首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
ObjectiveTo compare the cardiorespiratory, anesthetic-sparing effects and quality of anesthetic recovery after epidural and constant rate intravenous (IV) infusion of dexmedetomidine (DEX) in cats given a low dose of epidural lidocaine under propofol-isoflurane anesthesia and submitted to elective ovariohysterectomy.Study designRandomized, blinded clinical trial.AnimalsTwenty-one adult female cats (mean body weight: 3.1 ± 0.4 kg).MethodsCats received DEX (4 μg kg?1, IM). Fifteen minutes later, anesthesia was induced with propofol and maintained with isoflurane. Cats were divided into three groups. In GI cats received epidural lidocaine (1 mg kg?1, n = 7), in GII cats were given epidural lidocaine (1 mg kg?1) + DEX (4 μg kg?1, n = 7), and in GIII cats were given epidural lidocaine (1 mg kg?1) + IV constant rate infusion (CRI) of DEX (0.25 μg kg?1 minute?1, n = 7). Variables evaluated included heart rate (HR), respiratory rate (fR), systemic arterial pressures, rectal temperature (RT), end-tidal CO2, end-tidal isoflurane concentration (e′ISO), arterial blood gases, and muscle tone. Anesthetic recovery was compared among groups by evaluation of times to recovery, HR, fR, RT, and degree of analgesia. A paired t-test was used to evaluate pre-medication variables and blood gases within groups. anova was used to compare parametric data, whereas Friedman test was used to compare muscle relaxation.ResultsEpidural and CRI of DEX reduced HR during anesthesia maintenance. Mean ± SD e′ISO ranged from 0.86 ± 0.28% to 1.91 ± 0.63% in GI, from 0.70 ± 0.12% to 0.97 ± 0.20% in GII, and from 0.69 ± 0.12% to 1.17 ± 0.25% in GIII. Cats in GII and GIII had longer recovery periods than in GI.Conclusions and clinical relevanceEpidural and CRI of DEX significantly decreased isoflurane consumption and resulted in recovery of better quality and longer duration, despite bradycardia, without changes in systemic blood pressure.  相似文献   

2.
ObjectiveTo compare the ease of endoscopic duodenal intubation (EDI) in dogs during maintenance of general anaesthesia with isoflurane or propofol infusion.Study designProspective, randomized, partially blinded clinical trial.AnimalsA total of 22 dogs undergoing upper gastrointestinal tract endoscopy to include EDI were recruited.MethodsDogs were randomly assigned isoflurane (ISO; n = 10) or propofol (PROP; n = 11) for maintenance of general anaesthesia. Following anaesthetic premedication with intramuscular medetomidine (0.005 mg kg–1) and butorphanol (0.2 mg kg–1), general anaesthesia was induced with propofol, to effect, maintained with 1.5% (vaporizer setting) isoflurane in 100% oxygen or 0.2 mg kg–1 minute–1 propofol. The dose of both agents was adjusted to maintain general anaesthesia adequate for the procedure. Degree of sedation 20 minutes post-anaesthetic premedication, propofol induction dose, anaesthetist and endoscopist training grade, animal’s response to endoscopy, presence of gastro-oesophageal and duodenal-gastric reflux, spontaneous opening of the lower oesophageal and pyloric sphincters, antral movement and time to achieve EDI were recorded. EDI was scored 1 (immediate entry with minimal manoeuvring) to 4 (no entry after 120 seconds) by the endoscopist, blinded to the agent in use. Data were tested for normality (Shapiro-Wilk test) and differences between groups analysed using independent t test, Mann-Whitney U test and Fisher’s exact test as appropriate.ResultsThere were no significant differences between groups for EDI score [median (interquartile range): 2 (3) ISO, 2 (3) PROP] or time to achieve EDI [mean ± standard deviation: 52.50 ± 107.00 seconds (ISO), 70.00 ± 196.00 seconds (PROP)]. Significantly more dogs responded to passage of the endoscope into the oesophagus in group PROP compared with group ISO (p = 0.01).Conclusions and clinical relevanceMaintenance of general anaesthesia with either isoflurane or propofol did not affect EDI score or time to achieve EDI.  相似文献   

