首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comparative uptake and metabolism of 14C-labeled 2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione (methazole), a herbicide, in prickly sida (Sida spinosa L.) and cotton (Gossypium hirsutum L.) were investigated as physiological bases for herbicidal selectivity, using thin layer chromatography, autoradiography, and liquid scintillation counting. Prickly sida and cotton readily absorbed and translocated 14C from nutrient solution containing [14C]methazole. Only acropetal translocation of 14C was observed. Methazole was rapidly metabolized to 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and other metabolites by both species. Although metabolism appeared to be qualitatively the same, quantitative differences between species were evident. Methazole was converted to DCPMU (also phytotoxic) more readily by prickly sida than cotton; however, DCPMU was more readily detoxified to 1-(3,4-dichlorophenyl) urea (DCPU) by cotton than prickly sida. More 14C per unit weight was present in the prickly sida shoots than in cotton shoots. Also, a larger portion of the methanol-extractable 14C was herbicidal in the shoots of prickly sida than of cotton. Thus, the differential tolerances of prickly sida and cotton to methazole may be explained, in part, by differential uptake and metabolism of methazole and DCPMU.  相似文献   

2.
[14C]-Labelled methazole, 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU), 1-(3,4-dichlorophenyl)urea (DCPU), and diuron were incubated in soil at 20°C and field capacity soil moisture content. Decomposition followed first-order kinetics; half-lives for degradation of these four compounds were 2.4, 144, 30 and 108 days respectively. The amount of DCPMU and DCPU that could be extracted decreased with time and the decrease was accompanied by the generation of an equivalent amount of 14CO2. This was not so in the studies with diuron and methazole, however, and the decrease in the concentrations of radioactivity extracted from soil treated with these compounds could not be entirely accounted for as carbon dioxide. It is concluded that the unextractable radiochemical that was present was DCPMU. Methazole appeared to be degraded through DCPMU to 3,4-dichloroaniline (DCA) with the production of only traces of DCPU.  相似文献   

3.
The mechanisms for the tolerance of purple nutsedge (Cyperus rotundus L.) and susceptibility of yellow nutsedge (Cyperus esculentus L.) to methazole [2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione] were studied. Both species absorbed and translocated[14C]methazole and metabolites from nutrient solution; however, greater amounts of 14C per unit weight were detected in yellow than in purple nutsedge. Although intact plants and excised leaves of both species rapidly metabolized methazole to DCPMU [1-(3,4-dichlorophenyl)-3-methylurea], detoxification of DCPMU to DCPU [1-(3,4-dichlorophenyl) urea] occurred more slowly in yellow than in purple nutsedge. Compared to yellow nutsedge, a greater percentage of the radioactivity in purple nutsedge was recovered as polar products. Polar products were converted to the free forms of the parent herbicide and to phytotoxic DCPMU by proteolytic enzyme digestion. Based on the findings of this study, at least three mechanisms (differential absorption, metabolism, and formation of polar products) account for the differential tolerance of these two species to methazole.  相似文献   

4.
The absorption, translocation and degradation of methazole were examined in onion, Stellaria media, Matricaria matricarioides and Veronica persica grown in culture solution. After a short period of initial rapid uptake, all four species absorbed herbicide and water in the same proportions. Translocation of herbicide to the shoots was directly proportional to transpiration, but the apparent solute concentration in the xylem was less than that in the external solution and varied between the species. A smaller percentage of the total absorbed herbicide was translocated to the shoot in V. persica, the most tolerant species. Methazole was relatively stable in M. matricariodes and was degraded slowly to 3-(3,4-dicnlorophenyl)-1-methylurea (DCPMU). It was degraded rapidly to DCPMU in the other three species and this accumulated in onion and S. media. In V. persica DCPMU was degraded further to 3-(3,4-dichlorophenyl) urea (DCPU). Methazole was not an active inhibitor of photosynthesis by isolated spinach chloroplasts. Both DCPMU and DCPU inhibited photosynthesis but DCPMU was 200-times more active than DCPU. Variations in the concentrations of DCPMU in the shoots of the different species largely accounted for the variations in their response to methazole applied pre-emergence.  相似文献   

