首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine viral diarrhea virus (BVDV) affects cattle populations causing clinical signs that range from subclinical immunosuppression to severe reproductive and respiratory problems. Detection and removal of persistently infected (PI) calves is the single most important factor for control and eradication of BVDV. Current testing strategies to detect PI calves rely heavily on immunohistochemistry (IHC) and a commercially available antigen capture ELISA (ACE) assay. These viral assays depend on 1 or 2 monoclonal antibodies which target the E(rns) glycoprotein of BVDV. The sensitivity and specificity of these two tests have been reported previously. The purpose of this research was to characterize a strain of BVDV (AU501) that was undetectable using IHC and ACE based on a single monoclonal antibody, but was consistently detected in samples from a Holstein steer using virus isolation and PCR testing. Sequencing of this AU501 viral isolate revealed a unique mutation in the portion of the genome coding for the E(rns) glycoprotein. This unique field strain of BVDV demonstrates the risk of relying on a single monoclonal antibody for detection of BVDV. Multiple testing strategies, including polyclonal or pooled monoclonal antibodies that detect more than one viral glycoprotein may be necessary to detect all PI calves and facilitate eradication of BVDV.  相似文献   

2.
Calves persistently infected (PI) with Bovine viral diarrhea virus (BVDV) represent an important source of infection for susceptible cattle. We evaluated vaccine efficacy using calves PI with noncytopathic BVDV2a for the challenge and compared tests to detect BVDV in acutely or transiently infected calves versus PI calves. Vaccination with 2 doses of modified live virus vaccine containing BVDV1a and BVDV2a protected the calves exposed to the PI calves: neither viremia nor nasal shedding occurred. An immunohistochemistry test on formalin-fixed ear notches and an antigen-capture enzyme-linked immunosorbent assay on fresh notches in phosphate-buffered saline did not detect BVDV antigen in any of the acutely or transiently infected calves, whereas both tests had positive results in all the PI calves.  相似文献   

3.
Bovine viral diarrhoea virus (BVDV) is an endemic pathogen worldwide and eradication strategies focus on the identification and removal of persistently infected (PI) animals arising after in utero infection. Despite this, acute infections with BVDV can persist for months or years after the removal of the PI source despite repeated screening for PIs and tight biosecurity measures. Recent evidence for a prolonged duration of viraemia in the testicles of bulls following acute BVDV infection suggests the possibility of a form of chronic persistence that may more closely resemble the persistence strategies of hepatitis C virus (HCV). To investigate the potential for virus transmission from infected and recovered cattle to virus naïve hosts we established an acute infection of 5 BVDV-naïve calves and monitored animals over 129 days. Infectious BVDV was detected in white blood cells between days 3 and 7 post-challenge. The animals seroconverted by day 21 post-infection and subsequently were apparently immune and free from infectious virus and viral antigen.Animals were further monitored and purified white blood cells were stimulated in vitro with phytohaemagglutinin A (PHA) during which time BVDV RNA was detected intermittently.Ninety-eight days following challenge, blood was transferred from these apparently virus-free and actively immune animals to a further group of 5 BVDV-naïve calves and transmission of infection was achieved. This indicates that BVDV-infected, recovered and immune animals have the potential to remain infectious for BVDV-naïve cohorts for longer than previously demonstrated.  相似文献   

4.
Bovine viral diarrhea virus (BVDV) infections resulting in clinical disease developed in calves, despite vaccination of dams and high maternal BVDV antibody titers in calves. Eight persistently infected (PI) calves born to immunocompetent dams were identified in the herd. Neutralizing BVDV antibody titers of PI calves had decreased greatly by the time the calves were 1 to 2 months old. Antibody titers of PI calves decreased more rapidly than antibody titers of calves that were not PI. Reduced antibody titers in PI calves allowed detection of BVDV in serum specimens of all PI calves by the time they were 8 weeks old. Persistent infection in suspect calves was detectable serologically and was confirmed by virologic examination of serum specimens 4 months after weaning, when the calves were 9 months old. Growth rates were reduced in viremic calves.  相似文献   

