首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus open-grown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above- and belowground biomass estimates were respectively, 140 Mg ha−1 and 32 Mg ha−1 in the coffee–Albizia association, and 29.7 Mg ha−1 and 18.7 Mg ha−1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha−1 in the shaded coffee system and only 22.9 Mg ha−1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil. An erratum to this article can be found at  相似文献   

2.
Shade management in coffee and cacao plantations   总被引:1,自引:0,他引:1  
Shade trees reduce the stress of coffee (Coffea spp.) and cacao (Theobroma cacao) by ameliorating adverse climatic conditions and nutritional imbalances, but they may also compete for growth resources. For example, shade trees buffer high and low temperature extremes by as much as 5 °C and can produce up to 14 Mg ha-1 yr-1 of litterfall and pruning residues, containing up to 340 kg N ha-1 yr-1. However, N2 fixation by leguminous shade trees grown at a density of 100 to 300 trees ha-1 may not exceed 60 kg N ha-1 yr-1. Shade tree selection and management are potentially important tools for integrated pest management because increased shade may increase the incidence of some commercially important pests and diseases (such as Phythphora palmivora and Mycena citricolor) and decrease the incidence of others (such as Colletotrichum gloeosporioides and Cercospora coffeicola). In Central America, merchantable timber production from commercially important shade tree species, such as Cordia alliodora, is in the range of 4–6m3 ha-1 yr-1. The relative importance and overall effect of the different interactions between shade trees and coffee/cacao are dependent upon site conditions (soil/climate), component selection (species/varieties/provenances), belowground and aboveground characteristics of the trees and crops, and management practices. On optimal sites, coffee can be grown without shade using high agrochemical inputs. However, economic evaluations, which include off-site impacts such as ground water contamination, are needed to judge the desirability of this approach. Moreover, standard silvicultural practices for closed plantations need to be adapted for open-grown trees within coffee/cacao plantations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The effect of tree species on the characteristics of the herbaceous stratum, during the first five years of a fallow, was evaluated in the North of Cameroon (average annual temperature 28.2 °C, total annual rainfall 1050 mm). Treatments included a natural grazed herbaceous fallow, a natural ungrazed herbaceous fallow and three planted tree fallows (Acacia polyacantha Willd. ssp. campylacantha (Hochst. ex A. Rich.), Senna siamea Lam. and Eucalyptus camaldulensis Dehnh.), which were protected against grazing. Because tree species influenced light interception in different ways, as well as having different root patterns, they had different effects on the herbaceous stratum in terms of species composition and biomass. The grazed herbaceous fallow maintained the greatest species richness. Protection against grazing or the introduction of tree species associated with the absence of grazing induced both a progressive evolution to a particular species composition. The ungrazed herbaceous fallow consisted mainly of Andropogon gayanus Kunth, which provided the greatest biomass (8 t dry matter ha–1 at the end of the fallow period). E. camaldulensis provided little shade and the lowest fine root mass in the top layer allowing the growth of A. gayanus and thus a greater herbaceous biomass (3.5 t DM ha–1) than that found under the other tree species. Under the heavy shade of A. polyacantha, the herbaceous stratum consisted mainly of annual Pennisetum spp. (2.2 t DM ha–1) and showed the greatest N concentration (1.3%), probably due to N2 fixation by the tree species. After the fourth year, despite the relatively open tree canopy, S. siamea, which showed the highest fine root mass, had a strong depressive effect on the herbaceous stratum. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
This paper summarizes several studies on N recycling in a tropical silvopastoral system for assessing the ability of the system to increase soil fertility and insure sustainability. We analyzed the N2 fixation pattern of the woody legume component (Gliricidia sepium), estimated the recycling rate of the fixed N in the soil, and measured N outputs in tree pruning and cut grass (Dichanthium aristatum). With this information, we estimated the N balance of the silvopastoral system at the plot scale. The studies were conducted in an 11-year-old silvopastoral plot established by planting G. sepium cuttings at 0.3 m × 2 m spacing in natural grassland. The plot was managed as a cut-and-carry system where all the tree pruning residues (every 2-4 months) and cut grass (every 40-50 days) were removed and animals were excluded. No N fertilizer was applied. Dinitrogen fixation, as estimated by the 15N natural abundance method, ranged from 60-90% of the total N in aboveground tree biomass depending on season. On average, 76% of the N exports from the plot in tree pruning (194 kg [N] ha–1 yr–1) originated from N2 fixation. Grass production averaged 13 Mg ha–1 yr–1 and N export in cut grass was 195 kg [N] ha–1 yr–1. The total N fixed by G. sepium, as estimated from the tree and grass N exports and the increase in soil N content, was about 555 kg [N] ha–1 yr–1. Carbon sequestration averaged 1.9 Mg [C] ha–1 yr–1 and soil organic N in the 0-0.2 m layer increased at a rate of 166 kg [N] ha–1 yr–1, corresponding to 30% of N2 fixation by the tree. Nitrogen released in nodule turnover (10 kg [N] ha–1 yr–1) and litter decomposition (40 kg [N] ha–1 yr–1) contributed slightly to this increase, and most of the recycled N came from the turnover or the activity of other below-ground tree biomass than nodules. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Ranchers need alternative livestock feeds when herbaceous forages become limiting in summer. Our objectives were to determine: (1) leaf and stem biomass components, (2) nutritive value [in vitro dry matter digestibility (IVDMD), total nonstructural carbohydrate (TNC), N, and N digestibility] of leaves for animal browse, (3) concentration of the secondary metabolites robinin and mimosine, and (4) in vitro leaf and bark toxicity for black locust (Robinia pseudoacacia L.) and mimosa (Albizia julibrissin Durz.), respectively, pollarded at 50 cm in Arkansas, USA. Black locust exceeded mimosa for every yield component (leaf mass tree−1, leaves shoot−1, shoots tree−1, shoot mass tree−1, stem basal area, and biomass tree−1) except mass leaf−1. Projected yields were 1,900 and 1,600 kg leaves ha−1 for black locust and mimosa, respectively, assuming a population of 12,300 trees ha−1. Mimosa leaves had greater IVDMD, TNC, and N digestibility than black locust. Mimosa leaves exceeded the nutritional N requirements of growing cattle (Bos taurus L.) and goats (Capra hircus L.), but protein supplementation would be needed for growing goats grazing black locust leaves. Tissue concentrations of secondary metabolites robinin and mimosine were below detectable limits in black locust and mimosa, respectively. The extract of black locust bark, but not leaves, was toxic to bioassayed African green monkey (Cercopithecus aethiops L.) cells. Either black locust or mimosa could provide moderate quantities of high quality, rotationally grazed forage for goats during summer months when herbaceous forage may in short supply.  相似文献   