5.
Absorption of methazole by leaves of onion (Allium cepa), Stellaria media, Matricaria matricarioides and Veronica persica was rapid for the first 24 h after treatment and continued at a slower rate for up to 6 days to reach a maximum of between 35 and 60% of the amount applied. Differences in absorption between species were generally small. Absorption by the cotyledon of onion was greater than absorption into true leaves. Methazole on the leaf surface degraded to 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU) and small amounts of this degraded to 3-(3,4-dichlorophenyl) urea (DCPU). Methazole absorbed into leaves was relatively stable in M. matricarioides and DCPMU accumulated slowly. The rate of degradation was more rapid in the cotyledons than in the true leaves. Both in leaves and in cotyledons of onion and S. media, methazole degraded rapidly to DCPMU and this accumulated; in those of V. persica, DCPMU was degraded quickly to DCPU and unidentified products. The amount of DCPMU accumulated in the shoots was broadly correlated with the relative phytotoxicity of methazole to the different species, except for young seedlings of V. persica which contained no DCPMU but were susceptible to methazole.  相似文献   

6.
[14C]-Labelled methazole was incubated in six soils at 25°C and with soil moisture at field capacity. Under these conditions, methazole was unstable, the concentration declined following first-order kinetics with half-life values in the soils ranging from 2.3 to 5.0 days. The main degradation product was 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU) which was more stable than the parent compound. After about 160 days, DCPMU accounted for 30 to 45% of the initial methazole concentration. Degradation of methazole and DCPMU was affected by soil temperature and moisture content. With methazole, half-lives in one soil at field capacity moisture content and temperatures of 25, 15 and 5°C were 3.5, 8.7 and 31.1 days respectively. The half-life at 25°C was increased to 5.0 days at 50% of field capacity and 9.6 days at 25% of field capacity. A proportion of the initial radioactivity added to the soil could not be extracted and this proportion increased with time. After 160 days this unextractable radioactivity accounted for up to 70% of the amount applied.  相似文献   

7.
BACKGROUND: Field studies of diuron and its metabolites 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), 3,4-dichlorophenylurea (DCPU) and 3,4-dichloroaniline (DCA) were conducted in a farm soil and in stream sediments in coastal Queensland, Australia. RESULTS: During a 38 week period after a 1.6 kg ha(-1) diuron application, 70-100% of detected compounds were within 0-15 cm of the farm soil, and 3-10% reached the 30-45 cm depth. First-order t(1/2) degradation averaged 49+/-0.9 days for the 0-15, 0-30 and 0-45 cm soil depths. Farm runoff was collected in the first 13-50 min of episodes lasting 55-90 min. Average concentrations of diuron, DCPU and DCPMU in runoff were 93, 30 and 83-825 microg L(-1) respectively. Their total loading in all runoff was >0.6% of applied diuron. Diuron and DCPMU concentrations in stream sediments were between 3-22 and 4-31 microg kg(-1) soil respectively. The DCPMU/diuron sediment ratio was >1. CONCLUSION: Retention of diuron and its metabolites in farm topsoil indicated their negligible potential for groundwater contamination. Minimal amounts of diuron and DCMPU escaped in farm runoff. This may entail a significant loading into the wider environment at annual amounts of application. The concentrations and ratio of diuron and DCPMU in stream sediments indicated that they had prolonged residence times and potential for accumulation in sediments. The higher ecotoxicity of DCPMU compared with diuron and the combined presence of both compounds in stream sediments suggest that together they would have a greater impact on sensitive aquatic species than as currently apportioned by assessments that are based upon diuron alone.  相似文献   