5.
Knowing how bovine viral diarrhoea virus (BVDV) infection spreads via indirect contacts is required in order to plan large-scale eradication schemes against BVDV. In this study, susceptible calves were exposed to BVDV by an unhygienic vaccination procedure, by ambient air and from contaminated pens. Primary BVDV infection was observed in two calves vaccinated with a vaccine against Trichophyton spp that had been contaminated by smearing nasal secretion from a persistently infected (PI) calf on the rubber membrane and penetrating it twice with a hypodermic needle. Four other calves, housed in pairs in two separate housing units near a PI calf for one week--at distances of 1.5 and 10 m, respectively--became infected without having direct contact with the PI calf. Furthermore, two of the three calves housed in a pen directly after removal of a PI calf, but without the pen being cleaned and disinfected, also contracted primary BVDV infection, whereas two calves that entered such a pen four days after removal of another PI calf, did not. In herds where most animals are seronegative to BVDV, indirect airborne transmission of BVDV or contact with a contaminated housing interior may be an important factor in spreading of the virus, once a PI animal is present. However, the spreading of BVDV within herds can be stopped by identifying and removing PI animals and also by ensuring that susceptible breeding animals do not become infected during this procedure. In contrast, injectables contaminated with BVDV may prove to be a significant vector for spreading the infection, not only within an infected herd but, most importantly, also between herds. In our opinion, it is questionable whether medicine bottles, once opened and used within an infected herd, should be used in other herds. In any case, prior knowledge of a herd's BVDV status will help practising veterinarians and technicians to undertake appropriate hygienic measures.  相似文献   

6.
Distribution of bovine viral diarrhoea virus (BVDV) antigens in the central nervous system (CNS) of 26 cattle persistently BVDV infected, 11 cattle with mucosal disease (MD), and 32 calves with congenital brain malformations was studied using monoclonal antibodies against BVDV epitopes. In persistently infected cattle and in cattle with MD, a widespread infection of neurons was present. Predilection sites for BVDV antigens were the cerebral cortex and the hippocampus. In calves with congenital encephalopathies, viral antigen-containing neurons could only be detected in the CNS of four animals. From the topographical distribution of BVDV antigens in these four postnatal cases with end-stage lesions, no conclusions could be drawn concerning the pathogenesis of BVDV-induced encephalopathies.  相似文献   

7.
Detection, genetic characterization, and control of bovine viral diarrhea virus (BVDV) disease in a large commercial dairy herd is reported. Precolostral BVDV serum antibody was detected in 5.3% (12/226) of newborn calves before the test and removal of persistently infected (PI) animals and in 0.4% (2/450) of newborn calves after the removal of PI heifers.  相似文献   

8.
Twenty-two heifers were infected intranasally with non-cytopathic bovine viral diarrhoea virus (BVDV) between days 74 and 82 of pregnancy. All animals had developed serum antibodies against BVDV 5 weeks later. No clinical effects were seen in the heifers, and they all delivered a live calf. The newborn calves were generally small, appeared unthrifty as typical 'poor doers', and some developed secondary infections with diarrhoea and signs of respiratory disease. Eighteen of the 22 calves were born without antibodies against BVDV and were persistently infected (PI) with the virus. One was weak at birth and died the following day. Four calves were born with serum antibodies against BVDV and with no detectable virus. Three of these showed signs and/or pathological changes indicating disease in the central nervous system. Otherwise, there were no obvious clinical differences between these calves and the PI calves, nor were there any apparent significant differences in blood parameters between these groups. In general, the calves showed low gamma-globulin values and thrombocytopaenia, but moderately increased fibrinogen values and relatively normal lymphocyte numbers.  相似文献   

9.
Bovine viral diarrhea viruses (BVDV) cause both acute and persistent infections. While diagnostic tests have been designed to detect animals persistently infected (PI) with BVDV, the reliability of these tests in detecting acute BVDV infections is not known. It is also possible that acute BVDV infections may be confused with persistent infections in surveys for PI animals. In this study, 2 tests presently in use in diagnostic laboratories to test for PI animals, polymerase chain reaction amplification followed by probe hybridization (RT-PCR/probe) of serum samples and immunohistochemical detection of viral antigen in skin biopsies (IHC), were evaluated for their ability to detect acute BVDV infections. Sixteen colostrum-deprived, BVDV-free, and BVDV-antibody-free calves were infected with 6 different BVDV strains. Clinical signs, seroconversion, and virus isolation indicated that inoculated animals did replicate virus. Virus could be detected in 19% (3/16) of acutely infected animals by the RT-PCR/probe technique. No acutely infected animals were positive by IHC.  相似文献   