3.
ObjectiveTo determine the anaesthetic and cardiorespiratory effects of a constant rate infusion of fentanyl in sheep anaesthetized with isoflurane and undergoing orthopaedic surgery.Study designProspective, randomised, ‘blinded’ controlled study.AnimalsTwenty healthy sheep (weight mean 41.1 ± SD 4.5 kg).MethodsSheep were sedated with intravenous (IV) dexmedetomidine (4 μg kg−1) and morphine (0.2 mg kg−1). Anaesthesia was induced with propofol (1 mg kg−1 minute−1 to effect IV) and maintained with isoflurane in oxygen and a continuous rate infusion (CRI) of fentanyl 10 μg kg−1 hour−1 (group F) or saline (group P) for 100 minutes. The anaesthetic induction dose of propofol, isoflurane expiratory fraction (Fe’iso) required for maintenance and cardiorespiratory measurements were recorded and blood gases analyzed at predetermined intervals. The quality of recovery was assessed. Results were compared between groups using t-tests or Mann–Whitney as relevant.ResultsThe propofol induction dose was 4.7 ± 2.4 mg kg−1. Fe’iso was significantly lower (by 22.6%) in group F sheep than group P (p = 0). Cardiac index (mean ± SD mL kg−1 minute−1) was significantly (p = 0.012) lower in group F (90 ± 15) than group P (102 ± 35). Other measured cardiorespiratory parameters did not differ statistically significantly between groups. Recovery times and recovery quality were statistically similar in both groups.Conclusions and clinical relevanceFentanyl reduced isoflurane requirements without clinically affecting the cardiorespiratory stability or post-operative recovery in anaesthetized sheep undergoing orthopaedic surgery.  相似文献   

4.
ObjectiveTo evaluate medetomidine as a continuous rate infusion (CRI) in horses in which anaesthesia is maintained with isoflurane and CRIs of ketamine and lidocaine.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses undergoing elective surgery.MethodsAfter sedation and induction, anaesthesia was maintained with isoflurane. Mechanical ventilation was employed. All horses received lidocaine (1.5 mg kg?1 initially, then 2 mg kg?1 hour?1) and ketamine (2 mg kg?1 hour?1), both CRIs reducing to 1.5 mg kg?1 hour?1 after 50 minutes. Horses in group MILK received a medetomidine CRI of 3.6 μg kg?1 hour?1, reducing after 50 minutes to 2.75 μg kg?1 hour?1, and horses in group ILK an equal volume of saline. Mean arterial pressure (MAP) was maintained above 70 mmHg using dobutamine. End-tidal concentration of isoflurane (FE′ISO) was adjusted as necessary to maintain surgical anaesthesia. Group ILK received medetomidine (3 μg kg?1) at the end of the procedure. Recovery was evaluated. Differences between groups were analysed using Mann-Whitney, Chi-Square and anova tests as relevant. Significance was taken as p < 0.05.ResultsFE′ISO required to maintain surgical anaesthesia in group MILK decreased with time, becoming significantly less than that in group ILK by 45 minutes. After 60 minutes, median (IQR) FE′ISO in MILK was 0.65 (0.4–1.0) %, and in ILK was 1 (0.62–1.2) %. Physiological parameters did not differ between groups, but group MILK required less dobutamine to support MAP. Total recovery times were similar and recovery quality good in both groups.Conclusion and clinical relevanceA CRI of medetomidine given to horses which were also receiving CRIs of lidocaine and ketamine reduced the concentration of isoflurane necessary to maintain satisfactory anaesthesia for surgery, and reduced the dobutamine required to maintain MAP. No further sedation was required to provide a calm recovery.  相似文献   

5.
ObjectiveTo compare isoflurane alone or in combination with systemic ketamine and lidocaine for general anaesthesia in horses.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses (ASA I-III) undergoing elective surgery.MethodsHorses were assigned to receive isoflurane anaesthesia alone (ISO) or with ketamine and lidocaine (LKI). After receiving romifidine, diazepam, and ketamine, the isoflurane end-tidal concentration was set at 1.3% and subsequently adjusted by the anaesthetist (unaware of treatments) to maintain a light plane of surgical anaesthesia. Animals in the LKI group received lidocaine (1.5 mg kg−1 over 10 minutes, followed by 40 μg kg−1 minute−1) and ketamine (60 μg kg−1 minute−1), both reduced to 65% of the initial dose after 50 minutes, and stopped 15 minutes before the end of anaesthesia. Standard clinical cardiovascular and respiratory parameters were monitored. Recovery quality was scored from one (very good) to five (very poor). Differences between ISO and LKI groups were analysed with a two-sample t-test for parametric data or a Fischer's exact test for proportions (p < 0.05 for significance). Results are mean ± SD.ResultsHeart rate was lower (p = 0.001) for LKI (29 ± 4) than for ISO (34 ± 6). End-tidal concentrations of isoflurane (ISO: 1.57% ± 0.22; LKI: 0.97% ± 0.33), the number of horses requiring thiopental (ISO: 10; LKI: 2) or dobutamine (ISO:8; LKI:3), and dobutamine infusion rates (ISO:0.26 ± 0.09; LKI:0.18 ± 0.06 μg kg−1 minute−1) were significantly lower in LKI compared to the ISO group (p < 0.001). No other significant differences were found, including recovery scores.Conclusions and clinical relevanceThese results support the use of lidocaine and ketamine to improve anaesthetic and cardiovascular stability during isoflurane anaesthesia lasting up to 2 hours in mechanically ventilated horses, with comparable quality of recovery.  相似文献   

