首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
Two feeding trials were carried out to determine the optimum feeding rates in juvenile olive flounder, Paralichthys olivaceus, at the optimum rearing temperature. Fish averaging 5.0 ± 0.11 g (mean ± SD) in experiment 1 and 20.2 ± 0.54 g (mean ± SD) in experiment 2 were fed a commercial diet at the feeding rates of 0%, 3.0%, 4.0%, 4.25%, 4.5% and 4.75% body weight (BW) day?1 and satiation (5.52% BW day?1) in experiment 1 and 0%, 1.0%, 2.0%, 3.0% and 3.5% BW day?1 and satiation (4.12% BW day?1) in experiment 2 at 20 ± 1 °C. Both feeding trials lasted for 2 weeks. Results from experiment 1 indicated that weight gain (WG) and specific growth rate (SGR) of fish fed to satiation were significantly higher than those of fish fed at other feeding rates while feed efficiency (FE) and protein efficiency ratio (PER) of fish fed at 4.25% BW day?1 were significantly higher than those of fish fed to satiation and fish fed at 3.0% BW day?1 (< 0.05). In experiment 2 WG, SGR and PER leveled out after the feeding rate of 3.5% BW day?1 whereas FE reached a plateau at 3.0% BW day?1. anova of FE indicated that the optimum feeding rates in 5.0 and 20 g juvenile olive flounder could be 4.25% and 3.0% BW day?1, respectively. Broken line analysis of WG suggested the optimum feeding rates of 5.17% and 3.47% BW day?1 in 5.0 and 20 g fish, respectively. Therefore, these results indicated that the optimum feeding rates could be >4.25 but <5.17% BW day?1 for 5.0 g, and it could be >3.0 but <3.47% BW day?1 for 20 g size of juvenile olive flounder at the optimum rearing temperature.  相似文献   

2.
Four experiments were conducted to investigate the effects of feeding frequency on growth of juvenile Atlantic halibut, Hippoglossus hippoglossus L. Fish (22–75 g) fed three (3 ×) or five times per day (5 × day?1) under constant light and temperature (13±1°C) consumed significantly more feed than fish fed 1 × day?1 but by the end of the experiment only fish fed 5 × day?1 were heavier and had greater specific growth rates (SGR). Under simulated winter conditions (9L:15D, 5±1°C), halibut (~300 g) fed every other day consumed more feed, had a greater SGR and final weight compared with fish fed every third day. Feed conversion ratios were not different among treatment groups in any of the experiments. These results suggest that growth rates may be improved by feeding juvenile halibut more than 1 × day?1.  相似文献   

3.
The effects of feeding rates on growth, feed conversion, protein deposition and carcass quality of fingerling Catla catla (3.61 ± 0.03 cm; 0.71 ± 0.04 g) were worked out by conducting a 16‐week feeding trial. Fingerlings were fed with a casein‐gelatin‐based purified diet (40% crude protein CP; 14.95 MJ kg?1 digestible energy; DE) at 1%, 2%, 3%, 4%, 5%, 6% and 7% body weight per day. The absolute weight gain (AWG; 10.50 g fish?1) and feed conversion ratio (FCR; 1.41) were highest at the feeding rate of 5% body weight per day. However, protein gain (PG; 0.36 g fish?1) and carcass protein content attained the maximum values at 4% BW day?1. Quadratic regression analyses of AWG g fish?1 and PG g fish?1 at 95% maximum response indicated that these parameters attained the best values at 4.19% and 3.81% BW day?1. On the basis of the above results it is recommended that the feeding rate in the range of 3.81–4.19% BW day?1 with a P:E ratio of 26.69–27.74 mg protein MJ?1 DE is optimum for maximum growth, efficient feed conversion and best carcass quality in fingerling C. catla.  相似文献   