6.
Reduction in forage production (FP) under trees in the humid tropics is well known, but information on how different levels of nitrogen (N) fertilizer influence FP under trees is meager. The present study reports effects of four N fertilizer levels (0, 60, 80 and 120 kg ha−1 N) on net soil N mineralization rate (NMR) and soil moisture (SM), FP, shoot biomass/root biomass ratio (SB/RB), N concentration in SB, N uptake and nitrogen use efficiency (NUE) of three grasses [guinea (Panicum maximum Jacq.), para (Brachiaria mutica (Forssk) Stapf) and hybrid-napier (Pennisetum purpureum Schumach.)] under three canopy positions [under canopy (UC, representing high shade), between canopy (BC, representing low shade) and open] of coconut trees (Cocos nucifera L.) in a coconut based silvopastoral system in the humid tropical climate of South Andaman Island of India. The study was performed for two annual cycles (2005–2006 and 2006–2007). The hypotheses tested were: (1) FP would decline under tree shades, both in N fertilized as well as no N fertilized conditions, when SM was not growth limiting in the open. However, amount of decline in the FP would depend on grass species and intensity of shades i.e., higher was the shade greater would be the decline; (2) N fertilizer would increase FP under tree shades, but the increase depended on grass species, intensity of shades and amount of N applied. Amount of N applied, however, would not annul the shades effects when SM was not growth limiting in the open. The study revealed that the tree reduced light 59% under UC and 32% under BC positions, but the N fertilizer levels increased NMR by 11–51% under UC and 3–44% under BC positions compared to the open. SM did not differ across the canopy positions. Under all situations, FP of all grasses declined under UC (47–78%) and BC (18–32%) positions compared to the open; the decline was greater in Hybrid-napier than Guinea and Para grasses. Forage production of all grasses increased with N fertilizer increments under all canopy positions reaching 32 t ha−1 dry matters for hybrid-napier at 120 kg ha−1 N in the open. Both guinea and para grasses outyielded hybrid-napier grass under UC but not under BC or in the open. N concentration in the forage (SB) also increased as N fertilizer level increased. These observations support our hypotheses and suggest that forage production under coconut palms can be increased by the application of N fertilizer with both guinea and para grasses being more productive than hybrid-napier grass under the high shade. Where light conditions are better, hybrid-napier would produce more forage than the other species.  相似文献   

