首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To determine the cardiovascular responses of ephedrine and dopamine for the management of presurgical hypotension in anesthetized dogs. STUDY DESIGN: Prospective, randomized, clinical trial. ANIMALS: Twelve healthy client-owned dogs admitted for orthopedic surgery; six per group METHODS: Prior to surgery, 58 anesthetized dogs were monitored for hypotension [mean arterial pressure (MAP) <60 mmHg] that was not associated with bradycardia or excessive anesthetic depth. Ephedrine (0.2 mg kg(-1), IV) or dopamine (5 microg kg(-1) minute(-1), IV) was randomly assigned for treatment in 12 hypotensive dogs. Ten minutes after the first treatment (Tx(1)-10), ephedrine was repeated or the dopamine infusion rate was doubled. Cardiovascular assessments taken at baseline, Tx(1)-10, and 10 minutes following treatment adjustment (Tx(2)-10) were compared for differences within and between treatments (p < 0.05). RESULTS: Ephedrine increased cardiac index (CI), stroke volume index (SVI), oxygen delivery index (DO(2)I), and decreased total peripheral resistance (TPR) by Tx(1)-10, while MAP increased transiently (<5 minutes). The second ephedrine bolus produced no further improvement. Dopamine failed to produce significant changes at 5 microg kg(-1) minute(-1), while 10 microg kg(-1) minute(-1) increased MAP, CI, SVI significantly from baseline, and DO(2)I compared with Tx(1)-10. The improvement in CI, SVI, and DO(2)I was not significantly different between treatments at Tx(2)-10. CONCLUSIONS AND CLINICAL RELEVANCE: In anesthetized hypotensive dogs, ephedrine and dopamine improved cardiac output and oxygen delivery. However, the pressure-elevating effect of ephedrine is transient, while an infusion of dopamine at 10 microg kg(-1) minute(-1) improved MAP significantly by additionally maintaining TPR.  相似文献   

2.
ObjectiveTo evaluate the effects of progressively increasing doses of acepromazine on cardiopulmonary variables and sedation in conscious dogs.Study designProspective, experimental study.AnimalsA group of six healthy, adult, mixed-breed dogs weighing 16.5 ± 5.0 kg (mean ± standard deviation).MethodsDogs were instrumented with thermodilution and arterial catheters for evaluation of hemodynamics and arterial blood gases. On a single occasion, acepromazine was administered intravenously to each dog at 10, 15, 25 and 50 μg kg–1 at 20 minute intervals, resulting in cumulative acepromazine doses of 10 μg kg–1 (ACP10), 25 μg kg–1 (ACP25), 50 μg kg–1 (ACP50) and 100 μg kg–1 (ACP100). Hemodynamic data and sedation scores were recorded before (baseline) and 20 minutes after each acepromazine dose.ResultsCompared with baseline, all acepromazine doses significantly decreased stroke index (SI), mean arterial pressure (MAP) and arterial oxygen content (CaO2) with maximum decreases of 16%, 17% and 21%, respectively. Cardiac index (CI) decreased by up to 19% but not significantly. Decreases of 26–38% were recorded for oxygen delivery index (DO2I), with significant differences for ACP50 and ACP100. Systemic vascular resistance index (SVRI) and heart rate did not change significantly. No significant difference was found among acepromazine doses for hemodynamic data. After ACP10, mild sedation was observed in five/six dogs and moderate sedation in one/six dogs, whereas after ACP25, ACP50 and ACP100, moderate sedation was observed in five/six or six/six dogs.Conclusions and clinical relevanceIn conscious dogs, acepromazine decreased MAP, SI, CaO2 and DO2I, but no significant dose effect was detected. SVRI was not significantly changed, suggesting that the reduction in MAP resulted from decreased CI. The ACP25, ACP50 and ACP100 doses resulted in moderate sedation in most dogs; ACP10 resulted in only mild sedation.  相似文献   