6.
ObjectiveTo compare the isoflurane-sparing effects of sufentanillidocaineketamine (SLK) and fentanyllidocaineketamine (FLK) infusions in dogs undergoing total ear canal ablation and lateral bulla osteotomy (TECALBO).Study designRandomized blinded clinical study.AnimalsA group of 20 client-owned dogs undergoing TECALBO.MethodsIntravenous (IV) administration of lidocaine (3 mg kg–1) and ketamine (0.6 mg kg–1) with fentanyl (5.4 μg kg–1; n = 10; FLK group) or sufentanil (0.72 μg kg–1; n = 10; SLK group) was immediately followed by the corresponding constant rate infusion (CRI) (lidocaine 3 mg kg–1 hour–1; ketamine 0.6 mg kg–1 hour–1; either fentanyl 5.4 μg kg–1 hour–1 or sufentanil 0.72 μg kg–1 hour–1). Anaesthesia was induced with propofol 3–5 mg kg–1 IV and was maintained with isoflurane. End-tidal isoflurane concentration (Fe′Iso) was decreased in 0.2% steps every 15 minutes until spontaneous movements were observed (treated with propofol 1 mg kg–1 IV) or an increase of > 30% in heart rate or mean arterial pressure from baseline occurred (treated with rescue fentanyl or sufentanil). Quality of recovery and pain were assessed at extubation using the short-form Glasgow Composite Pain Scale (SF-GCPS), Colorado State University Canine Acute Pain scale (CSU-CAP), and visual analogue scale (VAS). Data were analysed with analysis of variance, t tests, Fisher test and Spearman coefficient (p < 0.05).ResultsFe′Iso decreased significantly in SLK group (45%; p = 0.0006) but not in FLK (15%; p = 0.1135) (p = 0.0136). SLK group had lower scores for recovery quality (p = 0.0204), SF-GCPS (p = 0.0071) and CSU-CAP (p = 0.0273) than FLK at extubation. Intraoperative rescue analgesia and VAS were not significantly different between groups.Conclusions and clinical relevanceCompared with FLK infusion, CRI of SLK at these doses decreased isoflurane requirements, decreased pain scores and improved recovery quality at extubation in dogs undergoing TECALBO.  相似文献   

7.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

8.
ObjectiveTo evaluate the effects of propofol, on isoflurane minimum alveolar concentration (MAC) and cardiovascular function in mechanically ventilated goats.Study designProspective, randomized, crossover experimental study.AnimalsSix goats, three does and three wethers.MethodsGeneral anaesthesia was induced with isoflurane in oxygen. Following endotracheal intubation, anaesthesia was maintained with isoflurane in oxygen. Intermittent positive pressure ventilation was applied. Baseline isoflurane MAC was determined, the noxious stimulus used being clamping a claw. The goats then received, on separate occasions, three propofol treatments intravenously: bolus of 0.5 mg kg?1 followed by a constant rate infusion (CRI) of 0.05 mg kg?1 minute?1 (treatment LPROP); bolus of 1.0 mg kg?1 followed by a CRI of 0.1 mg kg?1 minute?1 (treatment MPROP), bolus of 2.0 mg kg?1 followed by a CRI of 0.2 mg kg?1 minute?1 (treatment HPROP). Isoflurane MAC was re-determined following propofol treatments. Plasma propofol concentrations at the time of MAC confirmation were measured. Cardiopulmonary parameters were monitored throughout the anaesthetic period. Quality of recovery was scored. The Friedman test was used to test for differences between isoflurane MACs. Medians of repeatedly measured cardiovascular parameters were tested for differences between and within treatments using repeated anova by ranks (p < 0.05 for statistical significance).ResultsIsoflurane MAC [median (interquartile range)] was 1.37 (1.36–1.37) vol%. Propofol CRI significantly reduced the isoflurane MAC, to 1.15 (1.08–1.15), 0.90 (0.87–0.93) and 0.55 (0.49–0.58) vol% following LPROP, MPROP and HPROP treatment, respectively. Increasing plasma propofol concentrations strongly correlated (Spearman rank correlation) with decrease in MAC (Rho = 0.91). Cardiovascular function was not affected significantly by propofol treatment. Quality of recovery was satisfactory.Conclusions and clinical relevanceIn goats, propofol reduces isoflurane MAC in a dose-dependent manner with minimal cardiovascular effects.  相似文献   