7.
We analyzed the growth and photosynthetic behavior of Gallesia integrifolia (‘pau-d’alho’) and Schinus terebinthifolius (‘aroeirinha’) under shade, seeking to obtain ecophysiological information for introducing seedlings of those species in previously established cacao agroforestry systems. Considering that light intensity under the shade of cacao trees varied between 5 and 10% daylight, 5 months old seedlings were exposed to four irradiance levels (25, 17, 10 and 5% daylight) for 92 days. With shade increase both species displayed trends of decrease leaf mass per unit leaf area, leaf area per plant (LA), relative growth rate (RGR) and net assimilation rate (NAR), and increase leaf area ratio (LAR). The mean values of light-saturated net photosynthetic rate (P nmax) in 25 and 5% daylight were 12.8 and 8.0 μmol CO2 m−2 s−1 for G. integrifolia and 17.9 and 7.4 μmol CO2 m−2 s−1, respectively, for S. terebinthifolius. Based on the measurements of photosynthetic photon flux density and estimated values of photosynthetic saturated irradiance (Is) we concluded that, in all shaded conditions, the leaves of both species were under sub optimal light conditions to reach P nmax. In spite of the lowest P nmax values, RGR and NAR were significantly higher for G. integrifolia in all irradiance levels. Differences in growth rates can be explained by the higher values of LA, LAR and leaf mass ratio (LMR), as well as by the lower values of Is, photosynthetic compensation irradiance and dark respiration rates observed for G. integrifolia. Even though seedlings of G. integrifolia presented higher capacity to adapt under conditions of dense shade, we concluded that both species were under stress conditions induced by shade in light environments below 25% daylight. On a practical point of view it is possible to conclude that seedlings of both species should be introduced in light gaps, formed after the fall of big trees, or in places in which cacao trees are cultivated using large plant spacing.  相似文献   

8.
Fine root dynamics of shaded cacao plantations in Costa Rica   总被引:1,自引:0,他引:1  
Root turnover may contribute a significant proportion of recycled nutrients in agroforestry systems and competition between trees and crops for nutrients and water may depend on temporal fine root regrowth patterns. Fine root biomass ( 2 mm) and fine root productivity were measured during one year in plantations of cacao (Theobroma cacao) shaded by Erythrina poeppigiana or Cordia alliodora planted on a deep alluvial soil in Turrialba, Costa Rica. Fine root biomass of approximately 1.0 Mg ha–1 varied little during the year with maximum values at the beginning of the rainy season of 1.85 Mg ha–1 in the cacao-C. alliodora system compared to 1.20 Mg ha–1 for cacao-E. poeppigiana. Fine root productivity of C. alliodora and E. poeppigiana (maximum of 205 and 120 kg ha–1 4 week–1, respectively) was greatest at the end of the rainy season, while for cacao it was greatest at the beginning of the rainy season (34–68 kg ha–1 4 week–1), which suggests that if nutrient competition occurs between the shade trees and the cacao, it could be minimized by early fertilization during the beginning of the rains immediately after pruning the shade trees. Annual fine root turnover was close to 1.0 in both systems. Assuming that fine root biomass in these mature plantations was constant on an annual basis, nutrient inputs from fine root turnover were estimated as 23–24 (N), 2 (P), 14–16 (K), 7–11 (Ca) and 3–10 (Mg) kg ha–1 year–1, representing 6–13% and 3–6% of total nutrient input in organic matter in the C. alliodora and E. poeppigiana systems, respectively.  相似文献   

