首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A worm-control program utilising treatment of young grazing cattle with fenbendazole on two occasions during summer was tested in the Mediterranean-type climatic environment of south-west Western Australia. The grazing system aimed to produce steers by introducing three-month-old weaned calves to pasture in mid-winter until they were sold in early summer. Comparisons were made of the numbers of worm eggs passed on to plots by treated and untreated animals during autumn, the performances of treated and untreated cattle and the performances of calves introduced to the plots in mid-winter. The “tracer” calf technique was used to determine the availability of infective larvae on one untreated and one treated plot for each of the two years of the experiment.Treated animals deposited less Ostertagia spp. eggs on to pasture during autumn than did untreated animals in one of the two years. In both years they deposited less eggs of worm species other than Ostertagia spp. Less intestinal worms were acquired by “tracer” calves grazing treatment plots than those grazing no-treatment plots in both years, but there were no differences in the number of abomasal worms acquired.The reduction in availability of infective larvae of intestinal worms was insufficient to prevent the occurrence of parasitic gastroenteritis in calves introduced to the plots in mid-winter. The fenbendazole treatments did not confer any immediate body-weight advantage on treated animals.On both treatment and no-treatment plots, there were few infective larvae available to grazing cattle during early autumn, there was a rapid attainment of peak availability in winter and then a decline to low availability by mid-spring. In one year, infective larvae of intestinal worms (almost exclusively Cooperia spp.) increased in availability again in late spring and early summer. A high proportion of retarded worms was never a feature of the worm counts of “tracer” calves.It was concluded that the treatments may have been more effective had they been given during autumn.  相似文献   

2.
A worm control programme in which heifers were treated with anthelmintic on three occasions during autumn, was tested in the Mediterranean-type climatic environment of south-west Western Australia. The experiment aimed to determine if the treatments would prevent the heifers contaminating their pastures with worm eggs during autumn, thereby improving their growth performances the following winter. An attempt was made to measure the availability of infective larvae of abomasal worms on the heifers' pastures during early winter by counting the worms in steers, previously of low worm status, that grazed with the heifers from late autumn until the start of mating in mid-winter.

The anthelmintic treatments reduced the contamination of pasture for most of autumn. The treated heifers that grazed these pastures grew faster, and by the start of mating two months after the last treatment were about 22 kg heavier, than untreated heifers grazing contaminated pasture. At the end of mating six weeks later the difference was 45 kg in favour of the treated heifers. At this time half the heifers grazing contaminated pasture were treated with anthelmintic. The following month these heifers grew faster than those left untreated, but by late November they had not attained the wieght of the heifers grazing uncontaminated pasture.

The heifers that grazed uncontaminated pasture produced more calves the following autumn than did those grazing contaminated pasture. The abomasal worm counts of the steers, with a mean of about 46 000 worms, failed to reveal any difference between treatments in the availability of larvae of abomasal worms on pasture. However, it was concluded that the treatments probably exerted their effect on growth rates by reducing the number of infective larvae ingested by heifers grazing the uncontaminated pasture during winter.  相似文献   


3.
In studies on the control of parasitic gastroenteritis in calves and sheep, involving an annual rotation of pastures grazed by these host species, it was shown that young cattle could play an important role in the epidemiology of Nematodirus battus, a species usually regarded as a parasite of lambs. Thus, young cattle readily acquired heavy burdens of N battus in spring and the contamination of pastures with eggs from these infections resulted in significant populations of larvae on the herbage, which were infective to both calves and lambs grazed on these pastures in the following year. Although the majority of the N battus eggs hatched in the spring, some hatched in the autumn. The calves developed a strong immunity to N battus during the grazing season as demonstrated by the absence of worms at necropsy in the autumn, despite the presence of infective larvae on the pasture.  相似文献   