9.
ObjectiveTo evaluate if return of spontaneous ventilation to pre-relaxation values indicates complete recovery from neuromuscular blockade.Study designProspective, with each individual acting as its own control.AnimalsTen healthy adult female Beagle dogs weighing 6.2–9.4 kg.MethodsDogs were anesthetized with propofol, dexemedetomidine and isoflurane. Spontaneous ventilation was assessed by measuring end-tidal CO2, expired tidal volume, peak inspiratory flow, respiratory rate and minute ventilation. Vecuronium 25 μg kg?1 IV was administered and neuromuscular block was evaluated by measuring the train-of-four (TOF) ratio with acceleromyography in the hind limb. During spontaneous recovery from neuromuscular block, the TOF ratio when each ventilatory variable returned to baseline was recorded.ResultsThis dose of vecuronium produced moderate neuromuscular block in all dogs, with TOF ratio values of 0–18% at maximal block. Expired tidal volume, peak inspiratory flow and minute ventilation returned to pre-relaxation values when the median TOF ratio was ≤ 20%. The median TOF ratio was 42% when the end-tidal CO2 returned to pre-relaxation values.Conclusions and clinical relevanceSignificant residual neuromuscular block could be measured at the hind limb with acceleromyography when ventilation had spontaneously returned to pre-vecuronium values. Monitoring spontaneous ventilation, including end-tidal CO2, expired tidal volume, peak inspiratory flow or minute ventilation cannot be used as a surrogate for objective neuromuscular monitoring, and this practice may increase the risk of postoperative residual paralysis.  相似文献   

10.
Dexmedetomidine and midazolam have synergistic interaction for the sedative/hypnotic and analgesic effects. The purpose of this study was to assess the type of interaction between dexmedetomidine and midazolam for the immobilizing effect in terms of MAC reduction of either halothane (HAL) or isoflurane (ISO). Fifty‐six rats were randomly allocated into one of eight groups (n = 7): SAL + HAL group received saline solution and halothane, SAL + ISO group received saline solution and isoflurane, DEX + HAL group received an intravenous continuous infusion of dexmedetomidine (0.25 μg kg–1minute–1) and halothane, DEX + ISO group received an intravenous continuous infusion of dexmedetomidine (0.25 μg kg–1 minute–1) and isoflurane, MID + HAL group received an intravenous bolus of midazolam (1 mg kg–1) and halothane, MID + ISO group received an intravenous bolus of midazolam (1 mg kg–1) and isoflurane, DEX +MID + HAL group received dexmedetomidine (0.25 μg kg–1 minute–1), midazolam (1 mg kg–1) and halothane and DEX + MID + ISO group received dexmedetomidine (0.25 μg kg–1 minute–1), midazolam (1 mg kg–1) and isoflurane. The tail clamp method was used for MAC determination. Heart rate, invasive arterial blood pressure, respiratory rate and rectal temperature were continuously monitored. Arterial blood gases were analyzed at the end of each experiment. Data were analyzed using a one‐way anova and a Tukey‐Kramer test for multiple comparisons. A p < 0.01 value was considered statistically significant. MAC values were adjusted to the barometric pressure at sea level. Control MACbar values expressed as mean ± SD were 1.31 ± 0.11% for HAL and 1.46 ± 0.05% for ISO. Percentages of MAC reduction were 72 ± 17% for HAL and 43 ± 14% for ISO in DEX groups, 26 ± 11% for HAL and 20 ± 9% for ISO in MID groups, and 90 ± 5% for HAL and 78 ± 5% for ISO in DEX + MID groups. The interaction between dexmedetomidine and midazolam in terms of MAC reduction can be described as additive with halothane and synergistic with isoflurane.  相似文献   