10.
Nineteen pregnant cows were experimentally infected with bovine viral diarrhoea virus (BVDV) between day 74 and 81 of pregnancy. All cows became infected and developed serum antibodies. Sixteen of the cows delivered persistently infected (PI) offspring, whereas the remaining three gave birth to calves with detectable serum antibodies and free from BVDV. The 16 cows with PI foetuses developed higher levels of antibodies in serum during pregnancy than did their three peers carrying non‐PI calves. Multivariate analysis showed that the antibody levels in these two groups of cows were significantly different from day 135 of pregnancy. Foetal fluid was successfully collected from 18 of the 19 infected cows and from five uninfected control cows between 10 and 24 days before delivery by use of a percutaneous, blind puncture technique. No negative effects were observed in the cows or their offspring. BVDV was isolated and detected with an immunoperoxidase test in foetal fluid from 13 of the 16 cows carrying PI foetuses, and from 15 of the cows when a quantitative fluorescent polymerase chain reaction (PCR) technique was used. The negative sample in the PCR assay was positive for BVDV antibodies. The number of viral copies per microlitre in foetal fluids varied between 103 and 1080 in the positive samples. All samples taken from the cows carrying non‐PI foetuses were negative for BVDV in both assays. In this experiment, examination of either serum or foetal fluids could identify the cows carrying a PI foetus. Examination of serum for BVDV antibodies was a reliable indicator of a PI foetus if the serum was collected during the last 2 months of pregnancy. For examination of foetal fluids, both viral and serological analyses should be performed. For viral analysis, PCR should be the test of choice. High levels of BVDV antibodies in conjunction with a negative result in the PCR may be indicative of a false‐negative virus result. Further experience with the method of collection of foetal fluids is necessary for evaluation of its safety. Investigation of pregnant cows in order to discover a PI offspring before it is born could be a useful tool in control and eradication of BVDV.  相似文献   

11.
Nineteen pregnant cows were experimentally infected with bovine viral diarrhoea virus (BVDV) between day 74 and 81 of pregnancy. All cows became infected and developed serum antibodies. Sixteen of the cows delivered persistently infected (PI) offspring, whereas the remaining three gave birth to calves with detectable serum antibodies and free from BVDV. The 16 cows with PI foetuses developed higher levels of antibodies in serum during pregnancy than did their three peers carrying non-PI calves. Multivariate analysis showed that the antibody levels in these two groups of cows were significantly different from day 135 of pregnancy. Foetal fluid was successfully collected from 18 of the 19 infected cows and from five uninfected control cows between 10 and 24 days before delivery by use of a percutaneous, blind puncture technique. No negative effects were observed in the cows or their offspring. BVDV was isolated and detected with an immunoperoxidase test in foetal fluid from 13 of the 16 cows carrying PI foetuses, and from 15 of the cows when a quantitative fluorescent polymerase chain reaction (PCR) technique was used. The negative sample in the PCR assay was positive for BVDV antibodies. The number of viral copies per microlitre in foetal fluids varied between 103 and 1080 in the positive samples. All samples taken from the cows carrying non-PI foetuses were negative for BVDV in both assays. In this experiment, examination of either serum or foetal fluids could identify the cows carrying a PI foetus. Examination of serum for BVDV antibodies was a reliable indicator of a PI foetus if the serum was collected during the last 2 months of pregnancy. For examination of foetal fluids, both viral and serological analyses should be performed. For viral analysis, PCR should be the test of choice. High levels of BVDV antibodies in conjunction with a negative result in the PCR may be indicative of a false-negative virus result. Further experience with the method of collection of foetal fluids is necessary for evaluation of its safety. Investigation of pregnant cows in order to discover a PI offspring before it is born could be a useful tool in control and eradication of BVDV.  相似文献   

12.
Cattle persistently infected (PI) with bovine viral diarrhea virus(BVDV) are a major source of infection to herds. To successfully control BVDV, it is necessary to identify and cull those cattle PI with BVDV. Immunohistochemistry (IHC) is a useful tool for sensitive and specific detection of BVDV antigens in infected cattle.Skin of cattle PI with BVDV is one of the tissues where BVDV can be consistently identified by IHC and is readily accessible for sampling. Use of IHC on skin biopsies (in the form of ear notches)as a method to identify cattle PI with BVDV has resulted in a reliable, affordable technique for mass testing of cattle at an early age without maternal antibody interference. The ability to test large numbers of cattle to identify those Pl with BVDV will enable implementation of programs for control and eventual eradication of BVDV.  相似文献   