4.
A 10‐week study was conducted to investigate the effects of feeding rate and frequency on growth performance, digestion and nutrients balances of Atlantic salmon (Salmo salar) in replicated recirculating aquaculture systems (RAS). Replicated groups of juvenile salmon weighing 90 ± 2.5 g (mean ± SD) were fed a commercial feed (21.63 MJ kg?1 gross energy) to designed feeding rate (1.4%, 1.6% and 1.8% body weight day?1, BW day?1) and feeding frequency (2 and 4 meals day?1) combinations. Specific growth ratio varied between 1.15 ± 0.02 and 1.37 ± 0.16% day?1, and feed conversion ratio ranged from 0.96 ± 0.03 to 1.16 ± 0.02. The nitrogen and phosphorus retention rates were from 36.50 ± 1.94 to 47.08 ± 5.23% and from 20.42 ± 1.05 to 38.59 ± 2.80%. Apparent digestibility coefficients (ADC) in dry matter, protein, lipid and energy showed no significant differences for all groups. However, fish fed at 1.6% BW day?1 and 4 meal day?1 groups had relatively better growth and nutrient retention efficiency compared to other groups. In addition, concentrations of nitrogenous and phosphorous compounds were also detected in this study. These results suggested that salmon of 100–200 g in RAS could in practice be fed at 1.6% BW day?1 and 4 meals day?1, taking environmental impacts into account.  相似文献   

5.
The digestible protein (DP) and digestible energy (DE) requirements for maintenance and growth of brook trout (Salvelinus fontinalis) were determined using a factorial model at either optimum (15 °C) or elevated temperature (19 °C). Several key parameters of the factorial model were measured using a series of inter‐related studies. The maintenance requirements for DP and DE were 0.10 gDP kg?0.69 day?1 (15 °C) and 0.31 gDP kg?0.78 day?1 (19 °C), and 34.86 kJDE kg?0.84 day?1 (15 °C) and 46.14 kJDE kg?0.86 day?1 (19 °C). The total requirements for DP were 0.10 gDP kg?0.69 day?1 + 2.14PG (protein gain) (15 °C) and 0.31 gDP kg?0.78 day?1 + 1.98PG (19 °C). The total requirements for DE were 36.86 kJDE kg?0.84 day?1 + 1.58EG (energy gain) (15 °C) and 46.14 kJDE kg?0.86 day?1 + 1.64EG (19 °C). The partial efficiencies for growth were 0.47 (15 °C) and 0.51 (19 °C) for protein, and 0.63 (15 °C) and 0.61 (19 °C) for energy. Nutrient gain was lower at the elevated temperature; however, feed formulation for brook trout should be adjusted to match changes in nutrient requirements at different culture temperatures. The protein and energy requirements model will be useful for developing commercial feeds and feeding charts for brook trout.  相似文献   

6.
Individual growth rates, feeding rates (%BWd?1) and food conversions for cuttlefish (S. officinalis) hatchlings and juveniles were determined during this study. A flow‐through system was used. Water temperature reached 30 °C during the hottest part of the day, gradually decreasing to 25 °C during the night; salinity varied between 37 ± 3 ppt and lights were kept on for 14 h day?1. Hatchlings were placed in separate compartments with a water volume of 1.2 L. Juvenile cuttlefish (from 0.5 to 25 g) were placed in bigger baskets, with a water volume of 5.2 L. Water flow was 120 L h?1. The biggest cuttlefish used in these experiments (> 25 g) were gathered in groups of five and placed in circular tanks (water volume of 250–300 L). Thus, results obtained in this case are means and not individual data. During the first 10, 20, 30 and 40 days, mean growth rates (of all individuals sampled by age group) decreased consistently (11.8 ± 4.1, 9.8 ± 1.8, 8.1 ± 2.2 and 7.3 ± 0.7%BW?1 respectively); in similar fashion, mean feeding rates decreased with age group (33.7 ± 13.5, 22.0 ± 7.9, 17.3 ± 3.9 and 16.7%BWd?1 respectively). Mean food conversions varied between 3.6 and 2.5 between the age groups. When grouping results by weight class, similar patterns occur, as growth and feeding rates decrease consistently as cuttlefish grow bigger. Highest mean growth and feeding rates are obtained by hatchlings (< 0.1 g) with 12.4 ± 4.5 and 35.3 ± 15.1%BWd?1, respectively, while the lowest growth and feeding rates were recorded for the largest animals, between 15 and 25 g (3.4 ± 1.1 and 10.8 ± 4.1%BWd?1 respectively). For these weight classes, mean food conversions varied between 2.7 ± 0.9 and 3.8 ± 2.8.  相似文献   

