首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identity of the presumed phytoplasmal pathogen associated with cranberry false-blossom disease has never been fully clarified. In the present study a molecular-based procedure was employed to determine the identity of the phytoplasma. Tissues of cranberry plants exhibiting cranberry false-blossom symptoms were collected from multiple bogs on each of three randomly selected commercial cranberry farms in New Jersey. Leafhoppers, including the known vector Limotettix vaccinii (Van Duzee) (=Scleroracus vaccinii, Euscellis striatulus) and the sharp-nosed leafhopper Scaphytopius magdalensis (Provancher), a known vector of blueberry stunt disease, were collected from two different farms in New Jersey. Nested PCR assays and RFLP analysis of 16S rRNA gene sequences were employed for the detection and identification of the associated phytoplasmas. All of 20 cranberry plants sampled and five out of 14 batches of leafhoppers tested positive for phytoplasma. Virtual RFLP and sequence analyses revealed that all the associated phytoplasmas were members or variants of a new subgroup, 16SrIII-Y. Phylogenetic analysis of 16S rRNA sequences indicated that cranberry false-blossom phytoplasma strains represented a lineage distinct from other 16SrIII subgroups. This is the first report confirming that a new phytoplasma (designated as a new subgroup 16SrIII-Y) is associated with cranberry false-blossom disease and associated with both leafhopper species in New Jersey.  相似文献   

2.
Previously undescribed phytoplasmas were detected in diseased plants of dandelion (Taraxacum officinale) exhibiting virescence of flowers, thistle (Cirsium arvense) exhibiting symptoms of white leaf, and a Gaillardia sp. exhibiting symptoms of stunting and phyllody in Lithuania. On the basis of restriction fragment length polymorphism (RFLP) analysis of 16S rDNA amplified in PCR, the dandelion virescence (DanVir), cirsium whiteleaf (CirWL), and gaillardia phyllody (GaiPh) phytoplasmas were classified in phylogenetic group 16SrIII (X-disease phytoplasma group), new subgroups III-P and III-R and subgroup III-B, respectively. RFLP and nucleotide sequence analyses revealed 16S rRNA interoperon sequence heterogeneity in the two rRNA operons, rrnA and rrnB, of both DanVir and CirWL. Results from phylogenetic analysis based on nucleotide sequences of 16S rDNA were consistent with recognition of the two new subgroups as representatives of distinct new lineages within the group 16SrIII phytoplasma subclade. The branching order of rrnA and rrnB sequences in the phylogenetic tree supported this interpretation and indicated recent common ancestry of the two rRNA operons in each of the phytoplasmas exhibiting interoperon heterogeneity.  相似文献   

3.
A large scale survey of diseased legume plants (mainly clover and alfalfa in the Fabaceae family) was conducted from 2009 to 2013 in four Economic Regions of Russia, Northern (Arkhangelsk and Vologda oblast), Central (Moscow oblast), Volga (Samara oblast) and West Siberian (Novosibirsk oblast). The majority of infected clover plants exhibited symptoms typical of clover phyllody (CPh), clover yellow edge (CYE), or clover proliferation (CP), and infected alfalfa plants exhibited symptoms typical of alfalfa witches’-broom (AWB). Of 161 symptomatic plants from 22 different legume species, 103 tested positive for phytoplasma infection. Phytoplasmas belonging to four groups and six subgroups were detected, of which 31.1% were group 16SrI, with the majority belonging to subgroup 16SrI-C- (causal agent of CPh disease), two belonging to 16SrI-B and two group 16SrI phytoplasmas not identified to the subgroup level;47.6% were group 16SrIII, with the majority belonging to subgroup 16SrIII-B or 16SrIII-B variant (causal agent of CYE disease), and one strain belonging to16SrIII-F; 8.7% were subgroup 16SrVI-A (causal agent of CP and AWB diseases); 9.7% were subgroup 16SrXII-A (causal agent of AWB disease); and 2.9% were mixed infected with subgroups 16SrIII-B and 16SrI-C. The predominant phytoplasma species detected varied by region. In the Northern and Central Regions, the majority of the phytoplasmas detected belonged to subgroups 16SrI-C and 16SrIII-B. In the West Siberian and the Volga Regions, the phytoplasmas predominately detected belonged to subgroups 16SrVI-A and 16SrXII-A, respectively. Subgroup 16SrIII-F was detected in a single plant in the West Siberian Region and a mixed infection of 16SrIII-B and 16SrI-C was detected in three plants, one in the Northern Region and two in the Central Region. Eleven species of insects of the order Hemiptera, suborder Auchenorrhyncha, were collected from leguminous plants in the Moscow oblast of the Central Region. Euscelis incisus and Aphrodes bicinctus were the most prevalent species and may be potential phytoplasma vectors in the Central Region.  相似文献   

