首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Controlled atmosphere (CA) treatments with ultralow oxygen (ULO) alone and in combinations with 50% carbon dioxide were studied to control grape mealybug, Pseudococcus maritimus (Ehrhorn) on harvested table grapes. Two ultralow oxygen levels, 30 and <0.01 μL L−1, were tested in both ULO and ULO + 50% CO2 treatments. The ULO treatments with the lower oxygen level were more effective than the ULO treatments at the higher oxygen level. The ULO + 50% CO2 treatments were more effective than the ULO treatments. Grape mealybug eggs were significantly more tolerant of ULO and ULO + CO2 treatments than nymphs and adults. A 14 day ULO treatment with 30 μL L−1 O2 at 2 °C did not achieve 100% mortalities of any life stage. In the presence of 50% CO2, the 14 d treatment achieved complete mortality of all life stages of the grape mealybug. A 3 d ULO treatment with <0.01 μL L−1 O2 at 2 °C resulted in 93.3% mortality of nymphs and adults. The 3 d ULO treatment in combination with 50% CO2 treatments, however, achieved complete control of grape mealybug nymphs and adults and caused 70.5% relative egg mortality. Complete egg mortality was achieved in a 10 d ULO + 50% CO2 treatment with <0.01 μL L−1 O2 at 2 °C. Both the 14 d CA treatment with 30 μL L−1 O2 and 50% CO2 and the 10 d CA treatment with <0.01 μL L−1 O2 and 50% CO2 were tested on table grapes and grape quality was evaluated after two weeks of post-treatment storage. The CA treatments did not have a significant negative impact on grape quality and were safe for table grapes. The study indicated that CA treatments have potential to be developed for postharvest control of grape mealybug on harvested table grapes.  相似文献   

2.
The effects of four pre-packaging UV-C illumination doses (1.6, 2.8, 4.8 and 7.2 kJ m?2) on quality changes of watermelon cubes stored up to 11 days at 5 °C were studied. Non-treated cubes were used as a control. Higher UV-C doses induced slightly higher CO2 production throughout the storage period, while no changes in C2H4 production were monitored. However, UV-C did not significantly affect the final gas partial pressures within modified atmosphere packages where levels of 3–6 kPa O2 and 13–17 kPa CO2 were reached for all treatments. UV-C decreased microbial counts just after illumination. After 11 days at 5 °C, mesophilic, psycrophilic and enterobacteria populations were significantly lower in UV-C treated watermelon. Slight changes in CIE colour parameters were observed. According to sensory quality attributes, control and low UV-C treated cubes (1.6 and 2.8 kJ m?2) can be stored for up to 11 days at 5 °C while the maximum shelf-life of moderate to high UV-C treated fruit was 8 days at 5 °C. Control cubes showed a 16% decrease in lycopene content after 11 days at 5 °C similar to that found for the high UV-C treatment. However low UV-C treated watermelon cubes preserved their initial lycopene content (2.8 kJ m?2) or it was slightly decreased (1.6 kJ m?2). UV-C radiation did not significantly affect the vitamin C content while catalase activity and total polyphenols content considerably declined throughout the storage period. However, total antioxidant capacity markedly increased, independently of UV-C doses. As a main conclusion, UV-C radiation can be considered a promising tool for keeping overall quality of fresh-cut watermelon.  相似文献   

3.
Despite its economic and environmental importance, information about effects of future atmospheric carbon dioxide (CO2) enrichment on aboveground biomass production and tuber yield of potato is still rare. Responses of potato (Solanum tuberosum L. cv. Bintje) were thus investigated in two full growing seasons under 380, 550 or 680 μmol mol?1 CO2 in open-top chambers (OTCs). When averaged over both years, aboveground stem biomass at canopy maturity was negatively related to CO2 enrichment. Aboveground-to-belowground biomass ratio was negatively related to CO2 enrichment as there was a positive relationship between CO2 and total dry yield of potato tubers. The stimulation was mainly related to an increase in the tuber size fraction for commercial yield (tubers > 35 mm). For the largest size class (tubers > 50 mm), which is important for industrial processing, large CO2-induced impacts were observed too, although these effects were not significant. Elevated CO2 concentrations will thus affect biomass allocation of potato plants and result in improvements concerning the market value of the commercial tuber yield.  相似文献   