7.
Four 1‐week growth trials were conducted to determine the effects of feeding rates on the growth performances of white sturgeon (Acipenser transmontanus) fries 6–9 weeks after initiation of feeding. Six feeding rates with four replications were used in each of the four trials, and the feeding rates were 3.0–8.0, 2.0–7.0, 1.0–6.0 and 1.0–6.0% body weight (BW) per day in 1% increment, respectively. Number of fries per replicate and their initial BW (means ± SEM) were 60, 45, 30 and 30 and 2.8 ± 0.1, 4.5 ± 0.4, 8.5 ± 0.7 and 10.0 ± 0.7 g, respectively. The fries were kept at 18–19 °C and fed a commercial salmonid feed (488 g kg?1 protein and 123 g kg?1 fat). Mortality was low and unrelated to feeding rates. Final body weights, body weight increases, specific growth rates and feed efficiency were significantly (P < 0.05) affected by the feeding rates. Body moisture and lipid contents were significantly affected by feeding rates except body moisture content in trial II. Body protein contents were not affected by feeding rates except in trial III. Broken‐line analysis on specific growth rates indicated that the optimum feeding rates were 6.5 ± 0.4, 4.8 ± 0.2, 4.2 ± 0.1 and 3.8 ± 0.2% body weight per day, respectively, for white sturgeon fries 6–9 weeks after initiation of feeding.  相似文献   

8.
Two feeding trials were conducted to determine the effects of feeding rates in juvenile Korean rockfish, (Sebastes schlegeli) reared at 17 and 20 °C water temperature. Fish averaging 5.5 ± 0.2 g (mean ± SD) at 17 °C and 5.5 ± 0.3 g (mean ± SD) at 20 °C water temperature were randomly distributed into 18 indoor tanks. At each water temperature, triplicate tanks were randomly assigned to one of six different feeding rates: 2.8, 3.8, 4.1, 4.4, 4.7 % and satiation (4.99 % BW day?1) at 17 °C and 2.8, 3.8, 4.1, 4.4, 4.7 % and satiation (5.0 % BW day?1) at 20 °C. After 4 weeks of feeding trial, weight gain (WG) and specific growth rate of fish fed groups at satiation and 4.7 % (BW day?1) were significantly higher than those of fish fed groups at 2.8, 3.8 and 4.4 % (BW day?1) in both 17 and 20 °C temperature. Feed efficiency and protein efficiency ratio of fish fed group at 2.8 % (BW day?1) was significantly lower than those of fish fed groups at 3.8, 4.1, 4.4 and 4.7 % (BW day?1) in both experiments. Hematocrit was significantly higher in fish fed group at 4.4 % (BW day?1) at 17 °C, and there was no significant difference in hemoglobin content amongst all fish fed groups at 20 °C. Glutamic oxaloacetic transaminase and glutamic pyruvic transaminase of the fish fed group at 2.8 % (BW day?1) were significantly higher than those of all other fish fed groups in both experiments. Broken line regression analysis of WG indicated that the optimum feeding rate of juvenile Korean rockfish was 4.48 % (BW day?1) at 17 °C and 4.83 % (BW day?1) at 20 °C. Therefore, these results indicated that the optimum feeding rate could be >4.1 % but <4.48 % at 17 °C and >4.4 % but <4.83 % at 20 °C. As we expected, current results have indicated that 5 g of juvenile Korean rockfish perform better at 17 °C than at 20 °C water temperature.  相似文献   

