首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice endosperm protein was modified to enhance solubility and emulsifying properties by controlled enzymatic hydrolysis. The optimum degree of hydrolysis (DH) was determined for acid, neutral, and alkaline type proteases. Solubility and emulsifying properties of the hydrolysates were compared and correlated with DH and surface hydrophobicity. DH was positively associated with solubility of resulting protein hydrolysate regardless of the hydrolyzing enzyme, but enzyme specificity and DH interactively determined the emulsifying properties of the protein hydrolysate. The optimum DH was 6–10% for good emulsifying properties of rice protein, depending on enzyme specificity. High hydrophobic and sulfhydryl disulfide (SH-SS) interactions contributed to protein insolubility even at high DH. The exposure of buried hydrophobic regions of protein that accompanied high-temperature enzyme inactivation promoted aggregation and cross-linking of partially hydrolyzed proteins, thus decreasing the solubility and emulsifying properties of the resulting hydrolysate. Due to the highly insoluble nature of rice protein, surface hydrophobicity was not a reliable indicator for predicting protein solubility and emulsifying properties. Solubility and molecular flexibility are the essential factors in achieving good emulsifying properties of rice endosperm protein isolates.  相似文献   

2.
采用Alcalase与Flavourzyme两种酶对羊奶乳清蛋白进行水解,以水解度为指标,对两种酶单独使用及复合使用水解羊奶乳清蛋白的工艺条件进行了研究。试验结果显示:采用Alcalase与Flavourzyme复合水解羊奶乳清蛋白的效果较好,特别是采用先添加Flavourzyme后加入Alcalase进行水解,不仅能提高羊奶乳清蛋白的水解度,使其达到32.81%,而且对改善水解液的口感有较大的作用。  相似文献   

3.
为进一步合理开发利用三文鱼皮,本研究对碱性蛋白酶、中性蛋白酶、风味蛋白酶和复合蛋白酶水解所制备三文鱼皮酶解物的抗氧化活性与功能特性进行了比较。结果表明,三文鱼皮碱性蛋白酶酶解物的水解度(20.18%)和三氯乙酸可溶性氮得率(40.14%)最高,小分子肽含量高达99.97%,其抗氧化活性显著优于其他组(P<0.05);且碱性蛋白酶酶解物的溶解性和持水性最高,分别为87.21%和26.92%;中性蛋白酶酶解物的持油性和乳化性能最强,分别为4.67%和14.69%;而风味蛋白酶酶解物的乳化稳定性显著优于其他组(P<0.05)。综上所述,碱性蛋白酶为制备三文鱼皮蛋白抗氧化肽的最优蛋白酶。本研究为三文鱼皮副产物的高值化利用提供了数据支持和理论基础。  相似文献   

4.
燕麦麸分离蛋白的酶解对其功能性质的影响   总被引:4,自引:3,他引:4  
为了改善燕麦蛋白的功能性质以扩大其在食品工业中的应用,该文以燕麦麸为原料制备了燕麦麸分离蛋白(OBPI),并利用胰蛋白酶对其进行水解,得到了3种不同水解度(4.1%、6.4%、8.3%)的酶解产物。SDS-PAGE分析结果表明OBPI中的主要蛋白成分是球蛋白,其经过胰蛋白酶处理后,球蛋白酸性亚基被部分水解而碱性亚基相对保持完整。胰蛋白酶水解显著改变了OBPI的功能性质。在所考察的水解度范围内,随着水解度的升高,酶解产物的溶解性、持水性、乳化活性及起泡能力等方面均逐渐增加;但持油性、乳化及泡沫稳定性有不同程度的降低。  相似文献   

5.
采用5种酶(Alcalase 2.4L, As1.398, Neutrase, Pepsin, Trypsin)对甘薯热变性蛋白(SPHP)进行限制性酶解。将各酶解产物离心后分别取上清和沉淀测定和观察其乳化液的乳化颗粒平均粒径(D4,3)、乳化活性指数(EAI)、乳化稳定性指数(ESI)、乳化液的微观结构和表观黏度。结果显示:酶解产物上清和沉淀中蛋白的溶解度均有增加,但沉淀增加的幅度小于上清。SPHP的D4,3是71.96μm,而酶解产物上清和沉淀乳化液的D4,3均减小,且上清的D4,3小于沉淀的。在5种酶解产物中,Pepsin酶解物上清的D4,3最小,为14.94μm。SPHP酶解后上清的乳化颗粒大小较为均一,且沉淀的乳化颗粒酶解前后变化不大。SPHP的EAI为11.21m2/g,酶解产物上清和沉淀的EAI均有显著提高(P<0.05),其中Pepsin酶解物上清的EAI最高为70.32m2/g。此外,酶解产物上清和沉淀乳化液的ESI增大。与沉淀相比,5种酶解产物的上清具有较低的表观黏度,且酶解产物上清和沉淀的乳化液均呈剪切变稀的非牛顿流体特性。  相似文献   

