首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of quantitative fertility indicators for evaluating the sustainability of cropping and farming systems has become a major issue. This question has been extensively studied by the German agronomist Albrecht Daniel Thaer at the beginning of the 19h century. In this paper Thaer's work is set in its historical background, from the end of the 16th century (Palissy, 1580) to the middle of the 19th century (Liebig, 1840). Then the paper focuses on Thaer's quantitative and complex fertility scale (expressed in “fertility degrees”), which was based on soil properties, on the requirement of nutrients by plants, and on the cropping system (including crop rotation). Thaer expressed soil fertility and economic results as a function of rye production in “scheffel of rye per journal” (ca. 200 kg per hectare). He also proposed a scale to describe the intrinsic fertility of soil. Thaer used this approach to assess the effect of major German cropping systems on soil fertility. He applied it to eight theoretical systems and nine existing systems in a true modeling approach. Thaer completed the fertility evaluation for the nine existing systems with a detailed economical analysis commenting the limits and potentialities of each system. Thaer's approach was used with success during half a century as it combined numerous empirical findings on soils and fertilization with organic substances in a sophisticated model. Unfortunately and despite effective practical applications, the scientific foundations of Thaer's “Humus Theory” proved definitively false as soon as 1840 when Sprengel and Liebig published on mineral nutrition of plants. Thaer's work deserves to be rediscovered since it approaches the modern issue of the sustainability of cropping and farming systems.  相似文献   

2.
Biochar was prepared using a low temperature pyrolysis method from nine plant materials including non‐leguminous straw from canola, wheat, corn, rice and rice hull and leguminous straw from soybean, peanut, faba bean and mung bean. Soil pH increased during incubation of the soil with all nine biochar samples added at 10 g/kg. The biochar from legume materials resulted in greater increases in soil pH than from non‐legume materials. The addition of biochar also increased exchangeable base cations, effective cation exchange capacity, and base saturation, whereas soil exchangeable Al and exchangeable acidity decreased as expected. The liming effects of the biochar samples on soil acidity correlated with alkalinity with a close linear correlation between soil pH and biochar alkalinity (R2 = 0.95). Therefore, biochar alkalinity is a key factor in controlling the liming effect on acid soils. The incorporation of biochar from crop residues, especially from leguminous plants, can both correct soil acidity and improve soil fertility.  相似文献   

3.
Soil erosion is a major constraint to crop production on smallholder arable lands in Sub‐Saharan Africa (SSA). Although different agronomic and mechanical measures have been proposed to minimize soil loss in the region and elsewhere, soil management practices involving biochar‐inorganic inputs interactions under common cropping systems within the framework of climate‐smart agriculture, have been little studied. This study aimed to assess the effect of different soil and crop management practices on soil loss characteristics under selected cropping systems, typical of the sub‐region. A two‐factor field experiment was conducted on run‐off plots under different soil amendments over three consecutive cropping seasons in the semi‐deciduous forest zone of Ghana. The treatments, consisting of three soil amendments (inorganic fertilizer, biochar, inorganic fertilizer + biochar and control) and four cropping systems (maize, soyabean, cowpea, maize intercropped with soyabean) constituted the sub‐plot and main plot factors, respectively. A bare plot was included as a soil erosion check. Seasonal soil loss was greater on the bare plots, which ranged from 9.75–14.5 Mg ha?1. For individual crops grown alone, soil loss was 31%–40% less under cowpea than under maize. The soil management options, in addition to their direct role in plant nutrition, contributed to significant (p < 0.05) reductions in soil loss. The least soil loss (1.23–2.66 Mg ha?1) was observed under NPK fertilizer + biochar treatment (NPK + BC) over the three consecutive cropping seasons. Biochar in combination with NPK fertilizer improved soil moisture content under cowpea crops and produced considerably smaller bulk density values than most other treatments. The NPK + BC consistently outperformed the separate mineral fertilizer and biochar treatments in biomass yield under all cropping systems. Biochar associated with inorganic fertilizers gave economic returns with value–cost ratio (VCR) > 2 under soyabean cropping system but had VCR < 2 under all other cropping systems. The study showed that biochar/NPK interactions could be exploited in minimizing soil loss from arable lands in SSA.  相似文献   