4.
A study was done in Maine to determine the relative importance of winter survival of nematode larvae in pasture and infected carrier animals as sources of infection for susceptible calves. Under the conditions of the experiment, it appeared that winter survivals in pasture of the infective stages of the genera Ostertagia, Cooperia, Nematodirus, and Trichostrongylus were of greater importance than carrier animals as sources of infection for susceptible calves. While animals in plots infected the previous summer and simultaneously allowed to graze alongside infected carrier animals did show more worms than those grazed only in infected plots, these differences were not statistically significant. Both groups had significantly (P greater than 0.01) more worms than did calves grazed only with carrier animals for the period of the experiment (8 weeks). It was also observed that carrier calves with low fecal egg counts (less than 200 eggs/g of feces) introduced in early spring to uncontaminated pasture could produce enough parasitic contamination by early fall to cause fulminating infections in susceptible calves grazing the pasture at the same time. Infected animals that survived clinical disease during their 1st summer developed a strong immunity which limited their acquisition of further infections when they were exposed to severe pasture contamination the following year.  相似文献   

5.
Pasture plots in 3 climatic regions were contaminated with worm eggs of Ostertagia ostertagi, Trichostrongylus axel, Haemonchus spp and Cooperia spp in the autumn, winter and spring. Successive pairs of parasite-free calves were grazed on the plots for 7 to 10 days at 4-week intervals and then killed for worm counts 14 days after their removal from pasture.
On the Northern Tablelands of New South Wales, irrespective of the season of pasture contamination, the degree of inhibition of O. ostertagi was low in winter and highest in spring. T. axei showed similar trends while Cooperia spp showed negligible inhibition.
On the North Coast of New South Wales, inhibited larvae accounted for a very small proportion of the O. ostertagi burdens, while in comparison T. axei showed a much greater degree of inhibition. Larval inhibition of Haemonchus spp occurred in autumn and early winter after which it did not occur. There was negligible inhibition in Cooperia spp.
On the Central Coast of New South Wales, there was little inhibition of O. ostertagi and none in T. axel . For Haemonchus spp, inhibited larvae were found mainly in autumn and winter. The numbers of inhibited Cooperia larvae were also highest in autumn and winter and were associated with large worm burdens.
The marked difference between the tablelands and coastal regions in the seasonal trends of inhibition of O. ostertagi was considered to be due to a difference in strains between the geographical regions. The possible effect of climatic factors on the inhibition-proneness of infective larvae on pasture is discussed for Ostertagia and other nematodes. The roles of host resistance and density-dependence are also discussed.  相似文献   

6.
By placing parasite-free calves in paddocks grazed by infected animals for 18 day periods at various times during the previous season it was shown that eggs of Ostertagia ostertagi, Cooperia oncophora and Nematodirus helvetianus deposited on pastures from early July to October of one year were able to survive in the Maritime area of Canada over winter either as eggs and/or larvae and contribute to residual infections on these pastures the following spring. The greatest deposition and/or survival of those eggs that were shed on pasture occurred in August and September for Cooperia and in September and October for Ostertagia. Greatest deposition of Nematodirus occurred in July and August and relatively few Nematodirus eggs shed in late September or early October were infective early in the next season.

The number of generations of worms per year was low, ranging from one to two or perhaps three per year depending on the species. There was a delay in the maturation of many worm eggs.

Residual overwintering infections play a significant role in the establishment of initial infections each summer in susceptible stock. These animals recontaminate the pastures leading to the subsequent development of large numbers of infective larvae by late summer and autumn.

  相似文献   

7.
A study was made of the possibility of reducing lungworm infections in young grazing calves by rotational grazing for weekly periods on six paddocks. For this purpose three groups of four calves each were grazed on separate pastures in 1989, whereas a fourth group served as a permanently housed control group. Two groups of calves were infected experimentally with six doses of 10 larvae of Dictyocaulus viviparus during the first 3 weeks on pasture. In the third group, low natural infections with overwintered larvae occurred. One of the experimentally infected groups was rotationally grazed for weekly periods on six small plots while both other groups were set-stocked. Faecal larval counts and worm counts in tracer calves demonstrated lower lungworm infections in the rotationally grazed group than in both set-stocked groups. However, the numbers of worms found after challenge infection and subsequent necropsy were relatively high in the rotationally grazed group, indicating that development of immunity was less than in both other groups. Owing to the dry weather conditions in the summer of 1989, no serious clinical signs of husk developed in any of the three groups. These dry conditions, however, did not prevent the build-up of heavy pasture infectivity with gastrointestinal nematodes resulting in heavy worm burdens and serious clinical signs in tracer calves grazing for 4 days in August and September-October, respectively. This implies that rotational grazing did not have a clear effect on build-up of gastrointestinal nematode infections.  相似文献   