4.
A field experiment was carried out to assess the impact of elevated carbon dioxide (CO2) and temperature on phosphorous (P) nutrition in relation to organic acids exudation, soil microbial biomass P (MBP) and phosphatase activities in tropical flooded rice. Rice (cv. Naveen) was grown under chambered control (CC), elevated CO2 (EC, 550 μmol mol−1) and elevated CO2 + elevated temperature (ECT, 550 μmol mol−1 and 2 °C more than CC) in a tropical flooded soil under open top chambers (OTCs) along with unchambered control (UC) for three years. Root exudates were analyzed at different growth stages of rice followed by organic acids determination. Rhizospheric soil was used for analysis of soil phosphatase, MBP and available P. The total organic carbon (TOC) in root exudates was increased by 27.5% and 30.2% under EC and ECT, respectively over CC. Four different types of organic acids viz. acetic acid (AA), tartaric acid (TA), malic acid (MA) and citric acid (CA) were identified and quantified as dominant in root exudates, concentration of these was in the order of TA > MA > AA > CA. The TA, MA, AA and CA content were increased by 34.4, 31.1, 38.7 and 58.3% under ECT compared to that of UC over the period of 3 years. The P uptake in shoot, root and grain under elevated CO2 increased significantly by 29, 28 and 22%, respectively than CC. Soil MBP, acid and alkaline phosphatase activity was significantly higher under elevated CO2 by 35.1%, 27 and 36%, respectively, compared to the CC. Significant positive relationship exists among the organic acid exudation, MBP, phosphatase activities and P uptake by rice. The enhanced organic acid in root exudates coupled with higher soil phosphatase activities under elevated CO2 resulted in increased rate of soil P solubilization leading to higher plant P uptake.  相似文献   

5.
Carrot sticks are increasingly in demand as ready-to-eat products, with a major quality problem in the development of white discoloration. Modified atmosphere packaging (MAP) and edible coating have been proposed as postharvest treatments to maintain quality and prolong shelf-life. The combined application of an edible coating containing 5 mL L?1 of chitosan under two different MAP conditions (10 kPa O2 + 10 kPa CO2 in Pack A and 2 kPa O2 + 15–25 kPa CO2 in Pack B) over 12 d at 4 °C was studied. Respiration rate, microbial and sensory qualities as well as the contents of vitamin C, carotenoids and phenolics of coated and uncoated carrot sticks were evaluated. The use of the edible coating containing chitosan preserved the overall visual quality and reduced surface whiteness during storage. Microbial populations were very low and not influenced by coating or MAP. Edible coating increased respiration rates of carrot sticks, although this was only noticeable in the package with the less permeable film (Pack B). Vitamin C and carotenoids decreased during storage particularly in coated carrot sticks. In contrast, the content of total phenolics markedly increased in coated carrot sticks stored under moderate O2 and CO2 levels, while it was controlled under low O2 and high CO2 levels. The combined application of edible coating containing chitosan and moderate O2 and CO2 levels maintained quality and enhanced phenolic content in carrot sticks.  相似文献   