4.
Temporal changes in soil chemical and nutritional properties were evaluated in a long-term experiment conducted on Alfisols in West Africa. Effects of land use and cropping duration on soil chemical properties at 0–5 cm and 5–10 cm depths were evaluated for five treatments: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) mucuna (Mucuna utilis) fallowing for 1 year followed by maize (Zea mays)-cowpea (Vigna unguiculata) cultivation for 2 years on severely degraded land; (3) fallowing with mucuna on moderately degraded soils; (4) ley farming involving growing improved pastures for 1 year, grazing for the second year, and growing maize-cowpea for the third year on severely degraded land; (5) ley farming on moderately degraded soils. Soil chemical properties were measured once every year from 1982 through 1986 during the dry season, and included pH, soil organic carbon (SOC), total soil nitrogen (TSN), Bray-P, exchangeable cations, and effective cation exchange capacity (CEC). Regardless of the cropping system treatments, soil chemical quality decreased with cultivation time. The rate of decrease at 0–5 cm depth was 0·23 units year−1 for pH, 0·05 per cent year−1 for SOC, 0·012 per cent year−1 for TSN, 0·49 cmol kg−1 year−1 for Ca2+, 0·03 cmol kg−1 year−1 for Mg2+, 0·018 cmol kg−1 year−1 for K+, and 0·48 cmol kg−1 year−1 for CEC. Although there was also a general decrease in soil chemical quality at 5–10 cm depth, the trends were not clearly defined. In contrast to the decrease in soil properties given above, there was an increase in concentration at 0–5 cm depth of total acidity with cultivation time at the rate of 0·62 cmol kg−1 year−1, and of Mn3+ concentration at the rate of 0·081 cmol kg−1 year−1. Continuous cropping also increased the concentration of Bray-P at 0–5 cm depth due to application of phosphatic fertilizer. Trends in soil chemical properties were not clearly defined with regards to cropping system treatments. In general, however, soil chemical properties were relatively favorable in ley farming and mucuna fallowing treatments imposed on moderately degraded soils. Results are discussed in terms of recommended rates of fertilizer use, in view of soil test values, expected yields, and critical limits of soil properties.  相似文献   

5.
Green manures are important in tropical cropping systems and are planted in degraded soils, thus affecting early growth. Pot and field experiments evaluated the impact of soil fertility on early growth of two important tropical green manures (Crotalaria juncea and Tithonia diversifolia) when compared to that of maize (Zea mays) with high and low levels of phosphorus fertilizer. Growth of tithonia was not affected by soil fertility level irrespective of phosphorus fertilizer, indicating its suitability for degraded soils. Crotalaria was affected by soil fertility (root growth was stimulated by phosphorus), indicating its potential for soils with some degree of fertility. Maize was significantly affected by soil fertility and phosphorus fertilizers, indicating the requirement of fertile soils for the successful development of a good root and shoot system. The importance of field studies in the tropics is also presented as the diverse field conditions reduces significant effects found in pot studies.  相似文献   

6.
Amazonas State is the largest state in Brazil and mainly covered by tropical forest. Because of the importance of the tropical forest in maintaining soil health and a clean environment, conservation of the Amazon forest is a national priority. However, sustainable agriculture development is necessary in the state for the welfare of the local population. Maintaining soil fertility at an adequate level is an important component of sustainable farming. Very little information is available about soil fertility of Amazonas State. The objective of the present study was to evaluate chemical soil properties of Amazonas State of Brazil. Results include chemical properties of 3,340 samples, covering 62 municipalities of the state collected at 0–20 cm deep during 30 years (1975–2005). Chemical properties [phosphorus (P), potassium (K) extracted with Mehlich 1, calcium (Ca), magnesium (Mg), aluminum (Al) extracted with potassium chloride (KCl) 1.0?mol L?1, potential acidity (H + Al) extracted with calcium acetate, and base saturation] presented great variation, except cation exchange capacity (CEC) and pH (water). Most of the soil samples were characterized as having high acidity; medium level of organic‐matter content; low levels of P, K, Ca, and Mg; and high levels of Al and H + Al. Overall, base saturation was less than 20%, a value considered very low for most of annual crops. Soils from upland areas were more acidic and have poor fertility compared with lowland soils. To maintain sustainability of cropping systems, use of an adequate level of liming and chemical fertilizers are necessary on these soils.  相似文献   