13.
Identifying reservoirs and transmission routes for bovine viral diarrhea virus (BVDV) are important in developing biosecurity programs. The aim of this study was to evaluate BVDV transmission by the hematophagous horn fly (Haematobia irritans). Flies collected from four persistently infected cattle were placed in fly cages attached to principal (n?=?4) and control (n?=?4) BVDV-naïve calves housed individually in isolation rooms. Flies were able to feed on principal calves, but a barrier prevented fly feeding from control calves. Flies were tested for BVDV by RT-PCR and virus isolation at time of collection from PI cattle and after 48 h of exposure on BVDV-naïve calves. Blood samples were collected from calves and tested for BVDV infection. Virus was isolated from fly homogenates at collection from PI animals and at removal from control and principal calves. All calves remained negative for BVDV by virus isolation and serology throughout the study. Bovine viral diarrhea virus may be detected in horn flies collected from PI cattle, but horn flies do not appear to be an important vector for BVDV transmission.  相似文献   

14.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

15.
The objective of this study was to evaluate the efficacy of immunohistochemical (IHC) staining for diagnosis of persistent bovine viral diarrhea virus (BVDV) infection using formalin-fixed, paraffin-embedded skin biopsy specimens. Skin from 41 of 42 calves shown to be persistently infected (PI) with BVDV by repeated virus isolation more than 3 weeks apart were immunohistochemically positive for BVDV antigen. Positive IHC staining was most pronounced in the keratinocytes and in hair follicle epithelium, hair matrix cells of the hair bulb, and the dermal papilla. All of the skin sections from 10 calves experimentally infected postnatally with BVDV (10(5) median tissue culture infective doses [TCID50]) and biopsied on days 0, 5, 7, and 9 postinfection were negative for viral antigen. Ten calves from a second group experimentally infected with a higher dose of BVDV (10(8) TCID50) were biopsied when viremic between 10 and 14 days postinfection and 4 calves exhibited positive IHC staining for BVDV; however, staining in these skin biopsies was confined to small foci in the nonfollicular epidermis and follicular ostia. This staining was distinct from that observed in skin obtained from PI cattle. Skin biopsy represents an effective method for identifying animals PI with BVDV.  相似文献   

16.
There are no pathognomonic clinical signs of infection with bovine viral diarrhoea virus (BVDV) in cattle. Diagnostic investigations therefore rely on laboratory-based detection of the virus, or of virus-induced antigens or antibodies in submitted samples. In unvaccinated dairy herds, serological testing of bulk milk is a convenient method for BVDV prevalence screening. Alternatively, serological testing of young stock may indicate if BVDV is present in a herd. In BVDV positive herds, animals persistently infected (PI) with BVDV can be identified by combined use of serological and virological tests for examination of blood samples. ELISAs have been used for rapid detection of both BVDV antibodies and antigens in blood, but should preferably be backed up by other methods such as virus neutralization, virus isolation in cell cultures or amplification of viral nucleic acid. Detailed knowledge of the performance of the diagnostic tests in use, as well as of the epidemiology of bovine virus diarrhoea is essential for identification of viremic animals in affected herds.  相似文献   

17.
Previous reports on the spread of bovine virus diarrhoea virus (BVDV) from animals primarily infected with the agent are contradictory. In this study, the possibility of transmission of BVDV from calves simultaneously subjected to acute BVDV and bovine coronavirus (BCV) infection was investigated. Ten calves were inoculated intranasally with BVDV Type 1. Each of the 10 calves was then randomly allocated to one of two groups. In each group there were four additional calves, resulting in five infected and four susceptible calves per group. Virulent BCV was actively introduced in one of the groups by means of a transmitter calf. Two calves, susceptible to both BVDV and BCV, were kept in a separate group, as controls. All ten calves actively inoculated with BVDV became infected as shown by seroconversions, and six of them also shed the virus in nasal secretions. However, none of the other eight calves in the two groups (four in each) seroconverted to this agent. In contrast, it proved impossible to prevent the spread of BCV infection between the experimental groups and consequently all 20 study calves became infected with the virus. Following infection, BCV was detected in nasal secretions and in faeces of the calves and, after three weeks in the study, all had seroconverted to this virus. All calves, including the controls, showed at least one of the following clinical signs during days 3-15 after the trial started: fever (> or =40 degrees C), depressed general condition, diarrhoea, and cough. The study showed that BVDV primarily infected cattle, even when co-infected with an enteric and respiratory pathogen, are inefficient transmitters of BVDV. This finding supports the principle of the Scandinavian BVDV control programmes that elimination of BVDV infection from cattle populations can be achieved by identifying and removing persistently infected (PI) animals, i.e. that long-term circulation of the virus without the presence of PI animals is highly unlikely.  相似文献   