3.
Objective To evaluate the anti‐emetic properties of acepromazine in dogs receiving opioids as pre‐anesthetic medication. Study design Randomized prospective clinical study. Animals One hundred and sixteen dogs (ASA I or II), admitted for elective surgical procedures. The dogs were a mixed population of males and females, purebreds and mixed breeds, 0.25–13.4 years of age, weighing 1.8–57.7 kg. Methods A prospective clinical trial in which the dogs were randomly assigned to one of three groups. All groups received acepromazine (0.05 mg kg?1 intramuscularly (IM)). Group I received acepromazine 15 minutes prior to opioid administration. Group II received acepromazine in combination with the opioid. Group III received acepromazine 15 minutes after opioid administration. One of three different opioids was administered IM to each dog: morphine sulfate at 0.5 mg kg?1; hydromorphone hydrochloride at 0.1 mg kg?1; or oxymorphone hydrochloride at 0.075 mg kg?1. Results Dogs receiving acepromazine before the opioid (group I) had a significantly lower incidence of vomiting (18%) than dogs in groups II (45%) and III (55%). The degree of sedation was significantly lower in the dogs receiving the combination of acepromazine and the opioid (group II) than in dogs receiving the opioid as the first drug (group III). Conclusions and clinical relevance Acepromazine administered 15 minutes before the opioid lowers the incidence of vomiting induced by opioids.  相似文献   

4.
To test the hypothesis that acepromazine could potentiate the sedative actions and attenuate the pressor response induced by dexmedetomidine, the effects of acepromazine or atropine were compared in six healthy adult dogs treated with this alpha2-agonist. In a randomised block design, the dogs received intravenous doses of either physiological saline, 0.05 mg/kg acepromazine or 0.04 mg/kg atropine, 15 minutes before an intravenous dose of 5 microg/kg dexmedetomidine. The dogs' heart rate was reduced by 50 to 63 per cent from baseline and their mean arterial blood pressure was increased transiently from baseline for 20 minutes after the dexmedetomidine. Atropine prevented the alpha2-agonist-induced bradycardia and increased the severity and duration of the hypertension, but acepromazine did not substantially modify the cardiovascular effects of the alpha2-agonist, except for a slight reduction in the magnitude and duration of its pressor effects. The dexmedetomidine induced moderate to intense sedation in all the treatments, but the dogs' sedation scores did not differ among treatments. The combination of acepromazine with dexmedetomidine had no obvious advantages in comparison with dexmedetomidine alone, but the administration of atropine before dexmedetomidine is contraindicated because of a severe hypertensive response.  相似文献   

5.
OBJECTIVE: To study pulmonary gas exchange and cardiovascular responses to sedation achieved with romifidine and butorphanol (RB) alone, or combined with acepromazine, and during subsequent tiletamine-zolazepam anaesthesia in horses. ANIMALS: Six (four males and two females) healthy Standardbred trotters aged 3-12 years; mass 423-520 kg. STUDY DESIGN: Randomized, cross-over, experimental study. MATERIALS AND METHODS: Horses were anaesthetized on two occasions (with a minimum interval of 1 week) with intravenous (IV) tiletamine-zolazepam (Z; 1.4 mg kg(-1)) after pre-anaesthetic medication with IV romifidine (R; 0.1 mg kg(-1)) and butorphanol (B; 25 microg kg(-1) IV). At the first trial, horses were randomly allocated to receive (protocol ARBZ) or not to receive (protocol RBZ) acepromazine (A; 35 microg kg(-1)) intramuscularly (IM) 35 minutes before induction of anaesthesia. Each horse was placed in left lateral recumbency and, after tracheal intubation, allowed to breathe room air spontaneously. Respiratory and haemodynamic variables and ventilation-perfusion (; multiple inert gas elimination technique) ratios were determined in the conscious horse, after sedation and during anaesthesia. One- and two-way repeated-measures anova were used to identify within- and between-technique differences, respectively. RESULTS: During sedation with RB, arterial oxygen tension (PaO(2)) decreased compared to baseline and increased mismatch was evident; there was no O(2) diffusion limitation or increase in intrapulmonary shunt fraction identified. With ARB, PaO(2) and remained unaffected. During anaesthesia, intrapulmonary shunt occurred to the same extent in both protocols, and mismatching increased. This was less in the ARBZ group. Arterial O(2) tension decreased in both protocols, but was lower at 25 and 35 minutes of anaesthesia in RBZ than in ARBZ. During sedation, heart rate (HR) and cardiac output (Qt) were lower while arterial-mixed venous oxygen content differences and haemoglobin concentrations were higher in RBZ compared with ARBZ. Total systemic vascular resistance, mean systemic, and mean pulmonary arterial pressures were higher during anaesthesia with RBZ compared to ARBZ. CONCLUSIONS AND CLINICAL RELEVANCE: Acepromazine added to RB generally improved haemodynamic variables and arterial oxygenation during sedation and anaesthesia. Arterial oxygenation was impaired as a result of increased shunt and mismatch during anaesthesia, although acepromazine treatment reduced disturbances and falls in PaO(2) to some extent. Haemodynamic variables were closer to baseline during sedation and anaesthesia when horses received acepromazine. Acepromazine may confer advantages in healthy normovolaemic horses.  相似文献   

