首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of the recombinant LipL32 for serodiagnosis of leptospiral infection in field rodents was assessed in this study. An immunodominant region of LipL32 was determined by monoclonal antibodies, and then, truncated LipL32 (tLipL32) was designed to contain the region (87–188th amino acid). The tLipL32 was compared between two recombinant expression hosts Escherichia coli and Pichia pastoris in ELISA. With field rat sera, tLipL32 expressed by P. pastoris (tLipL32p) had high antigenicity without background reactions, while tLipL32 expressed by E. coli (tLipL32e) showed high background reactions, which were reduced by pre-adsorption of sera with E. coli. To evaluate tLipL32-ELISA, field rat sera were tentatively divided into a Leptospira infection positive (12 sera) and a negative group (12 sera) based on the results from flaB gene PCR of kidney samples and WB with whole Leptospira cell. Consequently, the sensitivity of tLipL32p-ELISA for field rat sera was 83% . A similar result was obtained from tLipL32e-ELISA with adsorbed sera, (92%). However, sensitivity of tLipL32e-ELISA using sera without an adsorption treatment was 50%. Regardless of the expression host, tLipL32-ELISA had 100% specificity and sensitivity in experimentally infected laboratory rats. These results suggest that recombinant LipL32 expressed by P. pastoris is more applicable for serodiagnosis in field rats due to a lack of background reaction.  相似文献   

2.

Background

Extraintestinal pathogenic Escherichia coli bacteria (ExPEC) exist as commensals in the human intestines and can infect extraintestinal sites and cause septicemia. The transfer of ExPEC from poultry to humans and the role of poultry meat as a source of ExPEC in human disease have been discussed previously. The aim of the present study was to provide insight into the properties of ExPEC in poultry meat products on the Finnish retail market with special attention to their prevalence, virulence and phylogenetic profiles. Furthermore, the isolates were screened for possible ESBL producers and their resistance to nalidixic acid and ciprofloxacin was tested.

Methods

The presence of ExPEC in 219 marinated and non-marinated raw poultry meat products from retail shops has been analyzed. One E. coli strain per product was analyzed further for phylogenetic groups and possession of ten virulence genes associated with ExPEC bacteria (kpsMT K1, ibeA, astA, iss, irp2, papC, iucD, tsh, vat and cva/cv) using PCR methods. The E. coli strains were also screened phenotypically for the production of extended-spectrum β-lactamase (ESBL) and the susceptibility of 48 potential ExPEC isolates for nalidixic acid and ciprofloxacin was tested.

Results

E. coli was isolated from 207 (94.5%) of 219 poultry meat products. The most common phylogenetic groups were D (50.7%), A (37.7%), and B2 (7.7%). Based on virulence factor gene PCR, 23.2% of the strains were classified as ExPEC. Two ExPEC strains (1%) belonged to [O1] B2 svg+ (specific for virulent subgroup) group, which has been implicated in multiple forms of ExPEC disease. None of the ExPEC strains was resistant to ciprofloxacin or cephalosporins. One isolate (2.1%) showed resistance to nalidixic acid.

Conclusions

Potential ExPEC bacteria were found in 22% of marinated and non-marinated poultry meat products on the Finnish retail market and 0.9% were contaminated with E. coli [O1] B2 svg+ group. Marinades did not have an effect on the survival of ExPEC as strains from marinated and non-marinated meat products were equally often classified as ExPEC. Poultry meat products on the Finnish retail market may have zoonotic potential.  相似文献   