6.
Fumigation by plant volatile compounds and hot water treatment were tested in vitro and in vivo for their activity against Neofabraea alba (anamorph Phlyctema vagabunda), the cause of lenticel rot in apple fruit. In vitro trials with volatile compounds showed a consistent inhibition of pathogen growth by carvacrol, trans-cinnamaldehyde, citral and trans-2-hexenal, while (?)-carvone, hexanal, p-anisaldehyde, 2-nonanone and eugenol showed progressively lower inhibition. The greatest inhibition of mycelial growth was demonstrated by carvacrol (effective doses for 50 and 95 inhibition [ED50 and ED95] = 5.9 and 17.0 μL L?1, respectively; minimum inhibitory concentration [MIC] = 36.9 μL L?1) and of conidial germination by trans-2-hexenal (ED50 and ED95 = 4.1 and 6.9 μL L?1, respectively; MIC = 9.2 μL L?1). Hot water showed a complete inhibition of conidial germination in vitro after 10, 2 and 1 min of exposure at 40, 45 and 50 °C, respectively, and a complete inhibition of mycelial growth after 20 min of exposure at 75 °C. Among the volatile compounds tested, only 25 μL L?1 of carvacrol slightly reduced fungal infection on artificially infected apples (11.4% efficacy). Hot water treatment at 45 °C for 10 min showed high efficacy in the control of lenticel rot on apples. Reduction of infection was 80% in artificially inoculated fruit (cv Golden Delicious) and 90% in naturally infected fruit (cv Pink Lady) after 90 and 135 d of storage, respectively.  相似文献   

7.
To control postharvest decay, table grapes are commercially fumigated with sulfur dioxide. We evaluated ozone (O3) fumigation with up to 10,000 μL L?1 of ozone for up to 2 h to control postharvest gray mold of table grapes caused by Botrytis cinerea. Fumigation for 1 h with 2500 or 5000 μL L?1 of ozone were equal in effectiveness. Both treatments reduced postharvest gray mold among inoculated ‘Thompson Seedless’ grapes by approximately 50% when the grapes were examined after storage for 7 d at 15 °C following fumigation. In a similar experiment, ‘Redglobe’ grapes were stored for 28 d at 0.5 °C following fumigation for 1 h with 2500 or 5000 μL L?1 of ozone. Both treatments were equal in effectiveness, but inferior to fumigation with 10,000 μL L?1. Ozone was effective when grapes were inoculated and incubated at 15 °C up to 24 h before fumigation. The cluster rachis sustained minor injuries in some tests, but berries were never harmed. Ozone was applied in three combinations of time and ozone concentration (10,000 μL L?1 for 30 min, 5000 μL L?1 for 1 h, and 2500 μL L?1 for 2 h) where each had a constant concentration × time product (c × t) of 5000 μL L?1 × h. The effectiveness of each combination was similar. The incidence of gray mold was reduced by approximately 50% among naturally inoculated, organically grown ‘Autumn Seedless’ and ‘Black Seedless’ table grapes, and by 65% among ‘Redglobe’ table grapes, when they were fumigated with 5000 μL L?1 ozone for 60 min in a commercial ozone chamber and stored for 6 weeks at 0.5 °C. Residues of fenhexamid, cyprodinil, pyrimethanil, and pyraclostrobin were reduced by 68.5, 75.4, 83.7, and 100.0%, respectively, after a single fumigation of table grapes with 10,000 μL L?1 ozone for 1 h. Residues of iprodione and boscalid were not significantly reduced. Ozone is unlikely to replace sulfur dioxide treatments in conventional grape production unless its efficacy is improved, but it could be an acceptable technology to use with grapes marketed under “organic” classification, where the use of SO2 is prohibited, or if SO2 use were to be discontinued.  相似文献   

8.
This study addressed the influence of high carbon dioxide and low oxygen levels on Pleurotus eryngii samples, stored at 20–25 °C and 90–95% RH for 5 d. Evaluations of sensory characteristics, malondialdehyde (MDA) content, superoxide anion (O2) production rate and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and cytochrome c oxidase (CCO) were made in the mushrooms in response to high carbon dioxide and low oxygen treatments. The results showed that 2% O2 + 30% CO2 significantly prolonged mushroom shelf-life when compared to the control. The 2% O2 + 30% CO2 mixture was better suited to maintaining mushroom sensory characteristics and delaying the MDA increase and O2 production rate during storage. The activities of SOD, POD, and CAT in 2% O2 + 30% CO2-treated mushrooms were significantly higher than those of the control. However, the CCO activity was not affected by the atmospheric treatment (2% O2 + 30% CO2). These results indicated that the 2% O2 + 30% CO2 treatment could alleviate lipid peroxidation and enhance antioxidant enzyme activities, but it exerted little influence on the CCO activity of Pleurotus eryngii.  相似文献   