11.
ObjectiveTo determine the median effective dose (ED50) and effective dose required to depress the twitch value by 95% (ED95) of rocuronium during alfaxalone anesthesia in dogs.Study designA randomized, prospective, crossover experimental study.AnimalsA total of eight adult Beagle dogs (four female, four male), weighing 10.3–14.6 kg and aged 6–8 years.MethodsThe dogs were anesthetized three times with 1.25-fold the individual minimum infusion rate of alfaxalone at intervals of ≥ 14 days. Neuromuscular function was monitored with train-of-four (TOF) stimulation of the peroneal nerve by acceleromyography. After recording the control TOF ratio (TOFRC) and first twitch of TOF (T1C), a single bolus dose of rocuronium 100, 175 or 250 μg kg–1 (treatments R100, R175 or R250) was administered intravenously. The maximum suppression of the first twitch of TOF (T1) was recorded and calibrated with T1C to construct the dose–response curve, from which ED50 and ED95 were calculated. Time from rocuronium administration to TOF ratio/TOFRC > 0.9 (duration TOFR0.9) was recorded.ResultsED50 and ED95 of rocuronium during alfaxalone anesthesia were 175 and 232 μg kg–1, respectively. The median (range) duration TOFR0.9 was longer in treatment R250 [10.1 (9.2–10.9) minutes] than in treatments R100 [3.1 (2.9–4.4) minutes; p < 0.0001] and R175 [7.7 (6.9–8.1) minutes; p < 0.0001]; and longer in treatment R175 than in treatment R100 (p < 0.0001).Conclusions and clinical relevanceThe duration of TOFR0.9 correlated positively with the dosage of rocuronium, indicating that recovery time of rocuronium was also dose-dependent in dogs anesthetized with alfaxalone. The duration TOFR0.9 of rocuronium 250 μg kg–1 was 10 minutes during alfaxalone anesthesia in dogs.  相似文献   

12.
ObjectiveTo evaluate the potency and duration of three subparalyzing doses of vecuronium (VEC) in isoflurane-anesthetized horses.Study designProspective experimental study.AnimalsThirteen healthy adult horses undergoing arthroscopic surgery.MethodsDuring isoflurane anesthesia, horses received one of three doses of vecuronium (25, 50, or 100 μg kg?1). Neuromuscular transmission was monitored with acceleromyography (AMG) with train-of-four (TOF) stimulation of the radial nerve. Maximal depression of the first twitch (T1), and onset time were recorded for each dose. Recovery time to a TOF ratio >90% was also evaluated.ResultsVecuronium 25 μg kg?1 produced no observable T1 depression in four horses. VEC 50 μg kg?1 (n = 5) produced a maximal T1 depression of [median (min, max)] 41 (20, 71) % in four horses, and no neuromuscular block was seen in the fifth. VEC 100 μg kg?1 was given to four horses and produced a T1 depression of 73 (64, 78) %. Of the four horses in which VEC 50 μg kg?1 produced a measurable neuromuscular block, three recovered spontaneously 43 (40, 52) minutes after VEC administration; a fourth subject received edrophonium to reverse residual block at the end of the surgery. Spontaneous recovery after VEC 100 μg kg?1 occurred by 112 minutes in one horse, and had to be facilitated by edrophonium in the remaining three horses, more than 2 hours after VEC had been given.Conclusions and clinical relevanceA dose of 100 μg kg?1 VEC in isoflurane anesthetized horses failed to produce complete paralysis. The partial neuromuscular block lasted at least 2 hours after this dose had been administered. Edrophonium was required to reverse the neuromuscular block in three of four horses. It is likely that more than 100 μg kg?1 VEC would be necessary for complete neuromuscular blockade in horses, and that this dose will last >2 hours.  相似文献   

13.
ObjectiveTo evaluate the effects of detomidine or romifidine on cardiovascular function, isoflurane requirements and recovery quality in horses undergoing isoflurane anaesthesia.Study designProspective, randomized, blinded, clinical study.AnimalsA total of 63 healthy horses undergoing elective surgery during general anaesthesia.MethodsHorses were randomly allocated to three groups of 21 animals each. In group R, horses were given romifidine intravenously (IV) for premedication (80 μg kg–1), maintenance (40 μg kg–1 hour–1) and before recovery (20 μg kg–1). In group D2.5, horses were given detomidine IV for premedication (15 μg kg–1), maintenance (5 μg kg–1 hour–1) and before recovery (2.5 μg kg–1). In group D5, horses were given the same doses of detomidine IV for premedication and maintenance but 5 μg kg–1 prior to recovery. Premedication was combined with morphine IV (0.1 mg kg–1) in all groups. Cardiovascular and blood gas variables, expired fraction of isoflurane (Fe′Iso), dobutamine or ketamine requirements, recovery times, recovery events scores (from sternal to standing position) and visual analogue scale (VAS) were compared between groups using either anova followed by Tukey, Kruskal-Wallis followed by Bonferroni or chi-square tests, as appropriate (p < 0.05).ResultsNo significant differences were observed between groups for Fe′Iso, dobutamine or ketamine requirements and recovery times. Cardiovascular and blood gas measurements remained within physiological ranges for all groups. Group D5 horses had significantly worse scores for balance and coordination (p = 0.002), overall impression (p = 0.021) and final score (p = 0.008) than group R horses and significantly worse mean scores for VAS than the other groups (p = 0.002).Conclusions and clinical relevanceDetomidine or romifidine constant rate infusion provided similar conditions for maintenance of anaesthesia. Higher doses of detomidine at the end of anaesthesia might decrease the recovery quality.  相似文献   