3.
This study was conducted to investigate the presence of Escherichia (E.) coli O157 and E. coli O157:H7 and stx1 and stx2 genes on cattle carcasses and in rectal samples collected from Samsun Province of Turkey. A total of 200 samples collected from cattle carcasses and the rectal contents of 100 slaughtered cattle from two commercial abattoirs were tested using the immunomagnetic separation technique and multiplex PCR methods. E. coli O157 and E. coli O157:H7 were detected in 52 of the 200 samples (26%) tested. Of the positive samples, 49 were E. coli O157 and three were E. coli O157:H7. The E. coli O157 strain was isolated from 24 carcasses and 25 rectal samples, while E. coli O157:H7 was isolated from two carcasses and one rectal sample. Of the 49 samples positive for E. coli O157, 32 were from the rectal and carcass samples of the same animal, while two E. coli O157:H7 isolates were obtained from rectal swabs and carcasses of the same animal. The stx1 and stx2 genes were both detected in 35 E. coli O157 isolates and one E. coli O157:H7 isolate, but the stx2 gene was only detected alone in two E. coli O157 isolates. Overall, 16 carcasses tested positive for E. coli O157 and one carcass tested positive for E. coli O157:H7 based on both carcass and rectal samples. Overall, the results of this study indicate that cattle carcasses pose a potential risk to human health due to contamination by E. coli O157 and E. coli O157:H7 in the feces.  相似文献   

4.
Escherichia coli was isolated from the feces of 122 piglets with diarrhea on 55 farms in Korea. The virulence genes of each isolate were characterized by polymerase chain reaction (PCR). Of the 562 isolates, 191 carried 1 or more of the virulence genes tested for in this study. Of the 191 isolates, 114 (60%) carried 1 or more of the genes for enterotoxigenic E. coli (ETEC) fimbriae F4, F5, F6, F18, and F41 and ETEC toxins LT, STa, and STb, 57 (30%) carried 1 or more of the genes for the Shiga-toxin-producing E. coli (STEC) toxins Stx1, Stx2, and Stx2e, and 21% and 37% carried the gene for enteropathogenic E. coli intimin and for enteroaggregative E. coli toxin, respectively. Collectively, our results indicate that other pathotypes of E. coli as well as ETEC can be strongly associated with diarrhea in piglets. In addition, detection of the genes for Stx1 and Stx2 indicates that pigs are reservoirs of human pathogenic STEC.  相似文献   

5.
In this study, 908 bacterial pathogens from defined infections of dogs and cats were tested for their susceptibility to the novel fluoroquinolone pradofloxacin, which was approved in 2011 for use in cats and dogs. Most of the bacteria tested (Staphylococcus aureus, Staphylococcus pseudintermedius, Escherichia coli, β-haemolytic streptococci, Pasteurella multocida and Bordetella bronchiseptica) exhibited low pradofloxacin MIC90 values of ≤0.25 μg/ml. Solely Proteus spp. and Pseudomonas aeruginosa had higher MIC90 values of ≥4 μg/ml. Only six (3.4%) of 177 S. pseudintermedius and 12 (5.3%) of 227 E. coli isolates showed pradofloxacin MICs of ≥2 μg/ml. Analysis of the quinolone resistance determining regions of the target genes identified double mutations in GyrA that resulted in amino acid exchanges S83L + D87N or S83L + D87Y and single or double mutations in ParC that resulted in amino acid exchanges S80I or S80I + E84G in all 12 E. coli isolates. The six S. pseudintermedius isolates exhibited amino acid exchanges S84L or E88K in GyrA and S80I in GrlA. Comparative analysis of the MICs of pradofloxacin and the MICs determined for enrofloxacin and its main metabolite ciprofloxacin, but also marbofloxacin, orbifloxacin, difloxacin and ibafloxacin was conducted for the target pathogens S. pseudintermedius, E. coli and P. multocida. This comparison confirmed that pradofloxacin MICs were significantly lower than those of the other tested fluoroquinolones.  相似文献   

6.
Faecal samples obtained from 190 healthy mithuns were examined for the presence of Escherichia coli. Total one‐hundred and five E. coli isolates were obtained from these samples, which belonged to 55 different serogroups. These isolates were subjected to multiplex polymerase chain reaction (m‐PCR) for detection of stx1, stx2, eaeA and hlyA genes. Twenty‐three (21.90%) E. coli isolates belonging to 14 serogroups revealed the presence of at least one virulence gene when examined by m‐PCR. Nineteen percent and 2.85% of the mithuns were found to carry Shiga toxin‐producing E. coli (STEC) and enteropathogenic E. coli, respectively. stx1 and stx2 genes were found to be prevalent in 7 (6.67%) and 18 (17.14%) of the isolates respectively, whereas eaeA and hlyA genes were found to be carried by three (2.85% each) isolates. Interestingly, none of the STEC isolates belonged to serogroup O157.  相似文献   