7.
In tropical regions, soil acidity and low soil fertility are the most important yield‐limiting factors for sustainable crop production. Using legume cover crops as mulch is an important strategy not only to protect the soil loss from erosion but also to ameliorate soil fertility. Information is limited regarding tolerances of tropical legume cover crops to acid soils. A greenhouse experiment was conducted to determine the differential tolerance of 14 tropical legume cover crops to soil acidity. The acidity treatments were high (0 g lime kg?1 soil), medium (3.3 g lime kg?1 soil), and low (8.3 g lime kg?1 soil). Shoot dry weight of cover crops were significantly affected by acidity treatments. Maximum shoot dry weight was produced at high acidity. Jack bean, black mucuna, and gray mucuna bean species were most tolerant to soil acidity, whereas Brazilian lucern and tropical kudzu were most susceptible to soil acidity. Overall, optimal soil acidity indices were pH 5.5, hydrogen (H)+ aluminum (Al) 6.8 cmolc kg?1, base saturation 25%, and acidity saturation 74.7%. Species with higher seed weight had higher tolerance to soil acidity than those with lower seed weight. Hence, seed weight was associated with acidity tolerance in tropical legume species.  相似文献   

8.
In many regions worldwide, silvopastoral systems are implemented to enable sustainable land use allowing short, medium, and long‐term economic returns. However, the short‐term production in silvopastoral systems is often limited due to nonappropriate soil‐fertility management. This study evaluated the effects of two doses of lime (0 and 2.5 t CaCO3 ha–1) and three sewage‐sludge treatments (0, 200, and 400 kg total N ha–1 y–1 applied in 2 consecutive years) on soil characteristics (soil pH, soil organic matter [SOM], soil nitrogen, cation‐exchange capacity [CEC]), pasture production, and tree growth in a silvopastoral system of Populus × canadensis Moench in Galicia, northern Spain during 6 years after establishment. Soil pH increased during the experimental period for all treatments, although this effect was more pronounced after lime application. Changes in SOM and soil nitrogen content were not consistent over time, but sewage‐sludge application seemed to result in higher values. Higher CEC was found for treatments with lime and sewage‐sludge application. Following incorporation of lime and sewage sludge, pasture production was significantly enhanced (cumulative pasture production 51.9 t DM ha–1 for Lime/N400 compared to 39.0 t DM ha–1 for No lime/N0). This higher pasture production also affected tree growth due to more severe competition between pasture and tree resulting in slower tree growth. Liming and application of sewage sludge are relevant measures to improve soil fertility and thereby optimizing the overall production of silvopastoral systems. However, it is important not to overintensify pasture production to ensure adequate tree growth.  相似文献   

9.
Knowledge on farmers’ perspectives is of paramount importance in order to design appropriate agricultural research and development interventions attuned to local farming systems. A participatory rural appraisal was conducted in order to understand perceived causes and indicators of soil acidity under multiple land-uses in three Districts of northwest Ethiopia. Soil samples were also collected from five dominant land-uses. The samples were analysed for soil pH, exchangeable acidity and other physico-chemical properties. The result indicated that the pH(H2O) of most of the soils in the study sites were in a strongly acidic range (4.6–5.5). Gashena Akayita of the Banja District was the most acidic of all. Among the land-uses, eucalyptus fields were the most acidic followed by crop outfields and grazing lands in that order. At all the study sites, exchangeable Al was detected in soils having a pH of less than 5.0. Overall, the nutrient dynamics showed variation across land-uses and study sites. Farmers’ perceived causes of soil acidity included: soil erosion; contending use of fertility replenishing local resources; abandoning traditional fertility management practices and minimal use of external inputs. The farmers attributed the exclusive use of acid-forming inorganic fertilizers to exhaustion of the soil. Various land and soil characteristics, plant growth attributes, changes in genetic diversity were mentioned as indicators of soil acidity. Particularly, the farmers used prevalence of acidophilic weed species on crop fields and grazing lands as marker of strongly acidic soil. Farmers’ perceived causes and indicators were in agreement with scientific facts and can be utilized as input in designing sustainable acid soil management strategies. Decline in genetic diversity of the once widespread crop species and land races, and expansion of newly introduced soil acidity tolerant species, suggests the need to undertake rescue collections in these areas.  相似文献   