8.
Experiments were conducted in a growth cabinet to investigate the absorption and translocation of 14C-3, 6-dichloropicolinic acid by Cirsium arvense (L.) Scop. (Canada thistle, creeping thistle), a sensitive species. Applications were made, either to the middle four leaves of 12-cm-tall vegetative plants grown under low (40%) and/or high (>95%) relative humidity (r.h.), or to four upper or lower leaves of 30-cm-tall flowering plants grown under low r.h. Following application to vegetative plants, absorption and translocation of 14C-3,6-dichloropicolinic acid was rapid and was approximately doubled by high r.h. High r.h. increased the amount of radioactivity retained by the treated leaves or translocated to the shoots but did not affect greatly the amount retained in the roots. The herbicide was highly mobile, with over half of that absorbed, translocated out of the treated leaves after two days. The apex accumulated most of the radioactivity, while approximately 8% was recovered from the roots. The absorption and translocation patterns were similar to those reported in the literature for picloram in C. arvense. Absorption of 3,6-dichloropicolinic acid was greater in vegetative than in flowering C. arvense plants, and placement of herbicide on lower leaves tended to decrease the amount of radioactivity recovered from shoot apex and increase the amount recovered from the roots. Approximately 15% of the applied radioactivity could not be recovered from treated plants by 2 days after treatment.  相似文献   

9.
The deamination of metribuzin was studied in vitro in peroxisomes isolated from the leaves of soybean cultivars which were either metribuzin tolerant, intermediate, or sensitive. The deamination rate observed with peroxisomes from tolerant leaves was about twice the rate observed with peroxisomes from sensitive leaves. The intermediate group was also intermediate with respect to the in-vitro deamination rate. Tolerant and sensitive intact soybean plants were pulse-labeled with [14C]metribuzin via the roots for 5 h. The extractable radioactivity in roots, stems and leaves was measured and separated into metabolites after the 5 h pulse and after an additional 24 h growth in water. The level of DA (deaminated metribuzin) was always significantly higher in the stems and leaves of tolerant soybean plants (4.8–10.0% of the extracted radioactivity) than in sensitive stems and leaves (1.8–2.9%). Conjugates were rapidly formed in tolerant as well as in sensitive soybean tissues. More conjugates were found in the tolerant cultivars, especially after the 5 + 24 h incubation time. Labeled [14C]DA fed to soybean plants via the roots was conjugated two to four times faster than [14C]metribuzin. Tolerant soybean tissue conjugated [14C] DA two to three times faster than sensitive tissue. The results are interpreted as showing that, in tolerant soybean plants, metribuzin is metabolized via deamination and subsequent conjugation, in addition to the well-known direct conjugation of metribuzin parent compound.  相似文献   

10.
The breakdown of the herbicide benzoylprop ethyl [SUFFIX, ethyl N-benzoyl-N-(3,4-dichlorophenyl)-2-aminopropionate] has been examined in wheat, oat, and barley seedlings after application of 14C-labeled herbicide to the foliage.Within 15 days of the application the route and rate of the breakdown were similar in the plants of all three species. Some of the herbicide was present in the plants in a complexed form which could be extracted from the plant with organic solvents and converted back into the herbicide on treatment with hot acid. Evidence was obtained for hydrolysis of the herbicide in the plant to give its des-ethyl analog which conjugated with plant sugars. There was some evidence for a small degree of degradation of benzoylprop ethyl by debenzoylation to give products which also conjugated or complexed.There was no evidence for the formation of 3,4-dichloroaniline in the plants.  相似文献   