9.
Agroforestry systems based on poplar (Populus deltoides) are becoming popular in eastern and northern parts of India. Therefore studies on the structure and function of the systems are important. The investigations included allometric equations for above- and belowground tree components, crop and plantation floor biomass and litter fall estimation at Pusa, Bihar, India. Biomass, floor litter mass, litter fall and net primary productivity (NPP) of plantations increased with an increase in age of trees whereas, crop biomass for any specific crop interplanted with poplar decreased with the age of the plantation. The total plantation biomass increased from 12.08 to 90.59 Mg ha−1 and NPP varied from 5.69 to 27.9 Mg ha−1 year−1. The biomass accumulation ratio ranged from 2.1 to 3.2. Total annual litter fall was in between 1.95 and 10.00 Mg ha−1 year−1, of which 92–94% was contributed by leaf litter. Compartmental models were developed for dry matter distribution in agroforestry systems involving young (3-year-old) and mature (9-year-old) poplar trees interplanted with various crops, the crops being grown in two rotations maize (Zea mays) – wheat (Triticum aestivum) – turmeric (Curcuma domestica) and pigeonpea (Cajanus cajan) – turmeric. This study substantiates the potential of Populus deltoides G3 under agroforestry combinations.  相似文献   

10.
Abstract

Performance of three, evenaged leguminous tree species (Acacia nilotica, A. auriculiformis and Pithecellobium duke) was evaluated on sodic soil sites (pH 9.6) at Biomass Research Centre, Banthra, Lucknow (north India). Species differed significantly in respect to plant survival, growth and productivity since beginning of its growth as observed at the age of five, 10 and, 15 years. Acacia nilotica had highest average girth at breast height (60.5 cm) and stand biomass (161 Mg ha-1) in spite of its lowest plants survival after 15 years of growth. A. auriculiformis ranked next to it with 131 Mg ha-1 productivity. Basal area ranged from 12.8 to 23 m2 ha-1 in different species. P. duke performed poorly as it had only 71 Mg ha-1 of biomass. Average leaf area per hectare in different species ranged from4,129 m2 ha-1 to 16,090 m2 ha-1 after 15 years of growth. A. nilotica also showed superiority in respect to energy content in woody biomass (2,467 GJ ha-1) and fuel wood value index (1694) as compared to the other two species. At the age of 15 years, litter accumulation over the soil surface resulted in marked reductions in soil pH, electrical conductivity, bulk density and sodium content, and increase in soil porosity, organic carbon and nitrogen content, particularly in the uppermost layer of the mineral soil (0-5 cm). A. nilotica exhibited greater efficiency in terms of soil amelioration followed by A. auriculiformis. The relative ranking of three species was A. nilotica > A. auriculiformis > P. duke, respectively. This indicated greater promise of A. nilotica for biomass production, energy harvest, and soil amelioration on degraded soil sites. Matching tree species to soil conditions needs serious considerations in order to expand site specific afforestation programs and to ameliorate vast tracts of degraded soil sites.  相似文献   

11.
Large amounts of plant litter deposited in cacao agroforestry systems play a key role in nutrient cycling. Organic matter, nitrogen and phosphorus cycling and microbial biomass were investigated in cacao agroforestry systems on Latosols and Cambisols in Bahia, Brazil. The objective of this study was to characterize the microbial C and N, mineralizable N and organic P in two soil orders under three types of cacao agroforestry systems and an adjacent natural forest in Bahia, Brazil and also to evaluate the relationship between P fractions, microbial biomass and mineralized N with other soil attributes. Overall, the average stocks of organic C, total N and total organic P across all systems for 0?C50?cm soil depth were 89,072, 8,838 and 790?kg?ha?1, respectively. At this soil depth the average stock of labile organic P was 55.5?kg?ha?1. For 0?C10?cm soil depth, there were large amounts of microbial biomass C (mean of 286?kg?ha?1), microbial biomass N (mean of 168?kg?ha?1) and mineralizable N (mean of 79?kg?ha?1). Organic P (total and labile) was negatively related to organic C, reflecting that the dynamics of organic P in these cacao agroforestry systems are not directly associated with organic C dynamics in soils, in contrast to the dynamics of N. Furthermore, the amounts of soil microbial biomass, mineralizable N, and organic P could be relevant for cacao nutrition, considering the low amount of N and P exported in cacao seeds.  相似文献   