10.
Substituting chemical fertilizers with manure is an important method for efficient nutrient management in rice cropping systems of China.Labile nitrogen(N) is the most active component of the soil N pool and plays an essential role in soil fertility.However,the effects of manure substitution on soil labile N in rice cropping systems and their relationships with soil properties,fertilization practices,and climatic conditions remain unclear and should be systematically quantified.Here,we investiga...  相似文献   

11.
The aim of this study was to determine whether by applying biochar, it is possible to augment the beneficial effects of legume–crop rotation systems on soil fertility and crop performance. Repeated experiments were established in 2012 and 2013 in South-western Benin using a split-split plot design. Two legumes, Mucuna pruriens (mucuna) and Vigna unguiculata (cowpea), were planted for 42 days on biochar-amended and unamended plots and subsequently cut and applied as mulch 5 days before planting rice. Rice plants were either fertilized or not using a fertilizer rate of 60, 30, and 30 kg ha?1 of N, P2O5, and K2O, respectively. The results showed that the application of legume green manures and fertilizer, either singly or in combination, improved soil nutrient availability, CEC, shoot yield, and grain yield of rice on both biochar-amended and unamended plots. However, the effect was significantly (p < 0.05) greater on biochar-amended plots. The mean grain yield for all cropping seasons was 1.8 t ha?1 for biochar-amended plots and 1.3 t ha?1 for unamended plots. The greater grain yield of rice on biochar-amended plots was associated with improved soil fertility and increased N uptake.  相似文献   

12.
To combat soil erosion in the northern part of Taraba State, Nigeria, farmers are of major importance. Their perceptions vitally influence the levels of support and investment associated with solving problems of soil erosion through adoption of practices that are alternative to those in current use, including approaches focused on soil conservation. The objective of this study was to evaluate how farmer perceptions of soil erosion influence their investments in soil conservation, particularly soil or stone bunds, their applications of organic amendments and inorganic fertilizers and other soil conservation practices. In the study area, we undertook a field plot experiment and carried out a survey, using open‐ and closed‐ended questions. Water erosion and depletion of fertility were taken as the main indicators of soil erosion. The results of the experiment showed that farmers were aware of and perceived both indicators as having increased over the past decade. Farmer investments in water erosion control (3.7 US$/ha) and the prevention of soil fertility depletion (37.8 US$/ha) in the study area were found to be limited. The results also showed that awareness of water erosion was only marginally correlated with investment in water erosion control (χ2 = 4.906, P = 0.09) and not associated with investments in soil fertility control measures (χ2 = 0.175, P = 0.92). Those farmers who identified depletion of soil fertility as a problem, based on erosion, were not significantly more likely to make greater investments in soil conservation (χ2 = 0.947, P = 0.62) but did invest more in fertility measures (χ2 = 3.199, P = 0.20). Hence, further research is needed to determine other factors that may influence farmer investment in soil conservation, especially factors related to socio‐economic characteristics of farm households, institutional and technological innovations and field characteristics that were not addressed in this study.  相似文献   