6.
OBJECTIVE: To investigate the effect of buprenorphine pre-treatment on sufentanil requirements in female dogs undergoing ovariectomy. STUDY DESIGN: Randomized, 'blinded', prospective clinical study. ANIMALS: Thirty healthy female dogs referred for ovariectomy. MATERIALS AND METHODS: Dogs were randomly assigned to one of two pre-anaesthetic treatment groups. Those in the buprenorphine group (B) received buprenorphine 20 microg kg(-1) and acepromazine 0.03 mg kg(-1) IM. Control group (C) animals received an equal volume of NaCl 0.9% and acepromazine 0.03 mg kg(-1) IM. The anaesthetic technique was identical in both groups. Pre-anaesthetic medication consisted of intravenous (IV) sufentanil (1.0 microg kg(-1)) and midazolam (0.05 mg kg(-1)) and intramuscular atropine (0.03 mg kg(-1)). Anaesthesia was induced with propofol and maintained with a constant rate infusion of sufentanil (1.0 microg kg(-1) hour(-1)) and with oxygen-isoflurane. Ventilation was controlled mechanically. Ovariectomy was performed using a standard technique. Baseline heart rate (HR) and direct mean arterial blood pressure (MAP) were recorded before the first incision. Increases in HR and MAP of > or =20% over baseline and, or spontaneous ventilation were controlled using IV sufentanil (1.0 microg kg(-1)) repeated after 5 minutes if haemodynamic variables remained elevated or attempts at spontaneous ventilation persisted. Analysis of variance was used to determine group differences in mean and median HR and MAP and to compare the maximum HR and MAP attained during surgery. Poisson regression was used to compare the number of sufentanil injections required in both groups. RESULTS: Group B required 2.46 times more sufentanil injections (p = 0.00487) than dogs in group C to maintain haemodynamic stability and prevent spontaneous ventilation during surgery. Group B dogs also had a significantly higher (p = 0.034) marginal mean of the log maximum MAP (4.756 +/- 0.036) compared with group C (4.642 +/- 0.036). CONCLUSIONS: Pre-treatment with buprenorphine appears to negatively influence the antinociceptive efficacy of intra-operative sufentanil. CLINICAL RELEVANCE: Withholding buprenorphine therapy 6-8 hours before anaesthesia incorporating pure mu receptor agonists is probably advisable. Alternative methods of analgesia should be provided in this period.  相似文献   