8.
Trends in the numbers of infective nematode larvae on pasture plots contaminated by cattle at different seasons of the year were defined in 3 different climatic regions. The main nematodes were Ostertagia ostertagi, Trichostrongylus spp, Haemonchus spp and Cooperia spp.
On the North Coast of New South Wales with a sub-tropical climate, the numbers of infective larvae of all 4 nematodes rose rapidly to peak levels soon after each seasonal period of contamination began, then fell quickly within a few months. On the Central Coast of New South Wales, the trends were similar to those on the North Coast, except that the larvae persisted on the pasture for a much longer time. On the Northern Tablelands of New South Wales, where temperatures were much colder than on the coast, larval development was slower and major peaks of larval availability did not occur until early spring. These different seasonal trends in each region were considered to be related to the climatic differences between the regions.
On pastures which were contaminated continuously, larval numbers reached maximum levels in mid-winter on the Central Coast and in early spring on the Northern Tablelands. It was concluded that the majority of these larvae were derived from the contamination of pastures in autumn and winter. Subsequently in summer, a rapid dying out of larvae was observed in all the regions, probably due to the effect of hotter weather.
The studies suggest that a reduction in the contamination of pasture with nematode eggs in autumn and winter could result in pastures carrying fewer larvae and thus form the basis of effective worm control programs for cattle.  相似文献   

9.
The efficacy of using a bolus containing morantel in a sustained-release preparation for controlling naturally acquired gastrointestinal parasitic infections in weaned calves and yearling cattle was investigated during the 1982 grazing season at selected sites in the United States and Canada. According to a common trial design under various climatic and management conditions, 10 field trials were conducted with the bolus. At the time of spring turnout, a bolus was administered to each calf or yearling in the treated group. Then, treated and control cattle grazed separate but equal areas of divided pasture(s). The epidemiologic pattern of parasitic gastroenteritis in control animals and the effect of treatment on this pattern was determined in each trial. Safety and practicality of use of the bolus also were established. When compared with untreated cattle (control), those given the bolus deposited significantly (P less than 0.05) fewer worm eggs (89% reduction) during the first 90 days of the grazing season, as well as significantly fewer (P less than 0.05) worm eggs (84% reduction) during the entire grazing season. Consequently, during the second half of the grazing season, larval populations on treated pastures remained significantly (P less than 0.05) lower (66% reduction), compared with numbers of larvae found on control pastures. For pastures grazed by treated and control cattle at trial initiation, mean worm counts recovered from tracer calves were equal, indicating comparable pasture contamination at the beginning of the grazing season.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The morantel sustained release bolus was administered at turnout to first-season grazing calves in order to assess its efficacy in the seasonal control of infection by nematode parasites in Ireland. The pastures grazed by control calves showed a marked increase in gastrointestinal trichostrongylid infective larvae by September, while numbers of infective larvae on pasture grazed by bolus-treated calves remained at a low level throughout the grazing season. In consequence, the controls showed significantly higher worm egg counts in late season and significantly higher worm burdens (mainly Ostertagia spp) at necropsy carried out in November on representative number of principal animals selected from each group. These reduced worm burdens were attributed to the suppression of egg output during the early part of the season as a result of treatment with the morantel sustained release bolus at turnout in the spring. Pasture contamination with Dictyocaulus viviparus larvae was present on all treatment pastures. The bolus-treated calves however were subjected to an increase in D. viviparus infection which occurred on their pasture in late season after the active life of the bolus had expired. It was concluded that bolus treatment delayed (rather than prevented) the buildup of D. viviparus infection on the pasture by 60-90 days.  相似文献   

11.
On the basis of the hypothesis that the peak numbers of infective nematode third-stage larvae (L3) on herbage in winter months results from fall contamination of pastures, 2 methods to reduce fall contamination were tested. In trial 1, morantal sustained-release boluses were administered to 15 fall-calving cows on Sept 7, 1982. Fifteen untreated cows (controls) were placed on separate pastures. Numbers of L3 on herbage during the winter and spring were assessed by use of worm-free tracer calves. In trial 2, 19 cattle due to calve in the fall were administered 200 micrograms of invermectin/kg of body weight, SC, on Sept 2, 1983. Also, 17 cattle similarly were given a placebo injection and served as control animals. Treated cattle were placed on the pasture used by control cattle in trial 1 and control cattle on the pasture used by treated cattle in trial 1. Worm-free tracer calves were again used to assess numbers of L3 on herbage. In trial 1, tracer calves grazing the control animal pasture from January 14 to 28 acquired 37 times as many nematodes as did those grazing the treated animal pasture. In trial 2, the greatest difference observed was a 10-fold increase of nematodes in calves grazing control animal pastures, compared with worm numbers in tracer calves grazing the treated animal pasture.  相似文献   