6.
Soy protein isolate (SPI) was modified by ultrasound pretreatment (200 W, 400 W, 600 W) and controlled papain hydrolysis, and the emulsifying properties of SPIH (SPI hydrolysates) and USPIH (ultrasound pretreated SPIH) were investigated. Analysis of mean droplet sizes and creaming indices of emulsions formed by SPIH and USPIH showed that some USPIH had markedly improved emulsifying capability and emulsion stabilization against creaming during quiescent storage. Compared with control SPI and SPIH-0.58% degree of hydrolysis (DH), USPIH-400W-1.25% (USPIH pretreated under 400W sonication and hydrolyzed to 1.25% DH) was capable of forming a stable fine emulsion (d43=1.79 μm) at a lower concentration (3.0% w/v). A variety of physicochemical and interfacial properties of USPIH-400W products have been investigated in relation to DH and emulsifying properties. SDS-PAGE showed that ultrasound pretreatment could significantly improve the accessibility of some subunits (α-7S and A-11S) in soy proteins to papain hydrolysis, resulting in changes in DH, protein solubility (PS), surface hydrophobicity (H0), and secondary structure for USPIH-400W. Compared with control SPI and SPIH-0.58%, USPIH-400W-1.25% had a higher protein adsorption fraction (Fads) and a lower saturation surface load (Γsat), which is mainly due to its higher PS and random coil content, and may explain its markedly improved emulsifying capability. This study demonstrated that combined ultrasound pretreatment and controlled enzymatic hydrolysis could be an effective method for the functionality modification of globular proteins.  相似文献   

7.
The antioxidant activities of alkali-treated tilapia protein hydrolysates were determined by their ability to inhibit the formation of lipid hydroperoxides (PV) and thiobarbituric acid reactive substances (TBARS) in a washed muscle model system and by their ability to inhibit DPPH free radicals and chelate ferrous ion in an aqueous solution. Protein isolates were prepared from tilapia white muscle using alkali solubilization at pH 11.0 and reprecipitation at pH 5.5. Protein hydrolysates were prepared by hydrolyzing the isolates using five different enzymes, Cryotin F, Protease A Amano, Protease N Amano, Flavourzyme, and Neutrase, to 7.5, 15, and 25% degrees of hydrolysis (DH). All of the protein hydrolysates significantly (p<0.05) inhibited the development of TBARS and PV. The antioxidant activity of the hydrolysates increased with the DH. Also, the antioxidant activity of the hydrolysates varied significantly (p<0.05) among the different enzymes. The ability of different enzyme-catalyzed protein hydrolysates to scavenge DPPH radicals was not reflected in their ability to inhibit oxidation in a washed tilapia model system. In a washed muscle model system, the hydrolysates prepared using Cryotin F were most effective and the hydrolysates prepared using Flavourzyme and Neutrase were least effective in inhibiting the development of TBARS and PV, whereas in an aqueous solution, hydrolysates prepared using Flavourzyme were most effective in scavenging DPPH radicals and chelating ferrous ions. Enzymatic hydrolysis decreased the size of tilapia protein hydrolysates and, in general, tilapia protein hydrolysates with low molecular weights were better antioxidants than those with high molecular weights.  相似文献   

8.
Industrial proteins from agriculture of either animal or vegetable origin, including their peptide derivatives, are of great importance, from the qualitative and quantitative point of view, in food formulations (emulsions and foams). A fundamental understanding of the physical, chemical, and functional properties of these proteins is essential if the performance of proteins in foods is to be improved and if underutilized proteins, such as plant proteins (and their hydrolysates and peptides derivatives), are to be increasingly used in traditional and new processed food products (safe, high-quality, health foods with good nutritional value). In this contribution we have determined the main physicochemical characteristics (solubility, composition, and analysis of amino acids) of a sunflower protein isolate (SPI) and its hydrolysates with low (5.62%), medium (23.5%), and high (46.3%) degrees of hydrolysis. The hydrolysates were obtained by enzymatic treatment with Alcalase 2.4 L for DH 5.62 and 23.5% and with Alcalase 2.4 L and Flavorzyme 1000 MG sequentially for DH 46.3%. The protein concentration dependence on surface pressure (surface pressure isotherm), a measure of the surface activity of the products (SPI and its hydrolysates), was obtained by tensiometry. We have observed that the degree of hydrolysis has an effect on solubility, composition, and content of the amino acids of the SPI and its hydrolysates. The superficial activity and the adsorption efficiency were also affected by the degree of hydrolysis.  相似文献   