7.
OBJECTIVE: To compare the effects of two balanced anaesthetic protocols on end-tidal isoflurane (Fe'ISO), cardiopulmonary performance and quality of recovery in horses. DESIGN: Prospective blinded randomized clinical study. ANIMALS: Sixty-nine client-owned horses, American Society of Anesthesiologists category I and II, undergoing elective surgery. METHODS: The horses were premedicated with acepromazine (0.03 mg kg(-1)) IM 30-60 minutes before induction of anaesthesia and were randomly assigned to one of two treatments: in group L (37 horses) xylazine (1 mg kg(-1)) and in group M (31 horses) medetomidine (7 microg kg(-1)) was administered IV for sedation. Anaesthesia was induced 5 minutes later with ketamine (2.2 mg kg(-1)) and diazepam (0.02 mg kg(-1)) IV and maintained with isoflurane in oxygen/air (initial FIO2 0.40-0.50) and a constant rate infusion (CRI) of either lidocaine (2 mg kg(-1)/15 minutes loading dose followed by 50 microg kg(-1) minute(-1)) (group L) or medetomidine (3.5 microg kg(-1) hour(-1)) (group M). If horses showed movement or nystagmus, additional thiopental or ketamine was administered. Heart rate, mean arterial pressure (MAP), Fe'ISO and arterial blood gases were measured. Cardiac output was measured with the lithium dilution method in 10 (group L) and 11 (group M) horses every 45 minutes. Recovery was scored. RESULTS: Heart rate and the cardiac index (CI) were significantly higher in group L with changes over time. In group M, MAP was significantly higher during the first 50 minutes. Group L needed more additional ketamine and thiopental to maintain a surgical plane of anaesthesia and Fe'ISO was significantly higher from 70 minutes. Recovery was longer in group M and of better quality. The significance level was set at p < 0.05. CONCLUSIONS AND CLINICAL RELEVANCE: In group M, maintenance of stable anaesthetic depth was easier and lower Fe'ISO was required to maintain a surgical plane of anaesthesia. Recoveries were longer but of better quality. The CI was higher in group L but cardiovascular function was generally well maintained in both groups.  相似文献   

8.
ObjectiveTo evaluate the effects of incremental doses of acepromazine on hemodynamics in isoflurane-anesthetized dogs.Study designProspective, experimental study.AnimalsHealthy, adult, mixed-breed dogs (two male and four female) weighing 16.8 ± 5.1 kg (mean ± standard deviation).MethodsDogs were anesthetized with propofol (7 mg kg–1) intravenously (IV) and isoflurane. Thermodilution and arterial catheters were placed for hemodynamic monitoring and arterial blood sampling for blood gas analysis. Baseline measurements were performed with stable expired concentration of isoflurane (Fe′Iso) at 1.8%. Each dog was then administered four incremental acepromazine injections (10, 15, 25 and 50 μg kg–1) IV, and measurements were repeated 20 minutes after each acepromazine injection with Fe′Iso decreased to 1.2%. The four acepromazine injections resulted in cumulative doses of 10, 25, 50 and 100 μg kg–1 (time points ACP10, ACP25, ACP50 and ACP100, respectively).ResultsCompared with baseline, cardiac index (CI) increased significantly by 34%, whereas systemic vascular resistance index (SVRI) decreased by 25% at ACP50 and ACP100. Arterial oxygen content (CaO2) was significantly lower than baseline after all acepromazine injections (maximum decreases of 11%) and was lower at ACP50 and ACP100 than at ACP10. No significant change was found in heart rate, stroke index, oxygen delivery index and systolic, mean and diastolic blood pressures. Hypotension (mean arterial pressure < 60 mmHg) was observed in one dog at baseline, ACP10, ACP25 and ACP100, and in two dogs at ACP50.Conclusions and clinical relevanceCompared with isoflurane alone, anesthesia with acepromazine–isoflurane resulted in increased CI and decreased SVRI and CaO2 values. These effects were dose-related, being more pronounced at ACP50 and ACP100. Under the conditions of this study, acepromazine administration did not change blood pressure.  相似文献   

9.
ObjeCTIVE: To evaluate a total intravenous anaesthetic technique in dogs undergoing craniectomy. STUDY DESIGN: Prospective clinical study. ANIMALS: Ten dogs admitted for elective surgical resection of rostro-tentorial tumours. METHODS: All dogs were premedicated with methadone, 0.2 mg kg(-1) intramuscularly 30 minutes prior to induction of anaesthesia. Anaesthesia was induced with propofol administered intravenously (IV) to effect, following administration of lidocaine 1 mg kg(-1) IV and maintained with a continuous infusion of propofol at < or =0.4 mg kg(-1) minute(-1) during instrumentation and preparation and during movement of the animals to recovery. During surgery, anaesthesia was maintained using a continuous infusion of propofol at 相似文献   