12.
The objective of this study was to examine whether susceptible calves grazing together with second-year resistant heifers are less exposed to trichostrongylid infection than are calves grazing on their own. Two groups of animals representing each age category were turned out onto pasture on 24 May 1997 and grazed at comparable stocking rates. The grazing of calves and heifers together was compared to groups of each age category grazing separately. The results indicated that herbage larval counts were significantly reduced in the second part of the grazing season on the plot grazed by the mixed group compared to the plot grazed by the first-season calves only. The mixed grazing strategy protected the young calves and no clinical signs were observed in this group, while most of the calves that grazed alone exhibited clinical signs. The availability of herbage was reduced towards the end of the season, with subsequent competition for the grass forcing all the animals to graze the tufts around the faecal pats, where the quality of the grass is poor and the numbers of infective larvae are high. The effect of this was visible in the form of increased parasite burdens in the calves that were grazed together with the heifers, confirmed by increased blood serum pepsinogen concentrations and reduced daily weight gains in the second part of the grazing season. The lower numbers of infective larvae on the pasture were probably achieved through the heifers ingesting many of the larvae but subsequently depositing relatively few eggs, since they had acquired some degree of resistance against trichostrongylid infections during their first grazing season. Thus they did not suffer any parasitological ill-effects during mixed grazing with first-season calves.  相似文献   

13.
Faecal pats containing parasitic nematode eggs were deposited monthly on worm-free pasture, from mid-1975 to early in 1979, near Rockhampton in central Queensland. Pasture samples were collected monthly from beside these pats and the number of infective larvae on the samples was counted.

Cooperia spp. were the most numerous larvae on pasture all year round and Haemonchus placei were commonly present in low numbers. Small numbers of Oesophagostonum radiatum larvae were found, mostly during summer.

Dung beetle activity and rainfall influenced larval populations on pasture, but temperature did not. Beetles were not active in winter, and pats deposited in spring, summer and autumn when beetles were active yielded only 42, 44 and 26%, respectively, as many larvae per 1000 eggs deposited as winter pats. Pats in which beetle activity was minimal (feeding only), moderate and intense (complete destruction), yielded 43, 10 and 6%, respectively, as many larvae per 1000 eggs as intact pats.

Larval densities on pasture were highest after the first saturating rains during the spring-summer period and most of these larvae migrated from unattacked pats deposited in winter. Beetle numbers and activity increased with the summer rains and so few larvae were available to migrate onto pasture during late summer and autumn when the highest falls of rain were recorded. The regression of larval recovery on rainfall was positive and statistically significant when data collected soon after these very heavy rainfall periods were omitted from the analysis.

In 1977, drought-breaking rains increased the normal larval density on pasture 10-fold because larvae in pats deposited in the last 4 months of the drought migrated onto pasture immediately after the rains.

This work suggests that in summer rainfall areas where dung beetles are active, helminth control may be achieved by reducing the worm egg output from cattle during the winter.  相似文献   


14.
A five year ley pasture was used as a source of natural infection with Dictyocaulus viviparus for cattle in anthelmintic trials. Pasture larval counts, faecal larval counts of permanently grazing calves and lungworm burdens harboured by tracer calves were monitored in three grazing seasons to assess the pattern of infection. Carrier calves were introduced at the beginning of the grazing season in the first two years of the study but not in the third. In the fourth year the pasture was subdivided into two paddocks where overwintered infection with and without carrier infection were compared. A control paddock exposed to carrier infection but no overwintered infection was also monitored. Pasture larvae survived the winter but carrier infection appeared to make a larger contribution to pasture larval counts and the onset of parasitic bronchitis in susceptible calves. In the absence of grazing cattle at the end of the grazing season the concentration of D viviparus larvae on the herbage fell rapidly to undetectable levels. Discrepancies between contamination of herbage by infective D viviparus larvae and infectivity of pasture for susceptible cattle occurred in all years but were particularly marked on the third year when natural immunity appeared to influence the number of lungworms accumulating in tracer calves. Failure to recover lung worms from tracer calves cannot be regarded as an accurate indication of lungworm free pasture. In the first three years the proportion of the lungworm population which was inhibited in tracer calves was higher early and late in the grazing season and negligible in mid season. This suggests that a predisposition to inhibition in larvae which have overwintered on pasture may influence the time of onset of parasitic bronchitis in the next grazing season, but results from the fourth year did not support this hypothesis.  相似文献   