9.
In order to define temperature regimes that could benefit successful production of spotted wolffish (Anarhichas minor) juveniles, experiments with offspring from two different females were carried out. The larvae were fed a new formulated feed or a commercial start‐feed for marine fish, both of which have given high survival rates. In the first experiment newly hatched larvae were fed at constant 6 °C, 8 °C, 10 °C and 12 °C as well as at ambient seawater temperature (2.9–4.5 °C) during 63 days. High survival, 90% to 96%, was registered at ambient and most constant temperature regimes, whereas in the 12 °C groups survival was reduced to 80%. Growth rate (SGR) was very low, 1.8% day?1, at the low ambient temperatures. Growth rate was positively correlated with temperature and varied between 3.1% day?1 to 4.7% day?1, from 6 °C to 12 °C. In the second experiment, set up to include potential detrimental temperatures and study beneficial effects of a more restricted, elevated first‐feeding temperature regime, the larvae were fed at constant 8 °C, 10 °C, 12 °C, 14 °C and 16 °C until 30 days post hatch, followed by constant 8 °C for the next 33 days. In this experiment, low survival, 25% and 2.0%, was registered at 63 days post hatch when larvae were reared initially at 14 °C and 16 °C respectively. The survival of the larvae at the other temperature regimes varied from 47% to 64%, highest survival rate (64%) was found at 8 °C. The lowest specific growth rate, 2.6% day?1, was noted in the 16 °C group. At constant 8 °C to 14 °C (regulated to 8 °C), the SGR varied from 4.45% day?1 to 5.13% day?1. The larvae grew faster in the experiment when initially comparable temperatures (8 °C, 10 °C and 12 °C) were regulated to constant 8 °C after 30 days compared with the first experiment where feeding was carried out at the same constant temperatures (8 °C, 10 °C and 12 °C) during the whole experimental period.  相似文献   

10.
A 28‐week feeding trial was conducted in concrete tanks with Nile tilapia, Oreochromis niloticus (L.) with an average initial weight and length of 61.9±6.03 (g fish?1) and 17.6±0.45 (cm fish?1), respectively, to examine the effect of two protein levels and three feeding levels (% body weight (BW) day?1) on growth performance, production traits and body composition. Twelve 4‐m3 concrete tanks (2 × 2 × 1.25 m, long, width and height) were each stocked with 100 fish and fed diets containing either 25% or 30% crude protein at rates of 1%, 2% and 3% BW daily (2 × 3 factorial experiment). The results revealed that there was no significant increase in growth rate with increasing dietary protein levels, whereas there was significant increase in growth rate with increasing feeding levels (P≤0.05). The same trend was also observed for mean BW (g), mean body length (cm), production rate (kg m?3), specific growth rate (SGR % day?1), feed conversion ratio (FCR), condition factor (K) and survival rate (%). The best final mean BW (g), final mean body length (cm), SGR (% day?1), FCR, K, production rate (kg m?3) and survival rate (%) were recorded in groups of fish fed with 25% dietary protein at the 2% feeding level. Whole fish fat and energy contents were not significantly influenced (P>0.05) by protein levels and feeding levels. Protein and ash contents were significantly (P≤0.05) influenced by feeding level, but not by dietary protein level. Economic evaluation indicated that dietary protein 25% (diet A) at the 2% BW day?1 feeding level was the most cost‐effective and affordable feed strategy for farmers. We conclude that a 25% protein diet fed at 2% BW day?1 is recommended for adult Nile tilapia reared in concrete tanks.  相似文献   

11.
ABSTRACT

The effect of photoperiod (24L:00D, 12L:12D, and 00L:24D) and temperature (22 ± 1°C and 28 ± 1°C) on performance of Clarias gariepinus larvae was tested. Larvae weighing 3.2 ± 0.24 mg were cultured in aquaria at a stocking density of 20 fish L?1 and fed twice a day on catfish starter diet (40% CP) at 10 % BW day?1. Highest mean weight gain (31.00 mg), SGR (7.56% day?1), and survival (83%) were achieved at photoperiod and temperature combination of 00L:24D and 28 ± 1°C. Percent survival of larvae differed significantly (p < .05) among treatments with optimal survival of (83%) in treatment combination of 28 ± 1°C and 00L:24D, while lowest survival (40%) in treatment combination of 22 ± 1°C and 24L:00D.  相似文献   

12.
Four one‐week growth trials were conducted on green sturgeon fry to determine the effect of feeding rate on their growth performance at 18 °C when they were fed a salmonid soft moist feeds containing 445–457 g kg?1 of crude protein and 201–207 g kg?1 of lipid. The fry used in Trials I‐IV were 5–8 weeks after their initiation of exogenous feeding. Their average initial body weights were 1.63 ± 0.01, 2.63 ± 0.03, 5.08 ± 0.08 and 7.49 ± 0.05 g, respectively. Six feeding rates used were as follows: 2.5–15.0% body weight per day (% BW day?1) with a 2.5% increment in Trial I; 1.25–7.50% BW day?1 with a 1.25% increment in Trial II; and 2.0–7.0% BW day?1 with a 1.0% increment in Trials III and IV. Four replicates with 50 fry per tank in Trials I‐III and 30 fry per tank in Trial IV were assigned randomly to each feeding rates. The final body weight, specific growth rate, feed efficiency, protein retention, and whole‐body moisture, lipid, and energy contents were significantly (< 0.05) affected by the feeding rates. The optimum feeding rates determined by the broken‐line model were 7.1, 5.7 and 5.3% BW day?1 for Trials I, II and IV, when the fry were 5, 6 and 8 weeks after their initiation of exogenous feeding, respectively.  相似文献   