9.
beta-Lactoglobulin (betaLg) was subjected to limited hydrolysis by trypsin, plasmin, and endoproteinase from Staphylococcus aureus V8 (S.aur.V8) to degrees of hydrolysis (DH) of 1, 2, and 4%. The several hydrolysates had different peptide compositions (determined by reversed-phase HPLC and gel-permeation chromatography [GPC]). GPC under nondenaturing, denaturing, and denaturing plus reducing conditions showed that the peptides formed were linked by hydrophobic interactions or by disulfide bonds or were not linked at all. At very low protein concentration, some differences in emulsion-forming properties were observed: only the plasmin hydrolysates could form emulsions with a uniform particle-size distribution. The emulsions formed with S.aur.V8 hydrolysates had poor emulsion-stabilizing properties. Some hydrolysates showed increased foam-forming properties in comparison with the intact protein. All foams formed were stable. Overall, the plasmin hydrolysate (DH4) contained relatively much larger molecules and/or hydrophobic molecules. Many molecules were disulfide-linked peptides. This hydrolysate also had the best functional properties.  相似文献   

10.
Protein hydrolysates (5, 10, and 15% degrees of hydrolysis) were made from minced salmon muscle treated with one of four alkaline proteases (Alcalase 2.4L, Flavourzyme 1000L, Corolase PN-L, and Corolase 7089) or endogenous digestive proteases. Reaction conditions were controlled at pH 7.5, 40 degrees C, and 7.5% protein content, and enzymes were added on the basis of standardized activity units (Azocoll units). Proteases were heat inactivated, insoluble and unhydrolyzed material was centrifuged out, and soluble protein fractions were recovered and lyophilized. Substrate specificities for the proteases was clearly different. Protein content for the hydrolysates ranged from 71.7 to 88.4%, and lipid content was very low. Nitrogen recovery ranged from 40.6 to 79.9%. The nitrogen solubility index was comparable to that of egg albumin and ranged from 92.4 to 99.7%. Solubility was high over a wide range of pH. The water-holding capacity of fish protein hydrolysates added at 1.5% in a model food system of frozen minced salmon patties was tested. Drip loss was on average lower for the fish protein hydrolysates than for egg albumin and soy protein concentrate, especially for Alcalase hydrolysates. Emulsification capacity for fish protein hydrolysates ranged quite a bit (75-299 mL of oil emulsified per 200 mg of protein), and some were better than soy protein concentrate (180 mL of oil emulsified per 200 mg of protein), but egg albumin had the highest emulsifying capacity (417 mL of oil emulsified per 200 mg of protein). Emulsification stability for fish protein hydrolysates (50-70%) was similar to or lower than those of egg albumin (73%) or soy protein concentrate (68%). Fat absorption was greater for 5 and 10% degrees of hydrolysis fish protein hydrolysates (3.22-5.90 mL of oil/g of protein) than for 15% hydrolysates, and all had greater fat absorption than egg albumin (2. 36 mL of oil/g of protein) or soy protein concentrate (2.90 mL of oil/g of protein).  相似文献   

11.
The complement of enzyme activities of a selection of commercial protease preparations were determined using fluorogenic substrates. Alcalase was used in combination with other commercial enzyme preparations to produce cod muscle (Gadus morhua) hydrolysates. Each muscle hydrolysate was characterized with respect to the percentage degree of hydrolysis (DH %), peptide molecular weight range, and free amino acid content. The enzyme preparations containing predominantly protease or endopeptidase activities achieved high DH % and produced significant amounts of peptides below a molecular weight of 3000. Alcalase combined with exopeptidase-rich preparations produced hydrolysates rich in low-molecular-weight peptides. Selecting combinations of enzyme preparations with complementary activity profiles could be used to manipulate the peptide molecular weight profile of hydrolysates.  相似文献   