15.
Four groups of 16 crossbred beef calves were used in evaluating different anthelmintic treatment schedules: group 1 was given ivermectin (IVM) at weaning only (October 31) and grazed on initially safe pasture; group 2 was given IVM at weaning, on January 28, and on April 22, and grazed on contaminated pasture; and group 3 was given IVM at weaning and on April 22, and grazed on contaminated pasture; and group-4 was group treated with fenbendazole (FBZ) at weaning only, with provision for individual salvage treatment, and grazed on contaminated pasture. The investigation was from Oct 31, 1984, to Oct 9, 1985. Initially high fecal egg counts at weaning were more effectively reduced by IVM than by FBZ, and the effect of safe pasture was evident in minimal worm burdens in tracer calves grazed with group-1 cattle during November and least amount of weight loss in group-1 yearlings during winter. Fecal egg counts, pasture larval counts, and plasma pepsinogen concentrations remained low in group 2 after the January treatment. Fecal egg counts of the other groups increased substantially during late winter and spring, but pasture larval counts increased only on group-1 and group-4 pastures. During spring, highest worm burdens were found in group-1 and group-4 tracer calves (grazed in April) and in group-3 and group-4 yearlings (slaughtered in early April). Six cattle of group 4 were salvage treated with FBZ in February and April. Greatest gains were observed from March through June, with group-2 and group-1 cattle gaining the most.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In a study originally designed to determine the seasonal origin of the high levels of availability of nematode larvae to cattle in winter and spring, plots were serially contaminated with eggs of Ostertagia ostertagi and Cooperia oncophora by naturally-infected calves at monthly intervals from February 1980 to September 1980. The availability of infective larvae was monitored by monthly pasture sampling and larval recovery. Because of the intervention of a 15 month drought, recoveries of larvae from the pastures were very low until March 1981 (autumn in Australia) when large numbers of larvae appeared on pastures contaminated in the preceding spring. Examination of dry dung pats at that time showed that significant numbers of larvae were present in pats deposited up to a year previously, and particularly in pats deposited in May, August and September. Following the resumption of normal rainfall in May 1981, larval numbers in pats rapidly declined and concentrations of larvae on the pastures increased to extremely high levels. It is suggested that survival of infective larvae in dry dung pats was enhanced by the drought, with implications for control of nematode infections of cattle, particularly in winter rainfall environments.  相似文献   

17.
A combined epidemiology and control investigation was performed with parasite-free calves turned out in May on a permanent pasture naturally contaminated with lungworm larvae the previous year. Before the start the field was divided into two plots. One plot was grazed by 12 calves after the first week of May. The other plot was grazed by 12 calves turned out two weeks later. Both groups as well as the plots grazed by them were subdivided six weeks after turning out. Based on a predicted rise in the pasture larval contamination with infective lungworm larvae, one subgroup of each main group was given a tactical anthelmintic treatment six weeks and again eight weeks after their date of turning out. Patent infections from overwintered larvae were detected in both main groups after four weeks of grazing, but not in all individuals of the late turned-out group. The excreted larvae gave rise to pathogenic pasture larval contaminations on the two initial plots five to six weeks after turning out. In the control groups, early turning-out resulted in approx. 10 times higher larval recoveries in faeces and pasture compared to late turning-out. Seven to eight weeks after turning-out critical, severe parasitic bronchitis had developed in the early turned-out control group. In the late turned-out controls, clinical signs were obvious but not critical. Outbreaks were not observed in any of the experimental subgroups, and no larval excretion was observed among them within four to five weeks following treatments. Similarly, no larvae were recovered from their pastures two weeks after treatment and onwards. A third treatment was given to both experimental groups on the same date (August 21) to suppress gastrointestinal parasitism. However, the level of this infection, appeared moderate, probably due to comparatively low precipitation and extensive supplementary feeding given in late summer to compensate for scarcity of grass.  相似文献   