14.
ObjectiveTo investigate the influence of a dexmedetomidine constant rate infusion (CRI) in horses anaesthetized with isoflurane.Study designProspective, randomized, blinded, clinical study.AnimalsForty adult healthy horses (weight mean 491 ± SD 102 kg) undergoing elective surgery.MethodsAfter sedation [dexmedetomidine, 3.5 μg kg?1 intravenously (IV)] and induction IV (midazolam 0.06 mg kg?1, ketamine 2.2 mg kg?1), anaesthesia was maintained with isoflurane in oxygen/air (FiO2 55–60%). Horses were ventilated and dobutamine was administered when hypoventilation [arterial partial pressure of CO2 > 8.00 kPa (60 mmHg)] and hypotension [arterial pressure 70 mmHg] occurred respectively. During anaesthesia, horses were randomly allocated to receive a CRI of dexmedetomidine (1.75 μg kg?1 hour?1) (D) or saline (S). Monitoring included end-tidal isoflurane concentration, cardiopulmonary parameters, and need for dobutamine and additional ketamine. All horses received 0.875 μg kg?1 dexmedetomidine IV for the recovery period. Age and weight of the horses, duration of anaesthesia, additional ketamine and dobutamine, cardiopulmonary data (anova), recovery scores (Wilcoxon Rank Sum Test), duration of recovery (t-test) and attempts to stand (Mann–Whitney test) were compared between groups. Significance was set at p < 0.05.ResultsHeart rate and arterial partial pressure of oxygen were significantly lower in group D compared to group S. An interaction between treatment and time was present for cardiac index, oxygen delivery index and systemic vascular resistance. End-tidal isoflurane concentration and heart rate significantly increased over time. Packed cell volume, systolic, diastolic and mean arterial pressure, arterial oxygen content, stroke volume index and systemic vascular resistance significantly decreased over time. Recovery scores were significantly better in group D, with fewer attempts to stand and significantly longer times to sternal position and first attempt to stand.Conclusions and clinical relevance A dexmedetomidine CRI produced limited cardiopulmonary effects, but significantly improved recovery quality.  相似文献   

15.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

16.
ObjectiveTo determine the effects of age, sevoflurane and isoflurane on atracurium-induced neuromuscular blockade in 3–16 week-old lambs.Study designProspective randomized experimental trial.AnimalsTwenty-six Scottish blackface ewe-lambs were anaesthetized for spinal surgery when either 3–6 (mean age 4.6 weeks; n = 18) or 12–16 weeks (mean age 13.7 weeks; n = 15) of age; seven animals were anaesthetized at both ages.MethodsAfter intramuscular injection of medetomidine (10 μg kg?1) anaesthesia was induced in the younger lambs either with isoflurane or sevoflurane in oxygen delivered by mask, and in the older lambs with ketamine (4 mg kg?1), and midazolam (0.2 mg kg?1) administered intravenously (IV). In both groups anaesthesia was maintained with fixed end-tidal concentrations of either sevoflurane (2.8%) or isoflurane (1.8%) delivered in oxygen. Before surgery meloxicam (0.6 mg kg?1), morphine (0.5 mg kg?1) and ketamine (1 mg kg?1 followed by 10 μg kg?1 minute?1) were administered IV. The lungs were ventilated mechanically to maintain normocapnia. Neuromuscular block was achieved with a loading dose (LD) of atracurium (0.5 mg kg?1 IV). The peroneal nerve was stimulated (train-of-four every 12 seconds). Evoked responses in the digital extensor muscles were evaluated by palpation and observation. Maintenance doses (MD) of atracurium (0.17 mg kg?1 IV) were administered when the first twitch (T1) returned. The onset and duration of LD action (T1 absent) and the duration of MD were recorded. Data were analysed using Student's t test, Mann–Whitney U test, repeated–measures anova, Wilcoxon's matched pairs test or Pearson correlation coefficient as relevant (p < 0.05).ResultsOnset of LD action developed significantly (p < 0.05) more rapidly in isoflurane compared with sevoflurane-anaesthetized lambs (55 ± 18 cf. 80 ± 37 seconds). Duration of action of LDs and MDs was longer (p < 0.05) in lambs aged 12–16 than 3–6 weeks (33 ± 5.4 cf. 25 ± 6.4 and 26 ± 4.2 cf. 18 ± 5.5 minutes) but were independent of the anaesthetic used.Conclusions and clinical relevanceThe effect of atracurium is age-dependent in lambs being prolonged in older animals. The onset of neuromuscular blockade is more rapid in isoflurane compared with sevoflurane-anaesthetized lambs.  相似文献   

