP) increased in the ET-PRE and ET-DUR groups to a lesser extent than the CONTROL group (treatment effect P?=?0.041). There were no treatment effects for DVP-RI, DVP-SI or diastolic blood pressure. In conclusion, the consumption of a single drink containing ET-rich pomegranate extract did not decrease postprandial plasma TAG concentrations, but suppressed the postprandial increase in SBP following the high-fat meal.  相似文献   

17.
Low rates of herbage dry matter (DM) intake impose limits on total daily DM intake in grazing dairy cows. The objective of this study was to increase total daily DM intake and milk production by restricting daily time available for grazing (TAG) and replacing it with time available for eating a maize silage/soyabean meal (TAMS) diet indoors. The treatments (TAG + TAMS) were 20 + 0, 19 + 1, 10 + 10 and 5 + 15 h. Measurements were made of milk production, intake and feeding behaviour. The interactions of TAG + TAMS treatments with sward height (SH) and concentrate level (CL) were also examined. Two experiments, each lasting 42 days, were carried out in spring ( Experiment 1 ) and autumn ( Experiment 2 ) using forty‐eight and twenty‐four Holstein‐Friesian cows respectively. Treatments were arranged in a factorial design with TAG + TAMS treatments, SH ( Experiment 1 only) and CL as the independent variables and a TAG + TAMS of 20 h. Reducing TAG and increasing TAMS significantly reduced estimated herbage DM intake and significantly increased maize silage/soyabean meal intake in both experiments, but there were no significant main effects of TAG + TAMS treatments on milk yield (mean, 27·4 and 25·5 kg d?1 for Experiments 1 and 2 respectively), and yield of milk constituents. Increasing SH ( Experiment 1 ) and CL ( Experiments 1 and 2 ) significantly increased milk yield. In Experiment 1 , there was a significant interaction between TAG + TAMS treatments and SH with the taller sward height of 8–10 cm and the 20 + 0 treatment having the highest milk yield (29·7 kg d?1) and the 5 + 15 treatment the lowest (27·2 kg d?1), whereas at the lower sward height of 4–6 cm, milk yield was lowest on the 20 + 0 treatment (25·5 kg d?1) with the other three treatments being higher (mean, 26·9 kg d?1). Replacing TAG with TAMS significantly increased liveweight gain in Experiment 1 but not in Experiment 2 . Estimated rates of intake of herbage were lower in the autumn experiment ( Experiment 2 , 9·6 g DM min ?1) than in the spring experiment ( Experiment 1 , 29·4 g DM min ?1) but rates of intake of maize silage were higher in the autumn (112·4 g DM min?1) than in the spring (72·5 g DM min?1). In conclusion, in spring the response to replacing TAG with TAMS was dependent on sward conditions with the highest milk fat plus protein yield being on the 20 + 0 treatment at the high sward height and on the 19 + 1 treatment at the low sward height. The high liveweight gain of the 5 + 15 treatment could be an important means of restoring body condition in grazing lactating cows. In autumn, intakes of herbage were low in spite of its high estimated nutritive value with all treatments having a similar level of performance.  相似文献   

18.
Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This research reports on the lipid and carotenoid production capacity of thraustochytrids that were isolated from coastal waters of Antarctica. Of the 22 isolates, 21 produced lipids containing EPA+DHA, and the amount of these fatty acids exceeded 20% of the total fatty acids in 12 isolates. Ten isolates were shown to produce carotenoids (27.4–63.9 μg/g dry biomass). The isolate RT2316-16, identified as Thraustochytrium sp., was the best producer of biomass (7.2 g/L in five days) rich in carotenoids (63.9 μg/g) and, therefore, became the focus of this investigation. The main carotenoids in RT2316-16 were β-carotene and canthaxanthin. The content of EPA+DHA in the total lipids (34 ± 3% w/w in dry biomass) depended on the stage of growth of RT2316-16. Lipid and carotenoid content of the biomass and its concentration could be enhanced by modifying the composition of the culture medium. The estimated genome size of RT2316-16 was 44 Mb. Of the 5656 genes predicted from the genome, 4559 were annotated. These included genes of most of the enzymes in the elongation and desaturation pathway of synthesis of ω-3 polyunsaturated fatty acids. Carotenoid precursors in RT2316-16 were synthesized through the mevalonate pathway. A β-carotene synthase gene, with a different domain organization compared to the gene in other thraustochytrids, explained the carotenoid profile of RT2316-16.  相似文献   

19.
Due to their bioavailability, glycosylated carotenoids may have interesting biological effects. Sioxanthin, as a representative of this type of carotenoid, has been identified in marine actinomycetes of the genus Salinispora. This study evaluates, for the first time, the effect of cultivation temperature (T) and light intensity (LI) on the total cellular carotenoid content (TC), antioxidant activity (AA) and sioxanthin content (SX) of a crude extract (CE) from Salinispora tropica biomass in its vegetative state. Treatment-related differences in TC and SX values were statistically significantly and positively affected by T and LI, while AA was most significantly affected by T. In the S. tropica CE, TC correlated well (R2 = 0.823) with SX and somewhat less with AA (R2 = 0.777). A correlation between AA and SX was found to be less significant (R2 = 0.731). The most significant protective effect against oxidative stress was identified in the CE extracted from S. tropica biomass grown at the highest T and LI (CE-C), as was demonstrated using LNCaP and KYSE-30 human cell lines. The CE showed no cytotoxicity against LNCaP and KYSE-30 cell lines.  相似文献   

20.
The biological screening of 44 marine sponge extracts for the research of bioactive molecules, with potential application in the treatment of age-related diseases (cancer and Alzheimer’s disease) and skin aging, resulted in the selection of Scopalina hapalia extract for chemical study. As no reports of secondary metabolites of S. hapalia were found in the literature, we undertook this research to further extend current knowledge of Scopalina chemistry. The investigation of this species led to the discovery of four new compounds: two butenolides sinularone J (1) and sinularone K (2), one phospholipid 1-O-octadecyl-2-pentanoyl-sn-glycero-3-phosphocholine (3) and one lysophospholipid 1-O-(3-methoxy-tetradecanoyl)-sn-glycero-3-phosphocholine (4) alongside with known lysophospholipids (5 and 6), alkylglycerols (7–10), epidioxysterols (11 and 12) and diketopiperazines (13 and 14). The structure elucidation of the new metabolites (1–4) was determined by detailed spectroscopic analysis, including 1D and 2D NMR as well as mass spectrometry. Molecular networking was also explored to complement classical investigation and unravel the chemical classes within this species. GNPS analysis provided further information on potential metabolites with additional bioactive natural compounds predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号