4.
In January 2011, symptomatic chickpea and faba bean plants were observed in fields located in the Gezira state (Sudan). Faba bean plants showed yellowing and stunting, whereas chickpea plants presented yellowing, reddening and little leaves. The disease etiology was investigated using nested polymerase chain reaction (PCR) with phytoplasma-specific primers which amplify a fragment of the 16S rRNA gene. Sequencing and restriction fragment length polymorphism (RFLP) analyses revealed that the tested phytoplasmas belonged to the group 16SrII. Phylogenetic analyses of the 16S rRNA gene of the obtained sequences indicated that the chickpea and faba bean phytoplasmas from Sudan were more closely related to the phytoplasmas subgroup 16SrII-D. To our knowledge, this is the first report of phytoplasmas from the group 16SrII-D infecting chickpea in Sudan, and faba bean worldwide.  相似文献   

5.
ABSTRACT Alfalfa (Medicago sativa) plants showing witches'-broom symptoms typical of phytoplasmas were observed from Al-Batinah, Al-Sharqiya, Al-Bureimi, and interior regions of the Sultanate of Oman. Phytoplasmas were detected from all symptomatic samples by the specific amplification of their 16S-23S rRNA gene. Polymerase chain reaction (PCR), utilizing phytoplasma-specific universal primer pairs, consistently amplified a product of expected lengths when DNA extract from symptomatic samples was used as template. Asymptomatic plant samples and the negative control yielded no amplification. Restriction fragment length polymorphism profiles of PCR-amplified 16S-23S rDNA of alfalfa using the P1/P7 primer pair identified phytoplasmas belonging to peanut witches'-broom group (16SrII or faba bean phyllody). Restriction enzyme profiles showed that the phytoplasmas detected in all 300 samples belonged to the same ribosomal group. Extensive comparative analyses on P1/P7 amplimers of 20 phytoplasmas with Tru9I, Tsp509I, HpaII, TaqI, and RsaI clearly indicated that this phytoplasma is different from all the other phytoplasmas employed belonging to subgroup 16SrII, except tomato big bud phytoplasma from Australia, and could be therefore classified in subgroup 16SrII-D. The alfalfa witches'-broom (AlfWB) phytoplasma P1/P7 PCR product was sequenced directly after cloning and yielded a 1,690-bp product. The homology search showed 99% similarity (1,667 of 1,690 base identity) with papaya yellow crinkle (PapayaYC) phytoplasma from New Zealand. A phylogenetic tree based on 16S plus spacer regions sequences of 35 phytoplasmas, mainly from the Southern Hemisphere, showed that AlfWB is a new phytoplasma species, with closest relationships to PapayaYC phytoplasmas from New Zealand and Chinese pigeon pea witches'-broom phytoplasmas from Taiwan but distinguishable from them considering the different associated plant hosts and the extreme geographical isolation.  相似文献   

6.
2022年首次在广州市发现园林植物雪花木小叶病病株, 采用分子生物学技术对其进行植原体的种类鉴定。以雪花木叶片总DNA为模板, 利用植原体16S rRNA通用引物P1/P7进行PCR扩增, 获得广东雪花木小叶病植原体(BLL-GD2022)16S rRNA基因片段(1 811 bp, GenBank登录号为OQ625536)。16S rRNA序列相似性显示, BLL-GD2022与16SrVI组植原体株系的相似性最高, 为97.05%~99.83%, 其中与隶属于16SrVI-D亚组的10个植原体株系相似性为99.21%~99.83%。系统进化分析显示, BLL-GD2022与16SrVI组各植原体株系聚类在一个大分支, 其中与16SrVI-D亚组成员聚类在一个小分支, 亲缘关系最近。基于16S rRNA序列的iPhyClassifier限制性内切酶虚拟RFLP分析表明, BLL-GD2022与16SrVI-D亚组的参考株系Brinjal little leaf phytoplasma (GenBank登录号为X83431)的酶切图谱一致, 相似系数为1.00。基于上述研究结果, 明确广州市雪花木小叶病植原体隶属16SrVI-D亚组成员。本研究首次在园林植物雪花木上检测到植原体, 通过16S rRNA序列分析明确为16SrVI-D亚组成员, 为开展16SrVI-D亚组植原体在蔬菜、花卉和园林植物的发生监测及病害防控提供科学依据。  相似文献   