10.
Cardiopulmonary consequences of acepromazine (0.2 mg/kg of body weight, IV) followed by IV administration of ketamine (10 mg/kg) were evaluated in 13 dogs. Acepromazine caused significant decreases in arterial blood pressure, stroke volume, left ventricular work, left ventricular stroke work, breathing rate, minute ventilation, and oxygen consumption. Subsequent administration of ketamine caused significant increases in heart rate, effective alveolar volume, alveolar-arterial Po2 gradient (transient increase), venous admixture (transient increase), and PaCO2 and PVCO2 (transient increases), and caused significant decreases in stroke volume, minute ventilation, physiologic dead space, and arterial and venous PO2 (transient decreases).  相似文献   

11.
OBJECTIVE: To compare the induction dose requirements of thiopental using two different infusion rates for induction of anaesthesia in dogs. STUDY DESIGN: Prospective, randomized study. ANIMALS: Fifty, healthy (ASA I or II) client-owned dogs with a mean age of 4.1 years and a mean mass of 20.4 kg undergoing elective surgery. MATERIALS AND METHODS: Animals were randomly assigned to receive an infusion of 2.5% thiopental at a rate of either 0.1 ml kg(-1) minute(-1) or 0.4 ml kg(-1)minute(-1), 30-40 minutes after pre-anaesthetic medication with intramuscular acepromazine (0.025 mg kg(-1)) and pethidine (3.5 mg kg(-1)). Thiopental administration was controlled by a precision syringe driver. Statistical analyses of the results, using the outcome 'mg kg(-1) required for induction' (log-transformed) included unpaired t-tests for all categorical data (thiopental infusion rate, breed, sex, obesity, sedation quality) and univariable linear regression for continuous variables (mass, age). All variables were then considered in a multivariable linear regression model. The quality of induction with the two different infusion rates was also assessed. RESULTS: After controlling for quality of sedation, the thiopental induction dose requirement was significantly less (p < 0.001) with the slower infusion rate (median = 7.5 mg kg(-1); range 4.9-13.7) compared with the faster infusion rate (median =11.0 mg kg(-1); range 6.6-18.0). The quality of sedation also affected the dose required (p = 0.03). The slower infusion rate was associated with a significantly poorer induction quality (p = 0.03) [corrected] CONCLUSIONS: Slow thiopental infusion (0.1 ml kg(-1) minute(-1)) for anaesthesia induction after acepromazine/pethidine pre-anaesthetic medication reduced the induction dose requirement, although the quality of induction was inferior. CLINICAL RELEVANCE: The induction dose of thiopental was reduced with a slower administration rate and so slow administration is recommended in thiopental-sensitive animals.  相似文献   

12.
Opioids used in the pre‐operative period may frequently induce vomiting. Acepromazine is commonly combined with opioids as a pre‐anesthetic drug, and has antiemetic properties. The purpose of this study was to evaluate the antiemetic properties of acepromazine in dogs receiving opioids as a pre‐anesthetic. One hundred and sixteen dogs (ASA I or II), 58 males and 58 females; purebreds and mixed breeds; 3 months?13.4 years of age; weighing 1.8–57.7 kg admitted for elective surgical procedures, were randomly assigned to one of the three groups. All groups received acepromazine (0.05 mg kg?1 IM). Group I (n = 40) received acepromazine 15 minutes prior to opioid administration. Group II (n = 38) received acepromazine in combination with the opioid. Group III (n = 38) received acepromazine 15 minutes after opioid administration. One of the three different opioids was administered IM to each dog: morphine at 0.5 mg kg?1, hydromorphone at 0.1 mg kg?1, or oxymorphone at 0.075 mg kg?1. Statistical analysis included a χ2‐test for the incidence of vomiting and a Kruskal–Wallis nonparametric test for the sedation comparison between groups. The dogs receiving acepromazine before the opioid (Group I) had significantly lower incidence of vomiting (18%) than those in Groups II (45%) and III (55%). The degree of sedation assessed 15 minutes after administration of the last drug (s) in each group was significantly lower in the dogs receiving the combination of acepromazine and opioid (Group II) than in those receiving opioid as the first drug (Group III). Time to vomiting was less than 8 minutes in all groups. In conclusion, acepromazine administered 15 minutes before opioid reduces the incidence of vomiting induced by opioids.  相似文献   