7.
This study determined the antimicrobial resistance profiles of Escherichia coli isolates from dogs with a presumptive diagnosis of urinary tract infection (UTI). Urine samples from 201 dogs with UTI diagnosed through clinical examination and urinalysis were processed for isolation of Escherichia coli. Colonies from pure cultures were identified by biochemical reactions (n=114) and were tested for susceptibility to 18 antimicrobials. The two most frequent antimicrobials showing resistance in Urinary E. coli isolates were oxytetracycline and ampicillin. Among the resistant isolates, 17 resistance patterns were observed, with 12 patterns involving multidrug resistance (MDR). Of the 69 tetracycline-resistant E. coli isolates, tet(B) was the predominant resistance determinant and was detected in 50.9% of the isolates, whereas the remaining 25.5% isolates carried the tet(A) determinant. Most ampicillin and/or amoxicillin-resistant E. coli isolates carried blaTEM-1 genes. Class 1 integrons were prevalent (28.9%) and contained previously described gene cassettes that are implicated primarily in resistance to aminoglycosides and trimethoprim (dfrA1, dfrA17-aadA5). Of the 44 quinolone-resistant E. coli isolates, 38 were resistant to nalidixic acid, and 6 were resistant to nalidixic acid, ciprofloxacin and enrofloxacin. Chromosomal point mutations were found in the GyrA (Ser83Leu) and ParC (Ser80Ile) genes. Furthermore, the aminoglycoside resistance gene aacC2, the chloramphenicol resistant gene cmlA and the florfenicol resistant gene floR were also identified. This study revealed an alarming rate of antimicrobial resistance among E. coli isolates from dogs with UTIs.  相似文献   

8.
In the last few years, antimicrobial resistant (AMR) Escherichia coli have been detected in newborn chickens suggesting their vertical transmission from breeding birds to their offspring. However, little is known about the presence of AMR E. coli in the reproductive organs of broiler breeders. The aim of this study was to investigate the presence of E. coli in the ovaries of healthy broiler breeders and to study their antimicrobial resistance. Samples from broiler breeders (n = 80) collected from 80 different broiler breeder flocks were included in this study. Antibiotic susceptibility testing was performed using disk diffusion method according to Clinical and Laboratory Standards Institute guidelines. Minimal inhibitory concentrations (MICs) of five antimicrobial agents were determined by Etest. PCR and sequencing were used to detect the blaESBL genes. E. coli were detected in the ovaries of thirty seven out of 80 (46.25%) sampled flocks. High levels of resistance to various first-line antimicrobial agents were recorded in E. coli isolates. This study showed that 89.18% of E. coli isolates were multidrug resistant (MDR). Furthermore, MDR extended-spectrum β-lactamases (ESBL)-producing E. coli were detected in the ovaries of four different broiler breeder flocks. Molecular characterization revealed that three isolates harboured blaCTX-M-1 gene and one isolate expressed blaSHV-12 gene. In addition, one blaCTX-M-1 -producing E. coli co-harboured the blaTEM-1 gene. These findings would contribute to a better epidemiological understanding of MDR E. coli for improve existing preventive strategies in order to reduce the dissemination of antimicrobial resistance in the broiler production system.  相似文献   

9.
Escherichia coli is a major pathogen of worldwide importance in commercially produced poultry, contributing significantly to economic losses in chickens and turkeys. One hundred thirty-five cases in broilers were examined and cultured for isolation and antimicrobial sensitivity evaluation of E. coli between January 2005 and December 2006. In 103 cases (76.3%) E. coli were isolated and in 32 cases (23.7%) no E. coli growth was observed. Multiple resistances were seen in all isolates. All isolates were uniformly resistant to Tiamuline, Tylosin, and Bacitracin. We observed low levels of resistance to Gentamicin (12%), Kanamycin (0%), and Florfenicol (39%). Percentages of resistance to Tiamuline, Bacitracin, Tylosin, Colistin, and Erythromycin (≥99%); Tetracycline (96%); Oxytetracycline (93%); Flomequine (87%); Neomycine (87%); Lincospectin (79%); Difloxacin (78%); Enrofloxacin (76%); Cotrimoxazole (72%); Chloramphenicol (52%); and Ampicillin (49%) were determined. Our data show high levels of multiresistance among Iranian E. coli isolates. It seems that the pattern of antibiotic resistance of bacteria that are clinically important for the poultry industry should be monitored.  相似文献   