12.
Planted fallow systems under ‘slash and mulch’ management were compared with natural fallow systems at two farms (BM1 and BM2) in the Colombian Andes. The BM1 site was relatively more fertile than the BM2 site. Planted fallow systems evaluated included Calliandra calothyrsus CIAT 20400 (CAL), Indigofera constricta (IND) or Tithonia diversifola (TTH). During each pruning event slashed biomass was weighed, surface-applied to the soil on the same plot and sub-samples taken for chemical analyses. While Indigofera trees consistently showed significantly greater (p < 0.05) plant height and collar diameter than Calliandra trees at both study sites, only collar diameter in Indigofera was significantly affected at all sampling times by differences between BM1 and BM2. After 27 months, TTH presented the greatest cumulative dry weight biomass (37 t ha–1) and nutrient accumulation in biomass (417.5 kg N ha–1, 85.3 kg P ha–1, 928 kg K ha–1, 299 kg Ca ha–1 and 127.6 kg Mg ha–1) among planted fallow systems studied at BM1. Leaf biomass was significantly greater (P < 0.05) for CAL than IND irrespective of site. However, CAL and IND biomass from other plant parts studied and nutrient accumulation were generally similar at BM1 and BM2. At both sites, NAT consistently presented the lowest biomass production and nutrient accumulation among fallow systems. Planted fallows using Calliandra and Indigofera trees had the additional benefit of producing considerable quantities of firewood for household use. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
During 7 years (1979–1985) cacao harvests (beans and husks) have been recorded for the agroforestry systems ofTheobroma cacao underCordia alliodora andErythrina poeppigiana shade trees. The mean oven dry cacao yields were 626 and 712 kg.ha−1.a−1 cocoa beans underC. alliodora andE. poeppigiana respectively. Harvests have gradually increased over the years and the plantation has now reached maturity. Annual extraction of N, P, K, Ca and Mg in fruits, which is relatively small, was calculated on the basis of chemical analyses. The following average values were found (kg.ha−1.a−1): At the age of 8 years, theC. alliodora trees have reached 26.7 cm diameter (DBH) and 14.0 m in height. Mean annual growth (from age 5 to 7) is 14.6 m3.ha−1.a−1. Natural plant residue production has been measured for 4 years (Nov. 1981–Oct. 1985). UnderE. poeppigiana it has reached a value of 8.91 t.ha−1.a−1 and underC. alliodora 7.07 t.ha−1.a−1. The shade trees have contributed 57 and 47% respectively. Transference and decomposition rates are high and important in the nutrient cycles. The nutrient content of the litter was analysed and corresponding average yearly transfers were (kg.ha−1.a−1): For part I see Vol. 4, No. 3, 1986. Agroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesselschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

14.
Striga hermonthica (striga) weed is a major threat to crop production in sub-Saharan Africa, and short duration improved fallow species have recently been found to reduce the effects of this weed because of their ability to replenish soil nitrogen. The objective of this study was to compare the efficacy and profitability of coppicing improved fallow species (Gliricidia sepium [gliricidia], Leucaena trichandra [leucaena] and Calliandra calothyrsus [calliandra]) and non-coppicing species (Sesbania sesban [sesbania], Mucuna pruriens [mucuna], and Tephrosia vogelii [tephrosia]), in controlling striga. Natural fallow and a sole maize crop were included as control treatments. The fallow treatments were split into two and either fertilized with N or unfertilized. The results showed that coppicing fallows produced higher biomass than non-coppicing fallows. For example, Callindra (coppicing fallow species) produced 19.5 and 41.4 Mg ha−1 of leafy and woody biomass, respectively after four cumulative harvests as compared with Sesbania (non-coppicing species), which produced only 2.3 and 5.9 Mg ha−1 leaf and woody biomass, respectively. Improved fallows reduced striga population in proportion to the amount of leafy biomass incorporated into the soil (r = 0.87). N application increased cumulative maize yield by between 15–28% in improved fallow systems and by as much as 51–83% in the control treatments. Added total costs of the coppicing fallows did not differ significantly from those of the non-coppicing fallows and control treatments. However, the added net benefits of the coppicing fallows were significantly higher (US$ 527 for +N and 428 for −N subplots; P < 0.01) than those of the non-coppicing fallows (US$ 374 for +N and 278 for −N), and the least for the control treatments. The most profitable fallow system was Tephrosia with net added benefits of US$ 453.5 ha−1 season−1 without N, and US$ 586.7 ha−1 season−1 with added N.  相似文献   