13.
14.
OBJECTIVE: To evaluate concomitant propofol and fentanyl infusions as an anesthetic regime, in Greyhounds. ANIMALS: Eight clinically normal Greyhounds (four male, four female) weighing 25.58 +/- 3.38 kg. DESIGN: Prospective experimental study. METHODS: Dogs were premedicated with acepromazine (0.05 mg/kg) by intramuscular (i.m.) injection. Forty five minutes later anesthesia was induced with a bolus of propofol (4 mg/kg) by intravenous (i.v.) injection and a propofol infusion was begun (time = 0). Five minutes after induction of anesthesia, fentanyl (2 microg/kg) and atropine (40 microg/kg) were administered i.v. and a fentanyl infusion begun. Propofol infusion (0.2 to 0.4 mg/kg/min) lasted for 90 minutes and fentanyl infusion (0.1 to 0.5 microg/kg/min) for 70 minutes. Heart rate, blood pressure, respiratory rate, end-tidal carbon dioxide, body temperature, and depth of anesthesia were recorded. The quality of anesthesia, times to return of spontaneous ventilation, extubation, head lift, and standing were also recorded. Blood samples were collected for propofol and fentanyl analysis at varying times before, during and after anesthesia. RESULTS: Mean heart rate of all dogs varied from 52 to 140 beats/min during the infusion. During the same time period, mean blood pressure ranged from 69 to 100 mm Hg. On clinical assessment, all dogs appeared to be in light surgical anesthesia. Mean times (+/- SEM), after termination of the propofol infusion, to return of spontaneous ventilation, extubation, head lift and standing for all dogs were 26 +/- 7, 30 +/- 7, 59 +/- 12, and 105 +/- 13 minutes, respectively. Five out of eight dogs either whined or paddled their forelimbs in recovery. Whole blood concentration of propofol for all eight dogs ranged from 1.21 to 6.77 microg/mL during the infusion period. Mean residence time (MRTinf) for propofol was 104.7 +/- 6.0 minutes, mean body clearance (Clb) was 53.35 +/- 0.005 mL/kg/min, and volume of distribution at steady state (Vdss) was 3.27 +/- 0.49 L/kg. Plasma concentration of fentanyl for seven dogs during the infusion varied from 1.22 to 4.54 ng/mL. Spontaneous ventilation returned when plasma fentanyl levels were >0.77 and <1.17 ng/mL. MRTinf for fentanyl was 111.3 +/- 5.7 minutes. Mean body clearance was 29.1 +/- 2.2 mL/kg/min and Vdss was 2.21 +/- 0.19 L/kg. CONCLUSION AND CLINICAL RELEVANCE: In Greyhounds which were not undergoing any surgical stimulation, total intravenous anesthesia maintained with propofol and fentanyl infusions induced satisfactory anesthesia, provided atropine was given to counteract bradycardia. Despite some unsatisfactory recoveries the technique is worth investigating further for clinical cases, in this breed and in mixed breed dogs.  相似文献   