11.
Alloxydim-sodium, methyl 3-[1-(allyloxyimino)butyl]-4-hydroxy-6,6-dimethyl-2-oxocyclohex-3-enecarboxylate sodium salt, is a selective herbicide which controls grass weeds in a wide range of broad-leaf crops. Spray retention, tested at two growth stages, was generally greater for the broad-leaf crops (cotton, sugarbeet, flax, beans and peas) than for wild oat (Avena fatua L.), blackgrass (Alopecurus myosuroides Huds), barley and couch grass [Agropyron repens (L.) Beauv.], and did not contribute to selectivity between susceptible and tolerant species. Broad-leaf crops tolerated 2820 g alloxydim-sodium ha?1, three times the recommended rate used to control annual grasses. Differential uptake and translocation were not factors contributing to selectivity. In wild oat, blackgrass and sugarbeet, uptake and translocation of 14C continued during a period of 14 days after treatment with [14C]alloxydim-sodium. Translocation in susceptible and tolerant species was predominately symplastic. Over 40% of the applied 14C was eliminated from treated wild oat, blackgrass and sugarbeet plants within 7 days, due to degradation and volatilisation. A greater proportion of the methanol-soluble radioactivity extracted from leaves and roots was present as water-soluble polar metabolites in sugarbeet, than in wild oats, 7 days after treatment. The proportion of unaltered alloxydim in the organo-soluble fraction of a methanol extract was greater in wild oat than in sugarbeet. Differential metabolism appears to be one of the factors contributing to alloxydim-sodium selectivity between sugarbeet and wild oat.  相似文献   

12.
Bromoxynil octanoate labelled with 14C in the ring or in the cyano-group was applied to wheat seedlings at the two-leaf or fully-tillered stage and at rates equivalent to up to 16 oz a.i./acre. The plants were grown either in environmental chambers under controlled conditions for up to 28 days, or outdoors under field conditions for various periods up to harvest. Initially, elimination of radioactivity occurred more rapidly with bromoxynil-cyano-[14C]-octanoate than with bromoxynil-ring-[14C]-octanoate, indicating metabolic attack on the cyano group. Under outdoor conditions with ring-[14C]-herbicide applied at the two-leaf stage, only 12% of the radioactivity was retained after 28 days, principally in the treated leaves. When application was made at fully-tillered stage, about 33% of the 14C was retained after 56 days, almost entirely in the treated senescent leaves at the base of the plant. There was very little translocation of the herbicide or of any major metabolite. The level of radioactivity in harvested grain and in straw more than 7.5 cm above the ground was very low, even after very late application of ring-[14C]-labelled herbicide. The amount of bromoxynil octanoate, together with any metabolite retaining part of the aromatic ring, did not collectively exceed the equivalent of approx. 0.01 parts/million bromoxynil octanoate.  相似文献   

13.
The absorption, translocation and metabolism of the selective pre- or early post- emergence herbicide epronaz (N-ethyl-N-propyl-3-propylsulphonyl-1,2,4-triazole-1-carboxamide) were investigated using selected crop and weed species. The pattern of tolerance to epronaz of both germinating seeds and 10-day-old plants grown in nutrient solution, was found to be soybean (Glycine max L.) > maize (Zea mays L.) > cotton (Gossypium hirsutum L.) > rice (Oryza sativa L.) > barnyard grass [Echinochloa crus-galli (L.) Beauv.]. In all species, absorption and translocation of 14C from a nutrient solution containing [14C]epronaz (0.02 μCi ml?1) increased with time. Autoradiographic and liquid scintillation analysis indicated the presence of radioactivity in the apical regions of all species after 4 h. Interspecies variation in uptake and distribution did not appear to be a major factor explaining selectivity, although the resistance of cotton may be partly due to compartmentalisation of 14C in the lysigenous glands in stem and leaves. Analysis of extracts from plants treated with [14C]epronaz indicated the presence of epronaz, its major degradation product [3-propylsulphonyl-l,2,4-triazole (BTS 28 768)] and certain unknown radio-labelled compounds. The major metabolite (Unknown I) was believed to be a conjugate of certain plant components with either epronaz or BTS 28 768. The rate of formation of Unknown I corresponded to the relative resistance and susceptibility to epronaz of soybean, rice and barnyardgrass. The level of the herbicide remained much higher in cotton than in the other species, possibly reflecting compartmentalisation and inactivation of epronaz in the lysigenous glands. For maize, high levels of uptake, exudation and degradation in the nutrient solution were recorded.  相似文献   