13.
Summary This paper presents soil biological data from a study on the functioning of three soil-plant systems on a Gray Luvisol in Cryoboreal Subhumid central Alberta. The systems were (1) an agroecological 8-year rotation, (2) a continuous grain system, both established in 1981, and (3) a classical Breton 5-year rotation established in 1930. The objectives were to (1) determine whether changes in vesicular-arbuscular mycorrhizae (VAM) populations occurred in soil under these cropping systems, (2) discover whether these cropping systems and/or VAM infection influenced the incidence of common root rot (Bipolaris sorokiniana), and (3) use nutrient translocation indices to test the hypothesis that soil quality influences non-specific physiological conditions in barley (Hordeum vulgare L.). VAM fungal propagules in soil samples and VAM infection under controlled conditions were significantly affected by the cropping system. VAM infection accounted for more than 85% of the variability in grain yield, plant biomass yield, and plant uptake of K, S, Ca, Fe, and Zn under controlled conditions. Backward-elimination regression analyses showed that under these conditions of high available P, plant P uptake was governed by the quantity of extractable P in the soil (r 2=0.82); the VAM infection contributed practically nothing when combined with available P (R 2=0.84). Neither VAM infection nor the cropping system were related to the B. sorokiniana infection in the barley. The growth of B. sorokiniana was equal, and its sporulation superior, when grown on residues of the non-host fababean (Vicia faba L.), compared with growth on residues of barley. Higher translocation of plant nutrients to the grain in the agroecological compared with the continuous grain treatments suggested that VAM and/or the soil history affected plant physiology, possible through hormonal effects. Superior barley yields in the agroecological compared with the continuous grain treatments were partly due to increased VAM colonization, greater nutrient accumulation and translocation to the grain, but not to a reduced disease incidence. These results demonstrate the benefits of a holistic systems approach while studying biological interactions involving plants and groups of soil microorganisms.(ICRISAT journal article number 1161)  相似文献   

14.
Growing areas under transgenic crops have created a concern over their possible adverse impact on the soil ecosystem. This study evaluated the effect of Bt-cotton based cropping systems on soil microbial and biochemical activities and their functional relationships with active soil carbon pools in Vertisols of central India (Nagpur, Maharastra, during 2012–2013). Culturable groups of soil microflora, enzymatic activities and active pools of soil carbon were measured under different Bt-cotton based cropping systems (e.g. cotton-soybean, cotton-redgram, cotton-wheat, cotton-vegetables and cotton-fallow). Significantly higher counts of soil heterotrophs (5.7–7.9 log cfu g?1 soil), aerobic N-fixer (3.9–5.4 log cfu g?1 soil) and P-solubilizer (2.5?3.0 log cfu g?1 soil) were recorded in Bt-cotton soils. Similarly, soil enzymatic activities, viz. dehydrogenase (16.6–22.67 µg TPF g?1 h?1), alkaline phosphatase (240–253 µg PNP g?1 h?1) and fluorescein di-acetate hydrolysis (14.6–18.0 µg fluorescein g?1 h?1), were significantly higher under Bt-cotton-soybean system than other Bt- and non-Bt-cotton based systems in all crop growth stages. The growth stage-wise order of soil microbiological activities were: boll development > harvest > vegetative stage. Significant correlations were observed between microbiological activities and active carbon pools in the rhizosphere soil. The findings indicated no adverse effect of Bt-cotton on soil biological properties.  相似文献   