15.
OBJECTIVE: To investigate the effects of administration of acepromazine on IV glucose tolerance tests (IVGTTs) in dogs. ANIMALS: 8 male mixed-breed dogs. PROCEDURE: With a 1-week interval between tests, each dog underwent (in random order) an IVGTT with or without pretest administration of acepromazine maleate (0.1 mg/kg, SC, 30 minutes prior to the start of the IVGTT). Food was withheld from the dogs for 14 hours prior to each test. Blood samples were obtained at 20, 10, and 1 minute prior to and at 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, and 180 minutes after administration of glucose. RESULTS: There were no significant differences in the baseline (ie, after food was withheld) plasma glucose, lactate, and insulin concentrations between dogs undergoing the IVGTT and acepromazine-IVGTT; however, lower baseline free fatty acid concentration was observed in acepromazine-treated dogs. Analysis of data via the application of Bergman's minimal model of glucose kinetics revealed no differences in insulin sensitivity, acute insulin response to glucose, disposition index, or glucose effectiveness between dogs treated or not treated with acepromazine before testing. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that in dogs undergoing IV glucose tolerance testing, pretest administration of small doses of acepromazine can be used as a means of chemical restraint without interfering with results of the glucose metabolism assessment.  相似文献   

16.
OBJECTIVE: To evaluate the dose-related cardiovascular and urine output (UrO) effects of dopamine hydrochloride and dobutamine hydrochloride, administered individually and in combination at various ratios, and identify individual doses that achieve target mean arterial blood pressure (MAP; 70 mm Hg) and cardiac index (CI; 150 mL/kg/min) in dogs during deep isoflurane anesthesia. ANIMALS: 10 young clinically normal dogs. PROCEDURES: Following isoflurane equilibration at a baseline MAP of 50 mm Hg on 3 occasions, dogs randomly received IV administration of dopamine (3, 7, 10, 15, and 20 microg/kg/min), dobutamine (1, 2, 4, 6, and 8 microg/kg/min), and dopamine-dobutamine combinations (3.5:1, 3.5:4, 7:2, 14:1, and 14:4 microg/kg/min) in a crossover study. Selected cardiovascular and UrO effects were determined following 20-minute infusions at each dose. RESULTS: Dopamine caused significant dose-dependent responses and achieved target MAP and CI at 7 microg/kg/min; dobutamine at 2 microg/kg/min significantly affected only CI values. At any dose, dopamine significantly affected UrO, whereas dobutamine did not. Target MAP and CI values were achieved with a dopamine-dobutamine combination at 7:2 microg/kg/min; a dopamine-related dose response for MAP and dopamine- and dobutamine-related dose responses for CI were identified. Changes in UrO were associated with dopamine only. CONCLUSIONS AND CLINICAL RELEVANCE: In isoflurane-anesthetized dogs, a guideline dose for dopamine of 7 microg/kg/min is suggested; dobutamine alone did not improve MAP. Data regarding cardiovascular and UrO effects indicated that the combination of dopamine and dobutamine did not provide greater benefit than use of dopamine alone in dogs.  相似文献   

17.
ObjectiveTo determine the cardiovascular effects of a proprietary l-methadone/fenpipramide combination (Polamivet) alone and in addition to acepromazine in dogs.Study designProspective, randomized, experimental crossover study.AnimalsFive adult healthy Beagle dogs (one male and four females, weighing 12.8–16.4 kg).MethodsDogs were instrumented for haemodynamic measurements whilst anaesthetized with isoflurane. Three hours after recovery dogs received 0.025 mg kg?1 acepromazine (AP) or saline (SP) IM followed by 0.5 mg kg?1L-methadone/ 0.025 mg kg?1 fenpipramide IV after 30 minutes. Cardiac output using thermodilution, heart rate, mean arterial pressure (MAP), central venous pressure (CVP), mean pulmonary artery pressure (MPAP), pulmonary artery occlusion pressure (PAOP), haemoglobin concentration, arterial and mixed-venous blood gas analysis were measured and sedation evaluated at baseline (BL), 30 minutes after acepromazine or saline IM (A/S), 5 minutes after L-methadone/fenpipramide IV application (35), every 15 minutes for 1 hour (50, 65, 80, 95 minutes) and every hour until baseline cardiac output was regained. Standard cardiovascular parameters were calculated. Data were analyzed by repeated measures anova and paired t-tests with p < 0.05 considered significant.ResultsBaseline measurements did not differ. Cardiac index decreased after acepromazine administration in treatment AP (p = 0.027), but was not significantly influenced after l-methadone/fenpipramide injection in either treatment. In both treatments heart rate did not change significantly over time. Stroke volume index increased after A/S in both treatments (p = 0.049). Systemic vascular resistance index, MAP, CVP, MPAP, and pulmonary vascular resistance index did not change significantly after either treatment and did not differ between treatments. Dogs were deeply sedated in both treatments with a longer duration in treatment AP.Conclusions and clinical relevanceIn healthy dogs the dose of l-methadone/fenpipramide used in this study alone and in combination with acepromazine induced deep sedation without significant cardiovascular changes.  相似文献   