15.
Four Populus clones were grown for two years at 1×1 m spacing for study of total biomass production and carbon sequestration capacity on floodplain sites previously in forage grasses under climatic conditions of the lower Midwest, U.S.A. Total biomass (above-and below-ground) in the first year ranged from 3.9 Mg ha–1 in a Populus deltoides x P. nigra clone (I45/51) to 1.9 Mg ha–1 for a local-source Populus deltoides clone (2059). Second year total biomass production was substantially higher, ranging from 13.9 Mg ha–1 in I45/51 to 7.4 Mg ha–1 in P. deltoides clone 26C6R51. Second-year leaf area index (LAI) values for I45/51 plants reached 4 during mid-season, indicating essentially complete canopy closure in this clone by the second year after planting. In contrast, maximum mid-season, second-year LAI was significantly lower in P. deltoides clones ( 2.4). There was some evidence for differential allocation to roots and shoots among Populus clones, with 26C6R51 showing relatively more allocation to root biomass than other clones. Second-year growth in Populus deltoides clone 2059 accelerated substantially, and this genotype exhibited two-year biomass accumulation nearly equal to that of I45/51 despite having less leaf area. This result suggested a higher photosynthetic capacity or assimilation efficiency in the former. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Patterns of litterfall and nutrient input in a subtropical evergreen broad-leaved forest in northern Okinawa, Japan, were studied during May, 1996–April, 1999. The mean annual rate of litterfall in the five sampling plots ranged from 6.84 to 8.93 Mg ha−1 yr−1, of which 63.3–68.5% were leaves; 22.4–29.1% woody parts (including branches < 5.0 cm in diameter and bark); 2.8–5.0% sexual organs and 4.6–6.3% miscellaneous material. Significant differences were found among plots and among years. Significantly monthly differences pronounced seasonal patterns in litterfall were observed. Total litterfall and leaf litter showed negative correlations with relative basal area of the dominant species,Castanopsis sieboldii; and showed positive correlations with mean height of the stands. The dominant species,C. sieboldii produced an average of 2.36 Mg ha−1 yr−1 of leaf litter, which covered 30.5% of the annual litter production, and the nutrient input from those litterfall contributed 32.3, 28.3, 30.2, 22.2, 32.5, and 30.5% of total N, P, K, Ca, Mg, and Na, respectively. Nutrient use efficiency in litter production was high, especially for P and K compared with other broad-leaved forests in Japan indicating that P and K may be limiting in Okinawan evergreen broad-leaved forest.  相似文献   

17.
Theobroma cacao seedlings were grown alone (TCA) or associated with saplings of N2-fixing shade trees Gliricidia sepium and Inga edulis in 200 l of 15N labelled soil within a physical root barrier for studying direct nitrogen transfer between the trees and cacao. Root:shoot partitioning ratio for sapling total N was lower than biomass root:shoot ratio in all species. Sapling total 15N was partitioned between root and shoot in about the same ratio as total N in cacao and inga but in gliricidia much higher proportion of 15N than total N was found in roots. Thus, whole plant harvesting should be used in 15N studies whenever possible. Average percentage of fixed N out of total tree N was 74 and 81% for inga estimated by a yield-independent and yield-dependent method, respectively, and 85% for gliricidia independently of estimation method. Strong isotopic evidence on direct N transfer from trees to cacao was observed in two cases out of ten with both tree species. Direct N transfer was not correlated with mycorrhizal colonisation of either donor or receiver plant roots. Direct N transfer from inga and gliricidia to cacao is conceivable but its prevalence and the transfer pathway via mycorrhizal connections or via reabsorption of N-rich legume root exudates by cacao require further study. Competition in the restricted soil space may also have limited the apparent transfer in this study because the trees accumulated more soil-derived N than cacao in spite of active N2 fixation.  相似文献   