17.
HistoryEleven female dogs of different breeds undergoing unilateral radical (n = 7) or regional abdominal mastectomy (n = 4) received an ultrasound guided transverse abdominis plane block (TAP-block).Physical examinationSubjects showed single or multiple mammary tumours. Serum biochemistry, CBC and electrocardiogram were unremarkable. Eight animals were classified as ASA physical status II and 3 as ASA III.ManagementDogs were premedicated with methadone [0.1 or 0.2 mg kg?1 intravenously (IV) or intramuscularly respectively] or fentanyl (2.5 μgkg?1 IV). Anaesthesia was induced with propofol and maintained with isoflurane or sevoflurane. Unilateral ultrasound guided TAP blocks were performed in the caudal and cranial abdomen with bupivacaine 0.25% (0.3 to 0.35 mL kg?1). Intercostal nerve blocks (T4 to T11) with bupivacaine 0.25% (0.013 to 0.04 mL kg?1) completed the blocked area in dogs undergoing radical mastectomy.Follow upThe median (range) of end-expired isoflurane and sevoflurane necessary to maintain anaesthesia was 1.15 (1.07–1.22) and 2.07 (2.05–2.2) vol% respectively. A single administration of fentanyl (2.5 μg kg?1, IV) was administered to control nociception (defined as an increased heart rate or mean arterial blood pressure above 20% of the pre-incisional value) in four of 11 dogs. All dogs received carprofen (2 mg kg?1 subcutaneously) at the end of surgery. Post-operative pain, assessed for 120 minutes using the short form of Glasgow Composite Pain Scale (0–24), was always lower than 3. No rescue analgesia (allowed by the protocol) was required in this time.ConclusionTransverse abdominis plane block combined with intercostal nerve blocks may be useful to produce intraoperative anti-nociception and short term post-operative analgesia in dogs undergoing unilateral mastectomy.  相似文献   

18.
ObjectiveTo evaluate and compare the cardiopulmonary effects of induction of anesthesia with isoflurane (Iso), ketamine–diazepam (KD), or propofol–diazepam (PD) in hypovolemic dogs.Study designProspective randomized cross–over trial.AnimalsSix healthy intact, mixed breed, female dogs weighing 20.7 ± 4.2 kg and aged 22 ± 2 months.MethodsDogs had 30 mL kg?1 of blood removed at a rate of 1.5 mL kg?1 minute?1 under isoflurane anesthesia. Following a 30–minute recovery period, anesthesia was reinduced. Dogs were assigned to one of three treatments: isoflurane via facemask using 0.5% incremental increases in the delivered concentration every 30 seconds, 1.25 mg kg?1 ketamine and 0.0625 mg kg?1 diazepam intravenously (IV) with doses repeated every 30 seconds as required, and 2 mg kg?1 propofol and 0.2 mg kg?1 diazepam IV followed by 1 mg kg?1 propofol increments IV every 30 seconds as required. Following endotracheal intubation all dogs received 1.7% end–tidal isoflurane in oxygen. Cardiopulmonary variables were recorded at baseline (before induction) and at 5 or 10 minute intervals following endotracheal intubation.ResultsInduction time was longer in Iso (4.98 ± 0.47 minutes) compared to KD (3.10 ± 0.47 minutes) or PD (3.22 ± 0.45 minutes). To produce anesthesia, KD received 4.9 ± 2.3 mg kg?1 ketamine and 0.24 ± 0.1 mg kg?1 diazepam, while PD received 2.2 ± 0.4 mg kg?1 propofol and 0.2 mg kg?1 diazepam. End–tidal isoflurane concentration immediately following intubation was 1.7 ± 0.4% in Iso. Arterial blood pressure and heart rate were significantly higher in KD and PD compared to Iso and in KD compared to PD. Arterial carbon dioxide partial pressure was significantly higher in PD compared to KD and Iso immediately after induction.Conclusions and clinical relevanceIn hypovolemic dogs, KD or PD, as used in this study to induce anesthesia, resulted in less hemodynamic depression compared to isoflurane.  相似文献   