18.
BVDV对后备牛生长发育状况及繁殖性能的影响   总被引:1,自引:0,他引:1  
牛病毒性腹泻/黏膜病(BVD/MD)是一种严重危害奶牛健康的病毒性传染病,其病原为牛病毒性腹泻病毒(BVDV)。BVDV感染牛后主要表现两种状态,即一过性感染(TI)和持续性感染(PI)。BVD在牛场的流行,可严重影响奶牛的生产性能、繁殖性能及牛群健康状况,对奶牛的影响可表现为流产、胎儿畸形、腹泻和免疫抑制等。怀孕母牛在特定妊娠阶段感染BVDV后,可娩出PI犊牛,部分PI犊牛能像正常犊牛一样生长发育至成年,但其生长发育状况和繁殖性能较同龄健康牛差异十分明显。为评价BVDV对后备牛生长发育及繁殖状况的影响,笔者采用ELISA方法检出北京地区28个规模化奶牛场141头BVDV-PI牛,并与同龄健康牛生长发育及繁殖数据相比较,结果表明,BVDV-PI后备牛各月龄段的体高、体重均低于健康后备牛,其首次输精日龄、配准日龄、耗精量明显高于健康后备牛,而一次情期受胎率显著低于健康后备牛。数据显示,BVDV严重影响后备牛的生长发育及繁殖状况。  相似文献   

19.
OBJECTIVE: To measure associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus (BVDV), antibodies against BVDV, or antibodies against infectious bovine rhinotracheitis (IBR) virus in calves. ANIMALS: 1,782 calves from 61 beef herds. PROCEDURES: Calf serum samples were analyzed at weaning for antibodies against type 1 and type 2 BVDV and IBR virus. Skin biopsy specimens from 5,704 weaned calves were tested immunohistochemically to identify persistently infected (PI) calves. Herd production records and individual calf treatment and weaning weight records were collected. RESULTS: There was no association between the proportion of calves with antibodies against BVDV or IBR virus and herd prevalence of abortion, stillbirth, calf death, or nonpregnancy. Calf death risk was higher in herds in which a PI calf was detected, and PI calves were more likely to be treated and typically weighed substantially less than herdmates at weaning. Calves with high antibody titers suggesting exposure to BVDV typically weighed less than calves that had no evidence of exposure. CONCLUSIONS AND CLINICAL RELEVANCE: BVDV infection, as indicated by the presence of PI calves and serologic evidence of infection in weaned calves, appeared to have the most substantial effect on productivity because of higher calf death risk and treatment risk and lower calf weaning weight.  相似文献   

20.
In 1992, significant calf losses occurred between birth and weaning in a 650-cow Saskatchewan beef herd. These losses occurred subsequent to ill-thrift and disease, and every calf necropsied was found to be persistently infected with bovine viral diarrhea virus (BVDV). The objectives of this study were to describe the losses associated with fetal infection with BVDV in this herd and to determine why they occurred. For investigative purposes, blood samples were collected from the entire cow herd and the surviving calves at pregnancy testing in 1992, and tested by virus isolation for BVDV. Between 51 and 71 persistently infected calves were born in 1992. Bovine viral diarrhea virus was only isolated from calves. The only confirmed fetal infections with BVDV were recorded as the birth of persistently infected calves. However, abortions, reduced pregnancy rates, and delayed calvings were also recorded in the cow herd and may have been the result of fetal infections. The herd was monitored again in 1993. Fetal infections with BVDV were recorded as the birth of stunted, deformed, and persistently infected calves. The greatest losses due to fetal infection with BVDV in the 2 years of this study occurred in cows that were 3-years-old at calving (second calves). Bovine viral diarrhea virus appears to have remained endemic in this herd by transmission from persistently infected calves on young 3- and 4-year-old cows to naive calved 2-year-old cows that were mingled with them annually for rebreeding. Significant numbers of the 2-year-old cows remained naive to BVDV, because they were segregated from persistently infected calves at weaning, preventing cross-infection with BVDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号