18.
Predictive models were developed for Cordia alliodora branch and Theobroma cacao branch or leaf biomass,based on branch basal areas (r2 0.79) but the model of C. alliodora leaf biomass, although significant, was of very low accuracy (r2 = 0.09) due to annual leaf fall. At age 10 years, shade tree stem biomass accounted for 80% of the total above-ground biomass of either tree. However, between the ages of 6 and 10 years, the biomass increment of T. cacao branches (3–4t.ha–1.a–1) was similar to that of the shade tree stems. During the same period, the net primary productivity was 35 and 28 t.ha–1.a–1, for the Erythrina poepigiana and and C. alliodora systems, respectively.Cocoa production under either of the shade trees C. alliodora or E. poeppigiana was 1000 kg.ha–1.a–1 (oven-dry; ages 6–10 yr). During the same period, C. alliodora timber production was 9 m3.ha–1.a–1 whilst the leguminous shade tree E. poeppigiana does not produce timber. Litterfall over the same 5 years, including crop and/or shade tree pruning residues, averages 11 and 23 t.ha–1.a–1, respectively. The main difference was due to E. poeppigiana pruning residues (10t.ha–1.a–1).Soil organic material reserves (0–45 cm) increased over 10 years from 198 to 240 t.ha–1 in the E. poeppigiana plots and from 168–184 t.ha–1 in the C. alliodora plots. These values, together with the productivity indices presented, provide evidence that the systems are sustainable.For economic reasons, the use of C. alliodora is recommended under the experimental conditions. however, on less fertile soils without fertilization, the greater biomass and hence nutrient return to the soil surface under E. poeppigiana, might make this the preferable shade tree.  相似文献   

19.
Green manure of multipurpose trees is known to be a good source of nutrients to crop. However, most agroforestry species do not have adequate phosphorus (P) in their leaves. Supplementing green manure with moderate dose of P is a beneficial strategy to improve food security in Rwanda. This study examines the effects of Calliandra calothyrsus Meissner, Tithonia diversifolia Hensley A.Gray and Tephrosia vogelii Hook.f. green manure applied independently or in combination with triple super phosphate (TSP) and lime on maize yield and P uptake in the Oxic Tropudalf of Rubona, Rwanda. The treatments were the control, lime at 2.5 t ha−1, TSP at 25 and 50 kg P ha−1, leaf of C. calothyrsus, T. diversifolia, and T. vogelii each at 25 and 50 kg P ha−1, respectively. Leaf shrubs biomass, TSP and lime were applied for four consecutive seasons (2001–2004). The results showed that the combination of green manure with TSP at a rate of 50 kg P ha−1 significantly increased maize yield from 24 to 508% when compared to the control and T. divesifolia combined with TSP was leading (508%). Equally, the same treatments as indicated above showed higher P uptake (15.6–18. 6 kg P ha−1) than the control (5 kg P ha−1) and 65% of maize yields variation was explained by total P uptake. The plant residues quality such as C:N ratio, total plant N, and P significantly influenced the variability of maize grain yields.  相似文献   

20.
Natural abundance of 15N was sampled in young and mature leaves, branches, stem, and coarse roots of trees in a cacao (Theobroma cacao) plantation shaded by legume tree Inga edulis and scattered non-legumes, in a cacao plantation with mixed-species shade (legume Gliricidia sepium and several non-legumes), and in a tree hedgerow bordering the plantations in Guácimo, in the humid Caribbean lowlands of Costa Rica. The deviation of the sample 15N proportion from that of atmosphere (δ15N) was similar in non-legumes Cordia alliodora, Posoqueria latifolia, Rollinia pittieri, and T. cacao. Deep-rooted Hieronyma alchorneoides had lower δ15N than other non-N2-fixers, which probably reflected uptake from a partially different soil N pool. Gliricidia sepium had low δ15N. Inga edulis had high δ15N in leaves and branches but low in stem and coarse roots. The percentage of N fixed from atmosphere out of total tree N (%Nf) in G. sepium varied 56–74%; N2 fixation was more active in July (the rainiest season) than in March (the relatively dry season). The variation of δ15N between organs in I. edulis was probably associated to 15N fractionation in leaves. Stem and coarse root δ15N was assumed to reflect the actual ratio of N2 fixation to soil N uptake; stem-based estimates of %Nf in I. edulis were 48–63%. Theobroma cacao below I. edulis had lower δ15N than T. cacao below mixed-species shade, which may indicate direct N transfer from I. edulis to T. cacao but results so far were inconclusive. Further research should address the 15N fractionation in the studied species for improving the accuracy of the N transfer estimates. The δ15N appeared to vary according to ecophysiological characteristics of the trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号