18.
OBJECTIVE: To relate trichostrongylid infections acquired by sheep during summer to prevailing weather conditions. PROCEDURE: Groups of worm-free 'tracer' sheep were put onto pastures, previously contaminated with trichostrongylid eggs, for successive periods of 2 weeks from December to March. After grazing the sheep were housed for 6 weeks. Weekly worm egg counts and worm counts were used to estimate the numbers of worms acquired and related to weather conditions during the grazing period. RESULTS: No worm eggs were detected in the faeces of sheep that grazed at the end of January when only 7 mm of rainfall was recorded. At other times rainfall between 12 and 24 mm occurred and strongyle egg counts were generally either < 50 or > 150 eggs per g (epg). Mean counts of 1,100 Ostertagia and Trichostrongylus adults gave rise to mean counts of about 350 epg whereas about 6,000 Nematodirus spp were associated with mean egg counts of about 200 Nematodirus spp epg. CONCLUSIONS: Rainfall events during summer determine the numbers of trichostrongylid larvae acquired by sheep in summer but further studies are necessary before the implications for strategic control programs in southern Australia can be fully assessed.  相似文献   

19.
A method of sampling pasture to estimate the numbers of infective nematode larvae to which grazing cattle were exposed was based on the grazing patterns and behavioural activities of two groups of cattle and was compared with other sampling techniques. Each group of cattle consisted of six permanent members, two members fistulated at the oesophagus and one worm-free tracer calf. Grazing time and the area where grazing occurred was not significantly different for tracer calves, fistulated cattle and permanent group members, and there was no relationship between grazing time and the live weight of cattle. Grazing time, the percentage of paddock area grazed intensively and the percentage of the paddock not grazed varied with season. The most intensively grazed areas were always visited between first light and the first rest period during mid-morning, and the plant parts and pasture species eaten could easily be identified by visual examination of these areas of the paddock. Larval recoveries per 100 g pasture ingested were estimated for comparison with the grazing area method using two other manual pasture sampling methods, a sampling method using tracer calves and one using fistulated calves. Correlations between these methods were not consistent but indicated that, given the small number of data sets, all methods were sensitive enough to estimate larval availability on pasture with the exception of the tracer calf method in the overstocked 3.4-ha paddock.  相似文献   

20.
Gastrointestinal parasitism of Zebu crossbred (Z), Hereford (H), and Hereford X Brahman (HB) weaned steer calves was observed from March 1985 to May 1986. Three groups of 60 calves were randomised and in each group the three breeds were equally present. Calves in GI were untreated, in GII were treated strategically and in GIII treated monthly with anthelmintic. The effects of anthelmintic treatments on the growth of cattle were assessed by comparing mean live-weight gain (MLG) responses of treated and untreated calves grazing the same permanent pasture. Worm recovery and egg counts increased from autumn to winter. After abundant July rainfalls, herbage infective larvae (L3) and worm burdens (mainly Ostertagia) reached the highest levels and Z calves presented symptoms of clinical parasitism. After high availability of L3 in spring, L3 and egg counts decreased to the end of the study. From the end of winter until summer a high percent of inhibited Ostertagia EL4 was seen. Blood samples showed reduced serum copper lower levels for GI. MLG responses of Z treated calves were significantly higher during the autumn-spring and summer-autumn periods. MLG responses of treated H calves were significant only during the winter-spring period. For HB calves there were no significant MLG responses during any period. The highest monthly treatment response was observed during winter and early spring. All strategic treatments gave significant MLG responses in spring and late summer. Initial effects of parasitism, from autumn until early spring had the greatest consequences in current and later productivity. For Z calves herbage L3, worm burdens, egg counts and MLG responses were higher than for H and HB calves. The Z breed were significantly heavier (+22.7%) at the end of the experiment in GIII than in GI. Similar trends were recorded, significantly, for H breed (+17.7%) and not statistically significant for HB (+12.7%). Under our temperate conditions it seems that H and HB calves showed greater capacity to resist nematode infection than Z calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号