18.
The effects of propofol alone or propofol and ketamine for the induction of anaesthesia in dogs were compared. Thirty healthy dogs were premedicated with acepromazine and pethidine, then randomly allocated to either treatment. Anaesthesia was induced with propofol (4 mg/kg bodyweight intravenously) (group 1), or propofol and ketamine (2 mg/kg bodyweight of each intravenously) (group 2). Anaesthesia was maintained with halothane, delivered in a mixture of oxygen and nitrous oxide (1:2) via a non-rebreathing Bain circuit. Various cardiorespiratory parameters were monitored at two, five, 10, 15, 20, 25 and 30 minutes after induction, and the animals were observed during anaesthesia and recovery, and any adverse effects were recorded. During anaesthesia, the heart rate, but not the systolic arterial pressure, was consistently higher in group 2 (range 95 to 102 beats per minute) than in group 1 (range 73 to 90 beats per minute). Post-induction apnoea was more common in group 2 (11 of 15) than in group 1 (six of 15). Muscle twitching was observed in three dogs in each group. Recovery times were similar in both groups. Propofol followed by ketamine was comparable with propofol alone for the induction of anaesthesia in healthy dogs.  相似文献   

19.
OBJECTIVE: To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats. ANIMALS: 8 adult cats. PROCEDURES: On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, i.v.) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 microg/kg/ min, i.v.) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (> or = 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II). RESULTS: In phase I, heart rate and arterial pressure did not differ between remifentanil-treated groups. From 30 to 90 minutes, cats receiving 0.3 microg of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 microg of remifentanil/kg/min. In phase II, the highest dosage (mean +/- SEM) of remifentanil that prevented cardiovascular responses was 0.23 +/- 0.01 microg/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes. CONCLUSIONS AND CLINICAL RELEVANCE: Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 microg/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.  相似文献   

20.
OBJECTIVE: To evaluate the effect of intratesticular administration of lidocaine on cardiovascular responses and cremaster muscle tension during castration of isoflurane-anesthetized stallions. ANIMALS: 28 healthy stallions (mean +/- SD age, 4.2 +/- 2.8 years) with no testicular abnormalities that were scheduled for castration. PROCEDURE: Each horse was given acepromazine (20 microg/kg, IM), romifidine (50 microg/kg, IV), and butorphanol (20 microg/kg, IV). Anesthesia was induced with ketamine (2.5 mg/kg, IV) and midazolam (50 microg/kg, IV) and maintained with isoflurane (1.7% end-tidal concentration). After 10 minutes at a stable anesthetic plane, a needle was placed in each testicle and either no fluid or 15 mL of 2% lidocaine was injected; 10 minutes after needle placement, surgery was commenced. Pulse rate and arterial blood pressures were measured invasively at intervals from 5 minutes prior to castration (baseline) until 5 minutes after the left spermatic cord was clamped. The surgeon subjectively scored the degree of cremaster muscle tension. In 2 horses, lidocaine labeled with radioactive carbon (C(14)) was used and testicular autoradiograms were obtained. RESULTS: Compared with baseline values, castration significantly increased blood pressure measurements; intratesticular injection of lidocaine decreased this blood pressure response and cremaster muscle tension. In 2 horses, autoradiography revealed diffuse distribution of lidocaine into the spermatic cord but poor distribution into the cremaster muscle. CONCLUSIONS AND CLINICAL RELEVANCE: In isoflurane-anesthetized stallions, intratesticular injection of lidocaine prior to castration appeared to decrease intraoperative blood pressure responses and cremaster muscle tension and may be a beneficial supplement to isoflurane anesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号