10.
The occurrence of generic Escherichia coli, E. coli O157, Salmonella, and Campylobacter in cattle manure, beef carcasses, catch basin water, and soils receiving manure application was determined in 21 Alberta feedlots. In cattle manure, generic E. coli (98%, 2069/2100) and Campylobacter (76%, 1590/2100) were frequently detected; E. coli O157 (7%, 143/2100) and Salmonella (1%, 20/2100) were less frequently detected. Samples from beef carcasses in the cooler following Hazard Analysis Critical Control Point interventions yielded only 1 isolate each of generic E. coli and Campylobacter (1/1653) and no Salmonella (0/1653). Catch basin water specimens were positive for generic E. coli in both the spring (62%, 13/21) and the fall (52%, 11/21). Other bacteria were detected only in the spring water specimens, including E. coli O157 (29%, 6/21), Salmonella (5%, 1/21), and Campylobacter (52%, 11/21). Generic E. coli was frequently isolated from soil specimens (30%, 27/88), but E. coli O157 was not found in soil samples obtained in the spring and was only occasionally detected in the fall samples (9%, 3/32). Salmonella were occasionally found in the soil specimens collected in the spring (3%, 2/56), but not in the fall season (0/32). Campylobacter jejuni was frequent in cattle manure (66%, 1070/1623), but rare in carcass and environmental samples. E. coli O157 and Salmonella were rarely detected in cattle or the environment. Generic E. coli and Salmonella were rarely detected on carcasses.  相似文献   

11.
The aminoglycoside apramycin has been used widely in animal production in China since 1999. This study was aimed to investigate the resistance pattern of apramycin-resistant Escherichia coli isolated from farm animals and farm workers in northeastern of China during 2004–2007 and to determine whether resistance to apramycin was mediated by plasmid containing the aac(3)-IV gene and the mode for the transfer of genetic information between bacteria of farm animals and farm workers. Thirty six E. coli isolates of swine, chicken, and human origins, chosen randomly from 318 apramycin-resistant E. coli isolates of six farms in northeastern of China during 2004–2007, were multi-resistant and carried the aac(3)-IV gene encoding resistance to apramycin. Conjugation experiments demonstrated that in all 36 cases, the gene encoding resistance to apramycin was borne on a mobilisable plasmid. Homology analysis of the cloned aac(3)-IV gene with the sequence (accession no. X01385) in GenBank showed 99.3% identity at a nucleotide level, but only with a deletion of guanosine in position 813 of the gene in all 36 cases. The results indicted that resistance to apramycin in these isolates was closely related to aac(3)-IV gene. Therefore, the multi-resistance of E. coli could complicate therapeutic practices for enteric infections in both farm animals and human.  相似文献   

12.
Enteroaggregative Shiga-toxin-producing Escherichia coli strains were responsible for a massive outbreak in Europe in 2011, and had been previously isolated from French patients. The objective of this study was to investigate the presence of enteroaggregative E. coli (EAEC) in slaughterhouse effluents (wastewater, slurry, sludge and effluents), and in river waters near these slaughterhouses. A total of 10,618 E. coli isolates were screened by PCR for the presence of EAEC-associated genetic markers (aggR, aap and aatA). None of these markers was detected in E. coli isolated from slaughterhouse samples. A unique enteroaggregative E. coli (EAEC) O126:H8 was detected in river water sampled upstream from slaughterhouse effluent discharge. These results confirmed that animals might not be reservoirs of EAEC, and that further studies are required to evaluate the role of the environment in the transmission of EAEC to humans.  相似文献   