7.
ABSTRACT In the spring of 2000, an aster yellows (AY) epidemic occurred in carrot crops in the Winter Garden region of southwestern Texas. A survey revealed that vegetable crops, including cabbage, onion, parsley, and dill, and some weeds also were infected by AY phytoplasmas. Nested polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis of PCR-amplified phytoplasma 16S rDNA were employed for the detection and identification of phytoplasmas associated with these crops and weeds. Phytoplasmas belonging to two subgroups, 16SrI-A and 16SrI-B, in the AY group (16SrI), were predominantly detected in infected plants. Carrot, parsley, and dill were infected with both subgroups. Onion and three species of weeds (prickly lettuce, lazy daisy, and false ragweed) were predominantly or exclusively infected by subgroup 16SrI-A phytoplasma strains, while cabbage was infected by subgroup 16SrI-B phytoplasmas. Both types of phytoplasmas were detected in three leafhopper species, Macrosteles fascifrons, Scaphytopius irroratus, and Ceratagallia abrupta, commonly present in this region during the period of the epidemic. Mixed infections were very common in individual carrot, parsley, and dill plants and in individual leafhoppers. Sequence and phylogenetic analyses of 16S rDNA and ribosomal protein (rp) gene sequences indicated that phytoplasma strains within subgroup 16SrI-A or subgroup 16SrI-B, detected in various plant species and putative insect vectors, were highly homogeneous. However, based on rp sequences, two rpI subgroups were identified within the subgroup 16SrI-A strain cluster. The majority of subgroup 16SrI-A phytoplasma strains were classified as rp subgroup rpI-A, but phytoplasma strains detected in one onion sample and two leafhoppers (M. fascifrons and C. abrupta) were different and classified as a new rp subgroup, rpI-N. The degree of genetic homogeneity of the phytoplasmas involved in the epidemic suggested that the phytoplasmas came from the same pool and that all three leafhopper species may have been involved in the epidemic. The different phytoplasma population profiles present in various crops may be attributed to the ecological constraints as a result of the vector-phytoplasma-plant three-way interaction.  相似文献   

8.
The phytoplasmas of groups 16SrI (‘Candidatus Phytoplasma asteris’) and 16SrVII (‘Ca. Phytoplasma fraxini’) have been associated with phytoplasma diseases in several urban tree species in Bogotá, Colombia and surrounding areas. The insect vectors responsible for this phytoplasma transmission are unknown. The objectives of this study were to test for the presence of phytoplasmas in leafhopper species (Cicadellidae) collected in areas with diseased trees and to determine the phytoplasma transmission ability of two of these species. Leafhoppers of nine species were collected at two sampling sites and tested by nested or double nested PCR using primers for the 16S rRNA gene. The amplicons were subjected to RFLP and/or sequencing analysis. Phytoplasmas of group 16SrI were detected in morphospecies MF05 (Haldorus sp.), group 16SrVII in MF07 (Xestocephalus desertorum), MF08 (Empoasca sp.) and MF09 (Typhlocybinae), and both groups 16SrI and 16SrVII in MF01 (Empoasca sp.), MF02 (Typhlocybinae), MF03 (Scaphytopius sp.), MF04 (Amplicephalus funzaensis) and MF06 (Exitianus atratus). Transmission tests to uninfected bean plants (Phaseolus vulgaris) were performed using field collected A. funzaensis and E. atratus individuals in separate assays. After 5 weeks, the test plants exposed to individuals of both species of leafhoppers showed symptoms, suggesting phytoplasma infection. Phytoplasma groups 16SrI and 16SrVII were detected in the two groups of exposed plants, indicating that A. funzaensis and E. atratus were able to transmit both groups of phytoplasmas. This is the first report of insect vectors for phytoplasmas of group 16SrVII in the world and of 16SrI in South America.  相似文献   