12.
Brewer's spent grain (BSG) is an abundant, protein-rich coproduct from the beer industry. There is a growing interest in increasing and diversifying the exploitation of BSG and related coproducts for economic and environmental reasons. In this paper, we report on a study of the solubilization of proteinaceous material from BSG using several commercial peptidase preparations. Our data show that Alcalase is the most effective peptidase for solubilization of BSG proteins, with an ability to release up to 77% of total protein. The peptides produced by Alcalase had lower average molecular weight than peptides produced by the less effective enzymes. Processes that combined peptidase treatment with carbohydrate-degrading enzyme preparations such as Depol740 increased the solubilization of dry matter (from 30 to 43% under optimal conditions). However, such additional treatment had little effect on the solubilization of protein. The choice of enzyme dosage depends on the desired hydrolysis time and was assessed through several experiments. Protein solubilization was consistently better at pH 8.0 as compared to pH 6.8. Maximum protein solubilization at pH 8.0 within 4 h required the use of 10-20 microL Alcalase per g of dry matter. However, a considerable degree of solubilization (64%) and hydrolysates with high protein content could be obtained using doses down to only 1.2 microL. Amino acid composition analyses showed that Alcalase treatment solubilizes proline and glutamine (constituents of barley hordein) slightly more efficiently than the other amino acids in BSG.  相似文献   

13.
Suni‐bug (Eurygaster spp.) enzyme was partially purified from bug‐damaged wheat and used to prepare gluten hydrolysates at 3% and 5% degree of hydrolysis (DH). Functional properties of gluten and gluten hydrolysates were determined at 0.2% (w/v) protein concentration and pH 2–10. Gluten solubility after enzymatic hydrolysis increased significantly (P < 0.05) up to 89.1, 89.6, and 95.0% at pH 7, 8, and 10, respectively. Emulsion stability (ES) of gluten hydrolysates improved at neutral and alkaline pH (P < 0.05) and emulsifying capacity (EC) increased significantly (P < 0.05) except at pH 10. Foaming capacity (FC) values of gluten hydrolysates were significantly higher (P < 0.05) at pH 6, 7, 8; foam stability (FS) values of gluten hydrolysates were significantly higher (P < 0.05) at pH 6 and 7. Enzymatic modification of gluten by wheat‐bug enzyme resulted in hydrolysates with higher antioxidant activity compared to gluten. Significant correlations (P < 0.001) were found between solubility and EC, ES, FC, and FS values of gluten and its hydrolysates with 3% and 5% DH.  相似文献   

14.
Hydrolysis of whey protein concentrate (WPC) with Alcalase 2.4 L, a Bacillus licheniformis proteinase preparation, induces gelation. The aggregation behavior of WPC hydrolysates generated with Alcalase and Prolyve 1000, a Bacillus licheniformis proteinase that did not induce gelation, were studied by turbidity and particle size analysis. With the use of synthetic peptide substrates, it was shown that Alcalase contains a glutamyl endopeptidase (GE) activity not present in Prolyve. Comparison of the aggregation behavior of WPC hydrolysates generated with Alcalase, Prolyve, and combinations of Prolyve with a GE activity isolated from Alcalase showed that GE was responsible for the observed enzyme-induced peptide aggregation in Alcalase hydrolysates. Hydrolysates generated with Prolyve, having a degree of hydrolysis (DH) of 11.8% and 10.4% of peptide material greater than 10 kDa, could be induced to aggregate by the addition of GE. These results emphasize the contribution of enzyme specificity to the physicochemical and functional characteristics of proteinase hydrolysates of WPC.  相似文献   

15.
The emulsifying ability, heat stability, and coalescence stability of oil-in-water emulsions prepared with whey protein of varied degrees of hydrolysis (DH), and at varied protein contents, was studied. Whey protein hydrolysates (WPH) with a DH of 4% and 10% had poorer emulsifying ability than non-hydrolyzed whey protein concentrate (WPC), but were more heat stable. Increasing DH between 10 and 27% improved emulsifying ability and further improved the heat stability of the emulsion droplets. Increasing DH from 27 to 35% led to a big decrease in both emulsifying ability and heat stability. The quiescent coalescence stability of WPH emulsions was relatively good up to a DH of 27%. Above DH 27% emulsions become highly unstable. It appears that two mechanisms of instability are at work here. At low DH heat-induced denaturation and aggregation occur. In the DH range of 4-20% heat stability increases as protein globular structure is disrupted. At a DH greater than 27% we see a change from a hydrolysis-induced increase in heat-stability to coalescence instability, with a resultant large increase in emulsion breakdown during heating.  相似文献   