15.
Climate, soil physical–chemical characteristics, land management, and carbon (C) input from crop residues greatly affect soil organic carbon (SOC) sequestration. According to the concept of SOC saturation, the ability of SOC to increase with C input decreases as SOC increases and approaches a SOC saturation level. In a 12‐year experiment, six semi‐arid cropping systems characterized by different rates of C input to soil were compared for ability to sequester SOC, SOC saturation level, and the time necessary to reach the SOC saturation level. SOC stocks, soil aggregate sizes, and C inputs were measured in durum wheat monocropping with (Ws) and without (W) return of aboveground residue to the soil and in the following cropping systems without return of aboveground residue to soil: durum wheat/fallow (Wfall), durum wheat/berseem clover, durum wheat/barley/faba bean, and durum wheat/Hedysarum coronarium. The C sequestration rate and SOC content were lowest in Wfall plots but did not differ among the other cropping systems. The C sequestration rate ranged from 0.47 Mg C ha−1 y−1 in Ws plots to 0.66 Mg C ha−1 y−1 in W plots but was negative (−0.06 Mg C ha−1 y−1) in Wfall plots. Increases in SOC were related to C input up to a SOC saturation value; over this value, further C inputs did not lead to SOC increase. Across all cropping systems, the C saturation value for the experimental soil was 57.7 Mg ha−1, which was reached with a cumulative C input of 15 Mg ha−1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Lime (calcium oxide), animal manure and crop straw soil treatments have been shown to ameliorate soil acidity, yet their effectiveness at concurrently enhancing soil fertility status and improving crop yields is less well understood. In this study, an acidic nutrient deficient red soil (Ferralic Cambisol) received these treatments at various dosage rates (% of DW soil) in pot experiments with maize plants. Lime was applied at four dosage rates (0.05%, 0.10%, 0.15% and 0.20%), pig manure at three rates (0.50%, 1.00% and 1.50%), maize straw or milk vetch at two rates (0.50% and 1.00%) and combinations of lime (0.10% or 0.15%) with maize straw (0.50%) and/or pig manure (0.50%). Soils treated with and without chemical fertilizers were also included as controls. Measurements of soil pH, exchangeable acidity, plant available nutrients and maize shoot biomass were recorded. Maize shoot biomass increased by 4.7–7.6 times under pig manure treatments, 1.1–1.6 times under milk vetch, 0.4–1.5 times under lime and 1.1–6.2 times under combination treatments, compared with the control. Soil pH increased by 0.5–0.9 units under lime, by 0.2–0.4 units under pig manure and by 0.7 pH units under the combination treatment relative to the control. Variance partitioning analysis showed that on an individual basis, soil acidity amelioration (pH, exchangeable H+ and Al3+) or nutrient input (C, N, P, K, Ca, Mg, Zn) explained only 4.3% and 5.6% of improved maize growth, respectively. Whereas, their interaction explained 85.9% of the variation. We also report that the over-application of pig manure could lead to P saturation and negative impacts on aquatic systems in the wider environment. Therefore, we recommend a combination of lime, pig manure and straw provides an optimal solution for addressing soil acidity and limiting P saturation in acid soils.  相似文献   

17.
The complex biological interactions taking place in soil–plant systems may sometimes alter the functioning of an ecosystem. We examined the relationship between arbuscular mycorrhizal (AM) root colonization, nematode populations, and plant competition in an 8-year-old field experiment comparing alfalfa monoculture to dual culture of alfalfa (Medicago sativa L.) and Russian wildrye (Psathyostachys juncea Fisch. Nevski) (RWR) grown under different soil P fertility levels, in a Brown Chernozemic soil in Saskatchewan. The experiment included three P rates: 0, 20 and 40 kg P2O5 ha−1 (0P, 20P and 40P) applied annually and was sampled three times during the cropping season: 30 June, 1 September and 30 September. Higher AM symbiotic development compensated for reduced soil P fertility in alfalfa stands without RWR and forage dry matter yield was not affected by P rates. But in the presence of RWR, reduced soil P fertility at 0P and 20P led to forage yield reduction. Fertilization treatments modified the soil microbial community structure only in the presence of RWR, as revealed by discriminant analysis of the profiles of microbial phospholipids fatty acid in soil lipid extracts and functional nematode groups. Arbuscular mycorrhizal root colonization level was reduced with P fertilizer both in the presence and absence of RWR. In the presence of RWR, lower plant AM root colonization was concurrent with higher abundance of total, fungivorous and omnivorous nematodes. Our results are consistent with a model of negative feedback from the plant-associated soil microflora where the presence of RWR increased the population of fungivorous nematodes and grazing of AM hyphae. Negative impacts were larger in low P fertility soils promoting AM symbiotic development. The unexpected decrease in alfalfa–RWR dual culture yield under 0P and 20P fertilization levels was attributed to a carbon drain created by enhanced nematode feeding on AM fungi in the presence of RWR.  相似文献   