9.
Davies 《Plant pathology》2000,49(1):86-88
Polymerase chain reaction using universal primers to sequences in the 16S rRNA gene, and group-specific primers to sequences in the 16S/23S spacer region, revealed two distinct phytoplasmas occurring in Rubus plants showing symptoms of rubus stunt. One phytoplasma appeared similar to phytoplasmas in the elm yellows group; the other appeared to fall into the X disease group. This finding was confirmed by RFLP analysis of PCR products. This is the first identification of phytoplasmas from either of these groups occurring in the UK, and the first report of a phytoplasma belonging to the X disease group in Rubus .  相似文献   

10.
Purple coneflower plants showing leaf reddening and flower abnormalities were observed in South Bohemia (Czech Republic). Transmission electron microscopy observations showed phytoplasmas in sieve cells of symptomatic plants but not in healthy ones. Polymerase chain reactions with universal and group specific phytoplasma primers followed by restriction fragment length polymorphism analyses of 16S rDNA allowed us to classify the detected phytoplasmas into the X-disease group, ribosomal subgroup 16SrIII-B. Sequence analyses of the 16S-23S ribosomal operon (1684 bp), ribosomal protein L15, and protein translocase genes (1566 bp) confirmed the closest relationship with phytoplasmas belonging to the 16SrIII ribosomal group, specifically the 16SrIII-B subgroup. The current study reports purple coneflower as a new host for the X-disease phytoplasma group in the Czech Republic and worldwide.  相似文献   

11.
Phytoplasma: ecology and genomic diversity   总被引:1,自引:0,他引:1  
ABSTRACT The recent development of molecular-based probes such as mono- and polyclonal antibodies, cloned phytoplasma DNA fragments, and phytoplasma-specific primers for polymerase chain reaction (PCR) has allowed for advances in detection and identification of uncultured phytoplasmas (formerly called mycoplasma-like organisms). Comprehensive phylogenetic studies based on analysis of 16S ribosomal RNA (rRNA) or both 16S rRNA and ribosomal protein gene operon sequences established the phylogenetic position of phytoplasmas as members of the class Mollicutes, and the revealed phylogenetic interrelationships among phytoplasmas formed a basis for their classification. Based on restriction fragment length polymorphism (RFLP) analysis of PCR-amplified 16S rRNA gene sequences, phytoplasmas are currently classified into 14 groups and 38 subgroups that are consistent with groups delineated based on phylogenetic analysis using parsimony of 16S rRNA gene sequences. In the past decades, numerous phyto-plasma strains associated with plants and insect vectors have been identified using molecular-based tools. Genomic diversity of phytoplasma groups appears to be correlated with their sharing common insect vectors, host plants, or both in nature. The level of exchange of genetic information among phytoplasma strains in a given group is determined by three-way, vector-phytoplasma-plant interactions. A putative mechanism for the creation of new ecological niches and the evolution of new ecospecies is proposed.  相似文献   

12.
The identity of phytoplasmas detected in strawberry plants with green petal (SGP) and lethal yellows (SLY) diseases was determined by RFLP analysis of the 16S rRNA gene and adjacent spacer region (SR). RFLP and sequence comparisons indicated that the phytoplasmas associated with SGP and SLY were indistinguishable and were most closely related to ' Candidatus Phytoplasma australiense', the phytoplasma associated with Australian grapevine yellows, papaya dieback and Phormium yellow leaf diseases. This taxon lies within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify only members of the AY strain cluster, amplified a DNA product from the SGP and SLY phytoplasmas. Primers deduced from the 16S rRNA/SR of P. australiense that amplify only members of this taxon amplified rDNA sequences from the SGP and SLY phytoplasmas. Primers that selectively amplify members of the faba bean phyllody (FBP) phytoplasma group, the most commonly occurring phytoplasma group in Australia, did not amplify rDNA from the SGP and SLY phytoplasmas.  相似文献   