13.
The aim of this study was to evaluate the occurrence of Shiga toxin (stx)-producing Escherichia coli (STEC) in diarrheic newborn calves, as well as the resistance profile of this microorganism against antimicrobials routinely used in veterinary therapy. The antimicrobial profile of Eugenia uniflora against E. coli clinical isolates was also analyzed. Specimens from the recto-anal junction mucosa were investigated by using chromogenic medium and identification of E. coli was done using microbiological methods (Gram staining, indole test, methyl red test, Voges-Proskauer test, citrate test, urease test, and hydrogen sulfide test). The stx1 and stx2 genes corresponding to the STEC pathotype were evaluated by using polymerase chain reaction and electrophoresis. The susceptibility profile to antimicrobial agents commonly used in veterinary therapeutic practice and the antimicrobial effect of lyophilized hydroalcoholic extract of E. uniflora L. leaves against E. coli clinical isolates were evaluated by disk diffusion and microdilution methods. Shiga toxin-positive E. coli was identified in 45% of diarrheic newborn calves (stx1 = 23.2%, stx2 = 4.0%, stx1 + stx2 = 18.2%). The frequency of stx-positive E. coli in the bacterial population was equal to 17.0% (168/990 clinical isolates): 97 (9.8%) stx1-positive E. coli, 12 (1.2%) stx2-positive E. coli, and 59 (6.0%) stx1 + stx2-positive E. coli isolates. All stx-positive E. coli analyzed showed resistance to multiple drugs, that is, from 4 to 10 antimicrobials per clinical isolate (streptomycin, tetracycline, cephalothin, ampicillin, sulfamethoxazole + trimethoprim, nitrofurantoin and nalidixic acid, ciprofloxacin, gentamicin, and chloramphenicol). Effective management measures should be implemented, including clinical and laboratory monitoring, in order to promote animal and worker health and welfare, prevent and control the spread of diseases, and ensure effective treatment of infectious diseases. The E. uniflora L. leaves showed inhibition of microbial growth based on the diameter of halos, ranging from 7.9 to 8.0 mm and 9.9 to 10.1 mm for concentrations of 50 and 150 mg/mL, respectively. This plant displayed bacteriostatic action and a minimum inhibitory concentration of 12.5 mg/mL for all clinical isolates. Its clinical or synergistic effects with antimicrobial agents must be determined from clinical and preclinical trials.  相似文献   

14.
Limited information is available regarding horse-associated antimicrobial resistant (AR) Escherichia (E.) coli. This study was designed to evaluate the frequency and characterize the pattern of AR E. coli from healthy horse-associated samples. A total of 143 E. coli (4.6%) were isolated from 3,078 samples collected from three national racetracks and 14 private horse-riding courses in Korea. Thirty of the E. coli isolates (21%) showed antimicrobial resistance to at least one antimicrobial agent, and four of the AR E. coli (13.3%) were defined as multi-drug resistance. Most of the AR E. coli harbored AR genes corresponding to their antimicrobial resistance phenotypes. Four of the AR E. coli carried class 1 integrase gene (intI1), a gene associated with multi-drug resistance. Pulsed-field gel electrophoretic analysis showed no genetic relatedness among AR E. coli isolated from different facilities; however, cross-transmissions between horses or horses and environments were detected in two facilities. Although cross-transmission of AR E. coli in horses and their environments was generally low, our study suggests a risk of transmission of AR bacteria between horses and humans. Further studies are needed to evaluate the risk of possible transmission of horse-associated AR bacteria to human communities through horse riders and horse-care workers.  相似文献   

15.
The objectives of this study were to i) describe Escherichia coli and Salmonella isolates; ii) investigate the temporal trends in antimicrobial resistance (AMR) profiles; and iii) evaluate the impact of season and age on these AMR profiles from diagnostic and post-mortem samples in Ontario calves ≤ 2-months-old submitted from 2007 to 2020 to the Animal Health Laboratory in Guelph, Ontario, Canada. Antimicrobial susceptibility testing results were measured by the Kirby-Bauer disk diffusion method. A total of 1291 isolates with AMR profiles were obtained from calves, with E. coli (n = 434) and Salmonella (n = 378) being the most common bacteria characterized for AMR. For E. coli, 79% of isolates tested showed a positive result in F5/K99, whereas for Salmonella isolates, S. Typhimurium (33%) and S. Dublin (22%) were the 2 most common serotypes identified. Multivariable logistic regression models were built to evaluate AMR profiles for E. coli (n = 414) and Salmonella (n = 357) to each antimicrobial tested. Most E. coli isolates (91%) and Salmonella isolates (97%) were resistant to at least one of the antimicrobials tested. In general, E. coli and Salmonella had higher odds of resistance in calves aged ≥ 2 wk compared to 1-week-old calves, and little difference was seen in the level of resistance over the years observed or between seasons in most of the antimicrobials tested. Prospective research should investigate potential risk factors for the development of AMR in calves examples being antimicrobial use and farm management practices.  相似文献   