16.
Defatted sesame meal ( approximately 40-50% protein content) is very important as a protein source for human consumption due to the presence of sulfur-containing amino acids, mainly methionine. Sesame protein isolate (SPI) is produced from dehulled, defatted sesame meal and used as a starting material to produce protein hydrolysate by papain. Protein solubility at different pH values, emulsifying properties in terms of emulsion activity index (EAI) and emulsion stability index (ESI), foaming properties in terms of foam capacity (FC) and foam stability (FS), and molecular weight distribution of the SPI hydrolysates were investigated. Within 10 min of hydrolysis, the maximum cleavage of peptide bonds occurred as observed from the degree of hydrolysis. Protein hydrolysates have better functional properties than the original SPI. Significant increase in protein solubility, EAI, and ESI were observed. The greatest increase in solubility was observed between pH 5.0 and 7.0. The molecular weight of the hydrolysates was also reduced significantly during hydrolysis. These improved functional properties of different protein hydrolysates would make them useful products, especially in the food, pharmaceutical, and related industries.  相似文献   

17.
为提升大豆分离蛋白(soy protein isolate,SPI)的功能性质,该文引入大豆可溶性多糖(soybean soluble polysaccharides,SSPS),构建大豆分离蛋白-大豆可溶性多糖体系(SPI-SSPS),研究动态高压微射流(dynamic high-pressure microfluidization,DHPM)处理对SPI-SSPS功能特性的影响。分别采用0,60,100,140和180 MPa的 DHPM压力处理SPI-SSPS,探究不同压力对SPI-SSPS起泡特性、乳化特性、溶解性、粒度分布和表面疏水性的影响。结果表明,DHPM处理能提高SPI的溶解性和起泡特性,且SSPS的存在能显著提高DHPM对SPI功能性质的改善效果(P<0.05)。100和60 MPa的DHPM处理能使SPI-SSPS呈现较高的起泡能力和起泡稳定性,分别为未处理样品的1.2和2.4倍。140 MPa的DHPM处理使SPI-SSPS溶解性较强,为未处理样品的1.8倍。然而,DHPM处理会显著降低SPI-SSPS的乳化特性、粒径和表面疏水性(P<0.05)。随着处理压力的增加,SPI-SSPS的粒度和表面疏水性逐渐降低,在180MPa的DHPM处理下SPI-SSPS具有较小的粒径和较低的荧光强度。综上所述,DHPM结合SSPS改性技术可用于改善SPI的功能性质(如溶解性、起泡性),促进SPI在食品工业的应用。该文的研究结果可为SPI的功能性质改性提供参考。  相似文献   

18.
To identify the parameters that affect enzymatic hydrolysis at high substrate concentrations, whey protein isolate (1-30% w/v) was hydrolyzed by Alcalase and Neutrase at constant enzyme-to-substrate ratio. No changes were observed in the solubility and the aggregation state of the proteins. With increasing concentration, both the hydrolysis rate and the final DH decreased, from 0.14 to 0.015 s(-1) and from 24 to 15%, respectively. The presence of 0.5 M NaCl decreased the rate of hydrolysis for low concentrations (to 0.018 s(-1) for 1% WPI), resulting in similar rates of hydrolysis for all substrate concentrations. The conductivity increase (by increasing the protein concentration, or by addition of NaCl) has significant effects on the hydrolysis kinetics, but the reason for this is not yet well understood. The results show the importance of conductivity as a factor that influences the kinetics of the hydrolysis, as well as the composition of the hydrolysates.  相似文献   

19.
Okara is a low‐value coproduct of soy milk production. Its dry matter contains 25–30% protein that is of high nutritive quality, has an excellent efficiency ratio, and thus holds promise for applications in food systems. However, okara protein has low solubility. We here optimized its extraction and isolation from okara by using dilute sodium hydroxide and subsequent isoelectric precipitation. The obtained okara protein isolate (OPI) was hydrolyzed with different enzymes into a range of hydrolysates with different degrees of hydrolysis. Most hydrolysates had better emulsifying activity and produced more stable emulsions than OPI. In contrast, hydrolysis had no positive effect on foam‐forming and foam‐stabilizing activity of OPI proteins. Hydrolysis of OPI enhances the emulsifying capacity of the proteins. Furthermore, the emulsifying and foam‐forming capacities of most of the OPI hydrolysates were similar to or even better than those of the commercial (soy) protein hydrolysates used in this study.  相似文献   

20.
This paper describes a pilot process for obtaining protein isolates from white lupin seed with improved water solubility and technofunctional properties as well as reduced thermal damage. After a careful optimization of the process parameters, two valuable food ingredients were prepared: lupin protein isolate type E, with a useful emulsifying capacity, and lupin protein isolate type F, with a high capability of foam formation and stabilization. The spray-drying process was particularly critical for inducing some thermal damage, but a careful selection of the conditions permitted ingredients having only marginally impaired lysine bioavailability to be obtained. The reproducibility of the protein extraction process was tested on two different lupin varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号