13.
This investigation examined the effects of live prey availability on growth and survival of Sepia officinalis. Two independent experiments, comprising two feed rations each, were performed, using adequate prey size. In the first experiment, cuttlefish hatchlings were fed live mysids, Paramysis nouvelli [(feed ratio I (fr I)], at 15% body weight per day (bw day?1) (fr I15) and 30% bw day?1 (fr I30). In the second experiment, juvenile cuttlefish were fed live Atlantic ditch shrimp, Paleomonetes varians (fr II), under the same experimental design. In both experiments, the final mean weight, feeding rate and instantaneous growth rate were higher when animals were fed feed ratio fr II15 and fr II30 (30% bw day?1). The results indicate that prey availability influenced weight gain, irrespective of the prey used, during the first 2 months of cuttlefish life cycle. This effect seems to be more noticeable when a certain limit of prey is achieved. For cuttlefish fed fr II, the optimal prey density is thought to be under 2.5 g prey L?1 (i.e. 14 shrimp L?1). Results indicate that cuttlefish can withstand prey densities up to 120 mysids L?1 for cuttlefish up to 3 weeks old and 19 shrimps L?1 for cuttlefish up to 6 weeks old.  相似文献   

14.
The goal of this study is to develop a larviculture protocol for Mithraculus forceps, a popular marine aquarium species. Different temperatures (25±0.5°C and 28±0.5°C), stocking densities (10, 20, 40 and 80 larvae L?1), prey densities (newly hatched Artemia of 1, 4, 7 and 12 nauplii mL?1) and metamorphosis to crab conditions (Systems A and B) were tested. The best survivorship and faster development were obtained when the larvae were reared at a density of 40 larvae L?1 for 7 days post hatching (DPH) in System A, at 28°C and fed with 7 mL?1 of newly hatched Artemia nauplii. After 7 DPH all the megalopa were moved to System B and the same temperature and prey density were maintained. At the end of the experiment, 12 DPH, survivorship of 74.1±4.8% was obtained.  相似文献   

15.
Formulated abalone feeds used by the culture industry are believed to be unsuitable for use at elevated water temperatures (>20 °C). The aim of this study was to develop a feed that could safely be fed to abalone cultured at elevated water temperatures by optimizing dietary protein/energy levels. Abalone (54.90 ± 0.08 mm; 28.99 ± 0.16 g) were cultured at either 18, 22 or 24 °C, and fed diets containing graded levels of protein (18–26%) and energy (11.6–16.2 MJ kg?1). Abalone growth was temperature dependent, declining from 4.33 g month?1 at 18 °C to 0.77 g month?1 at 24 °C. Shell length and weight gain were independent of dietary protein, provided that the digestible energy content of the diet was not lower than 13.5 MJ kg?1. Dietary energy levels below 13.5MJ kg‐1 resulted in significant reductions in shell growth, weight gain and increased mortality from 5% to 27%. Feed consumption of the 22% and 26% protein diets with 11.6 MJ kg?1 was significantly higher (0.53 ± 0.04 and 0.55 ± 0.04% bd. wt. day?1 respectively) compared with abalone fed the 16.2 MJ kg?1 diets at the same protein levels (combined mean of 0.45 ± 0.04% bd. wt. day?1) indicating that consumption was linked to energy requirement. The growth and mortality results suggest that abalone cultured at these temperatures have a dietary digestible energy requirement of at least 13.5 MJ kg?1.  相似文献   