16.
Ehrlichia (E.) canis is a Gram-negative obligate intracellular bacterium responsible for canine monocytic ehrlichiosis. Currently, the genetic diversity of E. canis strains worldwide is poorly defined. In the present study, sequence analysis of the nearly full-length 16S rDNA (1,620 bp) and the complete coding region (4,269 bp) of the gp200 gene, which encodes the largest major immunoreactive protein in E. canis, from 17 Taiwanese samples was conducted. The resultant 16S rDNA sequences were found to be identical to each other and have very high homology (99.4~100%) with previously reported E. canis sequences. Additionally, phylogenetic analysis of gp200 demonstrated that the E. canis Taiwanese genotype was genetically distinct from other reported isolates obtained from the United States, Brazil, and Israel, and that it formed a separate clade. Remarkable variations unique to the Taiwanese genotype were found throughout the deduced amino acid sequence of gp200, including 15 substitutions occurring in two of five known species-specific epitopes. The gp200 amino acid sequences of the Taiwanese genotype bore 94.4~94.6 identities with those of the isolates from the United States and Brazil, and 93.7% homology with that of the Israeli isolate. Taken together, these results suggest that the Taiwanese genotype represents a novel strain of E. canis that has not yet been characterized.  相似文献   

17.
猪乙型脑炎病毒E基因的克隆与序列分析   总被引:2,自引:1,他引:1  
根据GenBank中猪乙型脑炎病毒SA14-14-2基因序列设计2对引物,从分离的猪源乙型脑炎病毒SD-001株的细胞培养物中扩增出包括E基因全长的两段基因,将扩增的目的片段进行克隆与序列分析。结果表明,所克隆的E基因编码结构域(Domain)区段与SA14-14-2、P3、Beijing-1等毒株的核苷酸与氨基酸序列同源性分别达97.2%与96.8%以上,属于Ⅲ型乙型脑炎病毒,与疫苗株SA14-14-2的Domain区相比,共有8个氨基酸位点变异。  相似文献   

18.
Although Escherichia coli is a commensal bacterium of the bovine vaginal microbiota, it is an important pathogenic bacterium that causes diseases of the reproductive tract and sub-fertility. Recent studies have focused on virulence factors (VFs) of intrauterine E. coli; however, actual endometrial VFs have not been clearly identified. The purpose of this study was to identify the VFs of E. coli associated with clinical metritis and endometritis. Thirty-two strains of E. coli and four mixed Trueperella pyogenes (TP) strains were detected in the uterus of 19 Holstein dairy cows with obvious clinical signs (between 8 and 66 days postpartum). The presence of six E. coli VFs (fimH, fyuA, kpsMTII, hra1, csgA, and astA) was examined by PCR, and clinical signs and reproductive performance (mixed TP, the percentage of polymorphonuclear neutrophils [PMN%], days to uterine involution, etc.) were evaluated. Four VFs (fimH, hra1, csgA, and astA) were detected in all E. coli strains, whereas fyuA and kpsMTII were detected in 94% and 50% of strains, respectively. Cows with E. coli strains harboring kpsMTII exhibited significantly severe clinical scores (vaginal discharge score, PMN%, uterine involution), suggesting that kpsMTII is a key VF for progression of clinical metritis and endometritis. In the present study, we clearly identified six VFs associated with clinical metritis and endometritis. In addition, E. coli strains with kpsMTII probably play a crucial role in the progression of clinical metritis and endometritis.  相似文献   