18.
The Australian grains industry relies on mineralized nitrogen (N) from soil organic matter and plant residues, but fertilizer N is increasingly needed to optimize yields. Most farmers are guided on N fertilizer requirements by commercial crop advisors. We surveyed (n = 132) and interviewed (n = 11) New South Wales grains advisors to gauge the usage of soil process understanding, soil data and decision support systems (DSSs) when developing N recommendations. Soil moisture at sowing, seasonal forecasts, crop rotation, soil mineral N, financial risk profiles and paddock history were all used to prepare N fertilizer advice, but stored soil moisture was most important. Farmer confidence in soil N testing was low due to high spatial variability. Most advisors calculated N fertilizer required for yields within 10%–15% of crop potential, but clients’ attitude to financial risk guided final N recommendations. Conservative growers preferred a low input system, while more reliable rainfall or greater reliance on stored soil water led growers to apply higher N rates to maximize long‐term profits. Advisors preferred “rules‐of‐thumb,” simple DSSs and knowledge of crop growth, to elaborate DSSs requiring detailed inputs and soil characterization. Few used in‐crop N sensing. N decision methodologies need to be updated to account for changes in soil fertility, cropping systems and farming practices. New research is needed to answer practical questions regarding soil N mineralization and N losses associated with alternative N application practices and extreme weather events. Training of new advisors in N processes and DSS use needs to be ongoing.  相似文献   

19.
Excessive soil acidity and low soil pH may liberate plant toxic levels of manganese and aluminum from soil minerals, and interfere with nitrogen and phosphorus availability. Active soil acidity is measured as soil pH and reacts quickly in the soil-plant system. Potential or reserve acidity is inactive in the soil, and acts as a source of replenishment for active acidity. Studies to determine the effect of ammoniacal-nitrogen fertilizer treatments and irrigation methods on plant growth and development of cotton, and changes in soil properties were conducted. Nitrogen treatments ranged from 0 to 168.0 kg N/ha in 33.6-kg N/ha increments. Soil samples from each N-treatment from both irrigation blocks were analyzed for active and potential acidity. Irrigation water high in Na+, Ca2+, and HCO3? tended to raise soil pH. Under dry land conditions ammonical N-fertilizer lowered soil pH. Reserve acidity was larger under dry land conditions than under furrow irrigation. No significant differences in reserve soil acidity were observed under furrow irrigation, or under dry land conditions. Calcium, Na+, and HCO3? content of the irrigation water were driving forces to reduce both active and potential soil acidity. Fertilization with ammoniacal-nitrogen sources was the driving force in increasing active and potential soil acidity.  相似文献   

20.
Farmers' perceptions of soil fertility change were compared with observations on soil quality changes and crop performance in soils from a chronosequence representing a range of soil ages since conversion from forest to cropland (0 to 57 years). A majority of the farmers, 92 per cent, had observed a decline in soil fertility on their land. Farmers use crop yield, indicator plants, soil softness and soil colour to judge soil fertility. They identified 11 plants that they used to indicate high soil fertility and four plants that they used to indicate low soil fertility. There was a strong correlation (r = 0·96) between soil organic matter content (loss on ignition) and farmers' ranking of soil fertility based on colour and softness of soil samples from the chronosequence. The biotest experiment with maize showed an exponential decline in biomass production along the chronosequence, confirming the results of farmers' soil fertility ranking. In the biotest, total soil N predicted produced biomass well (r2 = 0·95), whereas the relationship with soil available P (Olsen) was less obvious. Among the eight analysed plant nutrients in the maize leaves, N content was found to correlate best with biomass production (r2 = 0·94). We conclude (i) that there is good agreement between farmers' knowledge and scientific indicators of soil fertility and (ii) that the major reason for declining soil fertility in Beseku is the decrease in N mineralization over time. Interventions should focus on supporting farmers to implement a diversified nutrient management strategy that can maintain or increase long‐term productivity of the soil. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号