16.
A 2 × 3 factorial study was conducted to investigate the effects of dietary protein levels (DPLs) and feeding rates (FRs) on the growth and health status of juvenile genetically improved farmed tilapia (GIFT), Oreochromis niloticus. Triplicate tanks of fish (initial weight 15.87 ± 0.11 g) were fed diets containing 25 or 35% protein at rates of 3, 5, or 7% body weight per day (BW day?1) for 8 weeks. At the end of the feeding trial, the results showed that fish growth (final mean weight 34.61–81.07 g) and condition factor (3.39–4.45 g cm?3) increased with the DPLs and FRs. Feed efficiency (FE, 0.48–0.88) increased as DPLs increased but decreased as FRs increased; the opposite trend was observed for feed cost (FC, 3.24–5.82 CHN Yuan kg?1) and hepatosomatic index (0.98–2.33%). Apparent protein retention efficiency (APRE, 23.92–38.78%) was reduced by high FR. A 35% protein diet resulted in higher (P < 0.05) FE and APRE, and lower (P < 0.05) FC at 5% BW day?1 than those at 7% BW day?1. As FRs increased, lipid contents of the hepatopancreas, viscera, muscle, and eviscerated body increased, while moisture contents of hepatopancreas and viscera decreased. All serum biochemical parameters, including glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase activity and levels of creatinine, glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, triglyceride, and total protein were unaffected by DPL or FR (P > 0.05), except urea nitrogen levels, which were affected by DPLs (P < 0.05). Moreover, the size of hepatocytes and the area ratio of hepatocyte vacuoles were enlarged (P < 0.05), whereas the area ratios of the nucleus and cytoplasm were reduced (P < 0.05) with increasing FRs. These results suggested that the optimal feeding strategy for juvenile GIFT is 35% protein diet at 5% BW day?1.  相似文献   

17.
In this study, we aimed to investigate the effects of water temperature and stocking density on the survival, feeding and growth of the juveniles of the hybrid yellow catfish from Pelteobagrus fulvidraco (♀) × Pelteobagrus vachelli (♂) using the parameters as follows: survival rate (%), feeding rate (% day?1), feed conversion ratio, specific growth rate (% day?1), coefficient of variation (%), productivity (P, g m?3 day?1) and condition factor. We reared the juvenile fish (3.25 ± 0.21 g) at 12 water temperature levels and six stocking density levels (each level included three aquaria in two batches of experiments). The results showed that all groups survived at a temperature range of ≤35°C during a 46‐day experimental period, and they could achieve a high growth at a water temperature range of 26–32°C. The optimal temperature for growth was 29.8°C. Productivity peaked at a stocking density of 1.9 kg m?3. Our results indicated that the hybrid is very suitable for commercial aquaculture.  相似文献   

18.
Triplicate groups of juvenile American eel, Anguilla rostrata, initial weight 8.2 ± 0.24 g, were fed to satiation herring meal based diets formulated with digestible protein/digestible energy (DP/DE) ratios of 19, 20, 21, 22 and 23 g DP MJ DE?1 (as‐fed basis) for 84 days. Data were collected to determine the effect of dietary DP/DE ratio on feed intake (FI), mean weight (MW), specific growth rate (SGR), feed conversion ratio (FCR), apparent digestibility (AD) of major nutrients, rate of phosphate excretion (RPE) and nutrient retention efficiency (RE). Highest MW, SGR and lowest FCR (P < 0.05) were achieved by feeding 22 g DP MJ DE?1 with values (mean ± SE) of 22.9 ± 0.07 g fish?1, 1.23 ± 0.033% day?1 and 0.91 ± 0.075 g feed g gain?1, respectively. With exception of lipid, digestibility of all nutrients were the same (P > 0.05) with mean AD coefficients for organic matter, protein, energy and phosphorous of 86.3, 94.1, 89.2 and 34.7%, respectively. Lipid AD was significantly higher (P < 0.05) when DP/DE ratio was 21, 22 or 23 g DP MJ DE?1 at 92.3% as opposed to when DP/DE ratio was 19 or 20 g DP MJ DE?1 at 90.3%. The DP/DE ratio had no significant effect (P > 0.05) on RPE and it averaged 0.05 ± 0.002 g phosphate kg fish?1 day?1. Nitrogen retention efficiency (NRE) significantly (P < 0.05) increased as DP/DE ratio increased to 21 g DP MJ DE?1 and was similar thereafter (P > 0.05) at an average of 31.6 ± 0.67%. Energy retention efficiency (ERE) significantly (P < 0.05) increased to 42.9 ± 1.24% as DP/DE ratio increased to 22 g DP MJ DE?1 and thereafter significantly (P < 0.05) decreased. Lipid retention efficiency (LRE) increased significantly (P < 0.05) to 75.7 ± 0.85% as dietary DP/DE ratio increased to 23 g DP MJ DE?1. Non‐linear quadratic regression of ERE against dietary DP/DE ratio yielded an estimated optimum DP/DE ratio for juvenile American eel of 22.1 g DP MJ DE?1.  相似文献   