19.
The aims of the present study were to determine (i) the profiles of phylogroup and (ii) the antimicrobial susceptibility of pathogenic Escherichia coli strains isolated from calves, and of Salmonella spp. strains isolated from calves and pigs in Minas Gerais State, Brazil. Sixty-one pathogenic E. coli strains and Salmonella spp. (n?=?24) strains isolated from fecal samples of calves and Salmonella spp. (n?=?39) strains previously isolated from fecal samples of growing/finishing pigs were tested. The minimum inhibitory concentration (MIC) using the agar dilution method was determined for nalidixic acid, amikacin, amoxicillin, ampicillin, cefoxitin, norfloxacin, gentamicin, tetracycline, and trimethoprim-sulfamethoxazole. All E. coli isolates were susceptible to amikacin. Tetracycline was the antimicrobial that presented the higher frequency of resistance among E. coli strains, followed by ampicillin, trimethoprim-sulfamethoxazole, amoxicillin, nalidixic acid, norfloxacin, gentamicin, and cefoxitin. E. coli (n?=?61) strains isolated from calves belonged to different phylogroup namely, phylogroup A (n?=?26), phylogroup B1 (n?=?31), phylogroup E (n?=?3), and phylogroup F (n?=?1). Phylogroups B2, C, and D were not identified among the E. coli in the present study. All Salmonella spp. (n?=?24) strains isolated from fecal samples of calves were susceptible to amikacin, amoxicillin, ampicillin, norfloxacin, gentamicin, tetracycline, and trimethoprim-sulfamethoxazole. Resistance to nalidixic acid and cefoxitin was detected in 16.66 and 8.33 % of the Salmonella spp. strains, respectively. Among the Salmonella spp. (n?=?39) strains isolated from fecal samples of pigs, the higher frequency of resistance was observed to tetracycline, followed by amoxicillin, gentamicin, ampicillin, trimethoprim-sulfamethoxazole, nalidixic acid, cefoxitin, and norfloxacin. All strains were susceptible to amikacin. Forty-eight (78.68 %) of the E. coli strains were classified as multidrug-resistant, whereas among Salmonella spp. strains, the percentage of multidrug resistance was 57.14 %, being all multidrug-resistant strains isolated from pigs (92.30 %). The results from the present study indicate a high frequency of antimicrobial resistance among pathogenic E. coli strains isolated from calves and Salmonella spp. strains isolated from pigs and a high rate of susceptibility to most antimicrobials tested among Salmonella spp. strains isolated from calves. Our study highlights the presence of multidrug-resistant strains of E. coli and Salmonella spp. isolated from food-producing animals in Minas Gerais, Brazil.  相似文献   

20.
Antimicrobial resistance profile of E. coli and Salmonella serovars isolated from diarrheic calves and handlers in Egypt is unknown due to the absence of monitoring. Therefore, this study aimed to determine the virulence, genetic and antimicrobial resistance profiles of E. coli and Salmonella serovars associated with diarrhea in calves and handlers in intensive dairy farms in Egypt. A total of 36 bacterial strains (20 E. coli and 16 Salmonella) were isolated from fecal samples of 80 diarrheic Holstein dairy calves (10 E. coli and 13 Salmonella) and hand swabs of 35 handlers (10 E. coli and 3 Salmonella) in two intensive dairy farms in Sharkia Governate in Egypt. E. coli strains belonged to six different serogroups and O114:K90 was the most prevalent serogroup (30%). However, Salmonella strains were serotyped into four different serogroups and S. Kiel was the most prevalent serotype (50%). Thirteen (65%) E. coli isolates were harbouring either stx2, eaeA and/or astA virulence-associated genes. However, stn and spvC virulence genes were detected in 2 (12.5%) and 4 (25%) of Salmonella isolates, respectively. E. coli isolates showed marked resistance to ampicillin (75%), while Salmonella strains exhibited high resistance to amikacin (100%), gentamicin (93.75%) and tobramycin (87.5%). Results of the present study showed that E. coli and Salmonella serovars isolated from diarrheic calves and handlers in intensive dairy farms in Egypt exhibited resistance to multiple classes of antimicrobials, which may pose a public health hazard. Thus, the continuous monitoring of antimicrobial resistance is necessary for both humans and veterinary medicine to decrease the economic losses caused by antimicrobial-resistant strains in animals as well as the zoonotic risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号