13.
This study examined whether genes that are less conserved than the 16S rRNA gene can distinguish Candidatus Phytoplasma australiense strains that are identical based on their 16S rRNA genes, with a view to providing insight into their origins and distribution, and any patterns of association with particular plant hosts. Sequence analysis of the tuf gene and rp operon showed that Ca . P. australiense strains could be differentiated into four subgroups, named 16SrXII-B ( tuf -Australia I; rp -A), 16SrXII-B ( tuf -New Zealand I; rp -B), 16SrXII-B ( tuf -New Zealand II) and 16SrXII-B ( rp -C). Strawberry lethal yellows 1, strawberry green petal, Australian grapevine yellows, pumpkin yellow leaf curl and cottonbush witches' broom phytoplasmas were designated members of the 16SrXII-B ( tuf -Australia I; rp -A) subgroup. The strawberry lethal yellows 2 and cottonbush reduced yellow leaves phytoplasmas were assigned to the 16SrXII ( tuf -New Zealand II; rp -B) subgroup. No relationship was observed between these phytoplasma subgroups and collection date, location or host plant. However, the study revealed evolutionary divergence in the 16SrXII group.  相似文献   

14.
In the United States, yellow starthistle (Centaurea solstitialis) is an annual invasive weed with Mediterranean origins. Malformed plants displaying witches' broom, fasciations, abortion of buds and flower virescence symptoms were observed in central Italy. Attempts to transmit the causal agent from the natural yellow starthistle host to periwinkle by grafting, resulted in typical symptoms of a phytoplasma, i.e. yellowing and shortening of internodes. The detection of phytoplasmas was obtained from both symptomatic yellow starthistle and periwinkle by the specific amplification of their 16S-23S rRNA genes. PCR amplification of extracted DNA from symptomatic plant samples gave a product of expected size. Asymptomatic plants did not give positive results. An amplicon obtained by direct PCR with universal primers P1/P7 was cloned and sequenced. The homology search using CLUSTALW program showed more than 99% similarity with Illinois elm yellows (ILEY) phytoplasma from Illinois (United States) and 97% with Brinjal little leaf (BLL) phytoplasma from India. Digestion of the nested-PCR products with restriction enzymes led to restriction fragment length polymorphism patterns referable to those described for phytoplasmas belonging to the clover proliferation (16S-VI) group. Since this is a previously undescribed disease, the name Centaurea solstitialis virescence has been tentatively assigned to it. This is a new phytoplasma with closest relationships to ILEY and BLL, but distinguishable from them on the basis of 16S rDNA homology, the different associated plant hosts and their geographical origin.  相似文献   

15.
Aster yellows group phytoplasmas were reclassified by analysis of the 16S rRNA gene sequence, their phylogeny and the presence of interoperon heterogeneity. Nine phytoplasmas were classified into subgroups 16SrI-B and 16SrI-D using the 16S rRNA gene sequence. Then, based on the presence of interoperon heterogeneity, subgroup 16SrI-B phytoplasmas were differentiated into three subunits as 16SrI-B(a): mulberry dwarf, sumac witches’ broom and porcelain vine witches’ broom; 16SrI-B(b): angustata ash witches’ broom and Japanese spurge yellows; and 16SrI-B(c): onion yellow dwarf, water dropwort witches’ broom and hare’s ear yellow dwarf phytoplasma.  相似文献   

16.
棣棠丛枝病相关植原体的分子鉴定   总被引:1,自引:0,他引:1  
 植原体(Candidatus Phytoplasma)是一种没有细胞壁的原核微生物,主要由取食韧皮部的昆虫(叶蝉、飞虱等)传播, 也可由菟丝子寄生和嫁接等途径传播,常常引起植株黄化、丛枝、花器变态、萎缩等症状。迄今为止,世界上报道的植物植原体病害有1 000余种,仅我国就有100多种,造成巨大损失。  相似文献   