19.
To develop a feeding strategy for the Australian freshwater fish silver perch (Bidyanus bidyanus Mitchell), a series of eight experiments was done in 1 m3 cages in an aerated, earthen pond to determine the effects of feeding rate (% body weight) and feeding frequency (no. of feeds day?1) on the growth and feed conversion ratio (FCR) of fingerlings and larger fish under ambient water temperatures over the range 13.8–30.6°C. Fish were fed extruded pellets of a silver perch diet containing 34% digestible protein and 14 MJ kg?1 digestible energy. Commercial silver perch farmers were consulted about feeding practices for large fish (>500 g) and at water temperatures below 12°C, and winter feeding practices for other warmwater species were used to complete the strategy. In the feeding experiments, growth and FCR increased with increasing feeding rates to a level above which only FCR increased. Optimal feeding rates and frequencies were those which resulted in maximal growth, while minimizing effort (feeding frequency) and FCR. The highest feeding frequency required for maximal growth, including that of small fingerlings was twice (2 ×) daily, and the optimal feeding rates varied with water temperature and size of fish. The optimal daily regimes were: small fingerlings (initial mean weight, 2.0 g) 7.5% 2 × at a mean temperature of 23.3°C; fingerlings (14.9–27.7 g) 7.5% 2 × at 27.1°C, 5.0% 2 × at 23.7°C and 2.0% 1 × at 16.8°C; and large silver perch (162.5–510.6 g) 0.5% 1 × daily or 1.0% on alternate days at 15.6°C, 1.0% 1 × at 17.3°C, 3.0% 2 × at 24.1°C and 2.0% 2 × at 27.9°C. It is suggested that regimes of 0.5% 1 × daily for fingerlings (<50 g) and 0.5% 1 × on alternate days for larger fish are used at temperatures of 9–12°C, and 0.5% 3 days week?1 and 0.5% 1 day week?1 for fingerlings and larger fish, respectively, at 6–9°C. Feed inputs should not exceed 150 kg ha?1 day?1 in ponds less than 0.3 ha and 100 kg ha?1 day?1 in larger ponds. Our research has established a feeding strategy for silver perch based on restricted rations.  相似文献   

20.
Four semi‐moist formulated feeds were supplied to Octopus vulgaris subadults (664 ± 70 g; 18.4 ± 0.7°C) in two different experiments. In the experiment #1, two diets were prepared with a new mixture of binders (gelatine 150 g kg?1, starch 100 g kg?1 and gum 50 g kg?1). The GEL15‐Squid and GEL15‐Hake feeds included 100 g kg?1 freeze‐dried squid (Todarodes sagittatus) or hake (Merluccius sp.) respectively. Both feeds showed low water disintegration rates at 24 h (13.6–15.0% dry weight). The specific feeding rate was higher in animals fed GEL15‐Hake (2.7%BW day?1), but the growth and feed efficiency were significantly better in animals fed GEL15‐Squid (1.4%BW day?1 and 61.2% respectively; P < 0.05). The proximate composition of the digestive gland, carcass and whole animals was similar. In the experiment #2, the GEL15‐Squid amino acid profile was improved by replacing 50 g kg?1 gelatine by 50 g kg?1 freeze‐dried squid (GEL10‐Squid) or freeze‐dried fish (GEL10‐Fish). These feeds showed higher water disintegration rates (31.7–36.3% dry weight). The feeding rates (2.2–2.3%BW day?1), growth (1.5%BW day?1) and feed efficiency were similar for both diets. Total lipids were higher in the digestive gland and whole animals fed GEL10‐Fish diet (P < 0.05). Future effort could be directed towards alternative binders that allow improve amino acid balance with a minimum gelatine content or even supplementation trials including essential amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号