14.
Benfuresate (2-3-dihydro-3,3-dimethylbenzofu-ran-5-yl ethanesulfonate) is a selective herbicide for the control of purple nutsedge in cotton. Under outdoor conditions, purple nutsedge was sensitive to benfuresate incorporated in soil up to eight days after initiation of shoot sprouting from the tuber. Older seedlings recovered from the damage. During the period of susceptibility to benfuresate, young shoots more sensitive than the roots. Under controlled environmental conditions, benfuresate applied directly to apical buds developing from the tuber caused severe damage to the treated bud and induced abrupt development of axillary buds. Negligible amounts of the applied herbicide were translocated from the treated part to the other buds and roots. Application of the herbicide to fully developed leaves had no effect, probably because of its rapid metabolism and low basipetal mobility. Its relatively high volatility may also contribute to its low foliar post-emergence activity. Tubers also absorbed herbicide vapours. Root uptake of 14C-benfuresate resulted in a rapid accumulation of 14C in the shoot, which had no effect on the purple nutsedge plant, regardless of concentration. The herbicide is rapidly converted, mainly to a non-phytotoxic polar product. These results may explain the high sensitivity of the weed to benfuresate at early growth stages, and the lack of sensitivity in mature plants.  相似文献   

15.
J. MENASHE  R. GOREN 《Weed Research》1973,13(2):158-168
Summary. The metabolism of [14C]fluometuron in Citrus was studied by feeding the herbicide to either young seedlings or to excised organs. Most of the uptake of fluometuron occurred via the roots during the first 24 h and radioactivity was found after 16 days to be in the rootlets (36·5%), mainroot (34·5%), stem (13·7)% and leaves (15·2%). By feeding [14C]fluometuron to excised organs it was established that although most of the fluometuron breakdown occurred in the rootlets, other plant parts were also capable of metabolizing the herbicide. Therefore, the presence of metabolites in the upper plant organs was not entirely due to translocation from the rootlets. These results suggest that the resistance of Citrus to fluometuron is due to its breakdown in the tissues, probably induced by an N-demethylase enzyme system, similar to that reported for cotton (Frear, Swanson & Tanaka, 1969), in which harmless metabolites arc formed. Détoxification du fluométuron par les tissus de Citrus  相似文献   

16.
Root-treated soybean plants absorb, translocate, and metabolize isopropyl carbanilatephenyl-14C (propham-14C). After a 3-day treatment period and removal of the exogenous 14C treating solution, only small concentrations of 14C-labeled materials were found in newly emerging tissues. A measurable concentration of radiocarbon was found in the seed pods, but the fruit tissues were shown to be free of any dectable 14C-labeling. Three days after removal of the exogenous propham-14C, the parent herbicide was completely metabolized by all tissues. Polar products and nonextractable residues were found in roots, stems, and leaves after a 3-day treatment period. The polar metabolites were not translocated once they were formed in either the roots or shoots.Conjugated polar metabolites were isolated, partially purified, and the prophamphenyl-14C moiety characterized. The aglycone moiety of the polar metabolites was liberated either by methanol-HCl solvolysis or by enzyme hydrolysis with β-glucosidase or hesperidinase. The aglycone from all three procedures was derivatized, purified and characterized by NMR, ir, and mass spectral analysis. The only aglycone was the derivative of isopropyl-2-hydroxycarbanilate which was at least in part conjugated as a glycoside.  相似文献   

17.
Alfalfa plants, Moapa variety, were grown in nutrient solution containing isopropylring-[14C] carbanilate (43.8 μCi/liter propham). After 8 days, 41.2% of the radioactivity initially added to the nutrient culture was recovered; 10.9% of this was from shoots, 3.4% from roots and 26.9% from nutrient medium. Nonextracted residues accounted for 23% of the radioactivity in shoots and 62% of that in roots. The parent herbicide constituted 53 and 38% of the radioactivity extracted from shoots and roots, respectively. The balance of extracted 14C was polar metabolites which were purified and subjected to enzymatic and acid hydrolysis. Four aglycones were isolated, three of which were purified by thin-layer chromatography and characterized by mass spectrometry. The principal aglycones were: isopropyl-2-hydroxycarbanilate, isopropyl-4-hydroxycarbanilate, and 1-hydroxy-2-propylcarbanilate. The fourth aglycone was not identified.  相似文献   