19.
ObjectiveTo compare isoflurane and propofol for maintenance of anesthesia and quality of recovery in client-owned dogs with intracranial disease undergoing magnetic resonance imaging (MRI).Study designProspective, randomized, clinical trial.AnimalsTwenty-five client-owned dogs with intracranial pathology, 13 females and 12 males, ages 11 months to 13 years, weighing between 3.0 and 48.0 kg.MethodsEach dog was randomly assigned to receive propofol or isoflurane for maintenance of anesthesia. All dogs were not premedicated, were administered propofol intravenously to effect for induction, intubated and mechanically ventilated to maintain an end-tidal carbon dioxide tension 30–35 mmHg (4.0–4.7 kPa). Temperature and cardiac output were measured pre- and post-MRI. Scores for mentation, neurological status, ease of maintenance, and recovery were obtained pre- and post-anesthesia. Pulse oximetry, end-tidal gases, arterial blood pressure, heart rate (HR) and requirements for dopamine administration to maintain mean arterial pressure (MAP) >60 mmHg were recorded throughout anesthesia.ResultsEnd-tidal isoflurane concentration was 0.73 ± 0.35% and propofol infusion rate was 292 ± 119 μg kg?1 minute?1. Cardiac index was higher, while HR was lower, with propofol than isoflurane in dogs younger than 5 years, but not in older dogs. Dogs maintained with isoflurane were 14.7 times more likely to require dopamine than propofol dogs. Mentation and maintenance scores and temperature were not different. MAP and diastolic arterial pressure were higher in the propofol group. Recovery scores were better with propofol, although times to extubation were similar. Change in neurological score from pre- to post-anesthesia was not different between treatments.ConclusionsDogs maintained with propofol during MRI had higher arterial pressures, decreased requirements for dopamine, and better recovery scores, compared to dogs maintained with isoflurane.Clinical relevancePropofol anesthesia offered cardiovascular and recovery advantages over isoflurane during MRI in dogs with intracranial disease in this study.  相似文献   

20.

Objective

To compare the cardiopulmonary effects of low and high doses of fentanyl before and after the correction of bradycardia in isoflurane-anesthetized dogs.

Study design

Prospective, randomized crossover trial.

Animals

Eight healthy male Beagle dogs weighing 11.1 ± 1.3 kg [mean ± standard deviation (SD)] and aged approximately 1 year.

Methods

The dogs were anesthetized with isoflurane [1.3 × minimum alveolar concentration (MAC)] on two occasions and fentanyl was administered intravenously; either low-dose fentanyl, loading dose (33 μg kg–1) and infusion (0.2 μg kg–1 minute–1) or a high-dose, loading dose (102 μg kg–1) and infusion (0.8 μg kg–1 minute–1). Cardiopulmonary variables were measured at three time points in equipotent isoflurane concentrations (1.3 MAC): before fentanyl administration (ISO), during fentanyl-induced bradycardia (ISO–F) and after administration of glycopyrrolate normalized heart rate (ISO–FNHR). Data are mean ± SD.

Results

Heart rate and cardiac index (CI) decreased and systemic vascular resistance index (SVRI) increased at ISO–F in both treatments. Bradycardia and vasoconstriction at ISO–F were greater in high than in low-dose fentanyl (42 ± 7 versus 57 ± 15 beats minute–1 and 3457 ± 1108 versus 2528 ± 968 dyne second cm–5 m–2), respectively. Oxygen delivery index (DO2I) decreased only during high-dose fentanyl. CI and DO2I were higher in both treatments at ISO–FNHR than at ISO–F; however, they were higher only during the high-dose fentanyl than at ISO. SVRI was higher at ISO–F than at ISO and ISO–FNHR in both treatments, and was higher at ISO–F in the high than in the low-dose treatment.

Conclusions and clinical relevance

An overall improvement in cardiovascular function of dogs anesthetized with equipotent isoflurane doses (1.3 MAC) was observed after the treatment of bradycardia only with the high-dose fentanyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号