17.
The 16S rRNA gene of plum leptonecrosis phytoplasma has been PCR-amplified, cloned and almost completely sequenced (1201 bp). The sequence analysis confirmed the close genetic relationship between plum leptonecrosis phytoplasma and the phytoplasmas associated with other stone-fruit diseases in Europe. By comparison with the 16S rDNA sequence of apple proliferation phytoplasma, two oligonucleotides were selected, differing by two nucleotides, which were specific for apple proliferation and plum leptonecrosis phytoplasmas, respectively. The oligonucleotides were labelled with digoxigenin and hybridized, in the presence of tetramethylammonium chloride, to 16S rDNA fragments amplified from apple and plum leaf samples. The results showed that, under the described hybridization conditions, the two phytoplasmas could clearly be distinguished. The advantage of the proposed technique over 16S rDNA restriction fragment length polymorphism is discussed.  相似文献   

18.
A phytoplasma was detected in annual blue grass (Poa annua L. Fienardo), exhibiting white leaf symptoms, that was grown in the fields near Caserta in southern Italy. Based on restriction fragment length polymorphism analysis of PCR-amplified 16S rDNA sequences, the phytoplasma associated with annual blue grass white leaf disease was identified as a new member of phytoplasma 16S rRNA group XI (16SrXI) (type strain, rice yellow dwarf phytoplasma). The annual blue grass white leaf phytoplasma is most closely related to Bermuda grass white leaf phytoplasma found in Asia. Annul blue grass white leaf and Bermuda grass white leaf phytoplasmas were designated as the third subgroup (16SrXI-C) of group XI. This is the first report that a plant pathogenic phytoplasma belonging to group 16SrXI is present on the European continent.  相似文献   

19.
Davis RE  Sinclair WA 《Phytopathology》1998,88(12):1372-1376
ABSTRACT Many plant diseases believed to be caused by phytoplasmas were described before phytoplasma groups were delineated through molecular analyses. It is now possible to assess the relationships between phytoplasma identity or classification and specific plant diseases. Data were consistent with the hypothesis of a common ancestral origin of pathogenicity genes in many phytoplasmas and a limited repertoire of plant responses to certain pathogen signals. Observations also were consistent with the hypotheses that the botanical host ranges of some phytoplasmas reflect specificities in transmission by vectors and vector feeding preferences; phytoplasma-insect vector relationships are keys to understanding evolutionary divergence of phytoplasma lineages; small differences in a highly conserved phytoplasma gene may be regarded as potential indicators of separate gene pools; the reliability of a diagnosis based on symptoms must be learned empirically (i.e., through case study for each syndrome); and some discrete diseases can be ascribed to phytoplasma taxa at the 16S rRNA group level, whereas others are clearly associated with phytoplasma taxa below this level.  相似文献   

20.
Coconut palm ( Cocos nucifera ), oil palm ( Elaeis guineensis ), Bermudagrass ( Cynodon dactylon ) and Madagascar periwinkle ( Catharanthus roseus ) with symptoms indicative of phytoplasma disease were collected from different locations in Malaysia. PCR assays employing phytoplasma universal rRNA gene primers P1/P7 alone or P1/P7 followed by R16F2n/R16R2 detected phytoplasmas in eight out of 20 Malayan Red Dwarf (MRD), nine out of 12 Malayan Yellow Dwarf (MYD) and 12 out of 12 Malayan Tall (MT) coconut palms displaying coconut yellow decline symptoms. Positive detections were also obtained from six out of six oil palm seedlings showing symptoms of yellowing and necrosis, from 10 out of 10 Bermudagrass samples with white leaf symptoms, and from eight out of eight periwinkle plants showing phyllody, virescence, little leaf, proliferation and foliar yellowing. Phytoplasmas were not detected in any of the symptomless plants tested. Sequencing and phylogenetic analysis of PCR products determined that phytoplasmas infecting both MRD and MT coconuts and Bermudagrass in Serdang, Selangor State, were all members of the 16SrXIV ' Candidatus Phytoplasma cynodontis' group, whereas isolates in periwinkle in Serdang were all members of the 16SrI ' Ca. Phytoplasma asteris' group. However, the phytoplasmas detected in MYD coconuts and oil palms from Banting, Selangor State, and in periwinkle from Putrajaya were collectively very similar (99%), but shared <97·5% similarity with 16S rDNA sequences of all other known phytoplasmas, indicating that they represent a novel taxonomic group. Thus, at least two phylogenetically distinct phytoplasmas are associated with the coconut yellow decline syndrome in Malaysia, both of which were also detected in other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号