18.
The distribution and degradation of chlormequat chloride (2-chloro 1,2-14C ethyltrimethylammonium chloride) was determined after uptake by the roots of summer wheat seedlings. This plant regulator was readily translocated from the roots to the above ground parts and converted into choline. Choline was further metabolized to betaine which upon demethylation yielded finally glycine and serine. Both amino acids were incorporated into a protein fraction.The occurrence of radioactively labeled glycine and serine in the amino acid pool and the evolution of 14CO2 from chlormequat treated plants indicated that serine was formed from glycine under the release of 14CO2 during photorespiration.One week after the uptake period 82% of 14C chlormequat taken up by the roots was recovered as the parent compound or as breakdown products in wheat plants. In addition 5% of the amount taken up by the roots was released as 14CO2 by the leaves.Fifty per cent of the total amount of chlormequat originally present in roots and leaves was already metabolized after 7.5 days. No evidence has been obtained for the presence of unchanged chlormequat or an unknown metabolite in the nucleic acid or protein fraction.  相似文献   

19.
The degradation of [14C] benzoyl prop ethyl (SUFFIX,a ethyl N-benzoyl-N-(3,4-dichlorophenyl)-2-aminopropionate) in four soils has been studied under laboratory conditions. The major degradation product of benzoylprop ethyl at up to 4 months after treatment was its corresponding carboxylic acid (II). On further storage this compound became firmly bound to soil before it underwent a slow debenzoylation process which led to the formation of a number of products including N-3,4-dichlorophenylalanine (IV), benzoic acid, 3,4-dichloroaniline (DCA), which was mainly present complexed with humic acids, and other polar products. Although these polar products were not identified, they were probably degradation products of DCA, since they were also formed when DCA was added to soil. No 3,3′,4,4′-tetrachloroazobenzene (TCAB) was detected in any of the soils at limits of detectability ranging from 0.01-0.001 parts/million. Since N-3,4-dichlorophenylalanine (IV) and 3,4-dichloroaniline were transient degradation products of benzoylprop ethyl, the metabolism in soil of radiolabelled samples of these compounds was also studied. In these laboratory experiments the persistence of the herbicide increased as the organic matter content of the soil increased and the time for depletion of half of the applied benzoylprop ethyl varied from 1 week in sandy loam and clay loam soils to 12 weeks in a peat soil.  相似文献   

20.
The fate of the di-n-butylaminosulfenyl moiety in 2,3-dihydro-2,2-dimethyl-7-benzofuranyl (di-n-butylaminosulfenyl)(methyl)carbamate (DBSC or Marshal) was studied in the cotton plant at 1, 3, 6, and 10 days following foliage treatment with [di-n-butylamino-14C]DBSC. Dibutylamine and two major radioactive metabolites were obtained following extraction of the plant tissue with a methanol-buffer containing N-ethylmaleimide (NEM), a sulfhydryl scavenger which was added to prevent the cleavage of the NS bond during the workup procedure. The most adundant radioactive material recovered from plants was identified as a product arising from the reaction between NEM and dibutylamine. Extraction of plant tissue with straight methanol-buffer solution or with methol-buffer containing other sulfhydryl scavengers resulted in 57–86% of the applied radioactivity being recovered as dibutylamine in the organosoluble fraction. When [14C]dibutylamine was applied to cotton leaves, most of the radioactivity, i.e., 96% of the total recovered radioactivity, was found in the organosoluble fraction as dibutylamine. Dibutylamine is the major metabolite of [di-n-butylamino-14C]DBSC in the cotton plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号