9.
The effect of MAP on extending storage life and maintaining fruit quality was studied in ‘Doyenne du Comice’ (Pyrus communis L.) pears at Hood River and Medford, Oregon. Control fruit packed in standard perforated polyethylene liners started to show senescent core breakdown and lost the capacity to ripen at 20 °C after 4–5 months of cold storage in Hood River and after 5.25–6 months in Medford. LifeSpan® L257 MAP achieved steady-state atmospheres of 15.8% O2 + 3.7% CO2 in Hood River and 15.7–17.5% O2 + 3.8–5.7% CO2 in Medford. MAP inhibited ethylene production, ascorbic acid degradation and malondialdehyde accumulation, and extended storage life for up to 6 months with maintenance of fruit flesh firmness (FF) and skin color without commercially unacceptable level of physiological disorders. After 4, 5 and 6 months at −1 °C, MAP fruit exhibited climacteric-like patterns of ethylene production and softened to proper texture with desirable eating quality on day 5 during ripening at 20 °C. After 6 months at −1 °C plus 2 weeks of simulated transit conditions, MAP fruit maintained FF and skin color and had good eating quality at transit temperatures of 2 and 4.5 °C (10.1–11.5% O2 + 4.8–5.2% CO2), but reduced FF substantially and developed internal browning disorder at 7.5 and 20 °C (3.2–7.2% O2 + 7.9–9.5% CO2). The storage life of ‘Doyenne du Comice’ pears with high eating quality could be increased by up to 2 months when packed in MAP as compared with fruit packed in standard perforated polyethylene liners.  相似文献   

10.
The combined effects of a sanitizer mixture, ultraviolet-C (UV-C), and modified atmosphere packaging (MAP) on the quality of non-inoculated and inoculated (Escherichia coli O157:H7 and Salmonella typhimurium) buckwheat sprouts were examined. Buckwheat sprouts were treated with a sanitizer mixture (comprising 100 mg L−1 aqueous ClO2 and 0.3% fumaric acid) and 2 kJ m−2 UV-C, packaged under two different conditions (air and CO2 gas) and storage for 8 d at 4 °C. The combination of the sanitizer mixture and UV-C treatment reduced the initial counts of preexisting microorganisms in the buckwheat sprouts by 1.9 log CFU g−1 and reduced the initial inoculated counts of E. coli O157:H7 and S. typhimurium on buckwheat sprouts by 3.0 and 2.3 log CFU g−1, respectively. The preexisting microorganisms and inoculated pathogens in buckwheat sprouts packaged under CO2 gas were significantly reduced during storage following the combined treatment compared to those of the control by above 95%. Differences in Hunter L*, a*, and b* values among the treatments were negligible. The combined sanitizer mixture and UV-C treatment increased the sprout rutin content by 147%, but there was no significant difference in 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity between treatments during storage. Therefore, the combination of sanitizer mixture made from aqueous ClO2 and fumaric acid, UV-C irradiation, and MAP can improve the microbial safety and quality of buckwheat sprouts.  相似文献   

11.
The effects of high CO2 concentration (10% CO2, 17% O2) on the changes of functional cell wall components (pectic substances, hemicellulose, cellulose, lignin), mechanical properties, content of free soluble sugars (sucrose, glucose, fructose), and respiration activity were studied in harvested white asparagus spears stored at 10 and 20 °C, respectively, for up to 7 d. Spears stored at 2, 10 and 20 °C in air were studied as controls, where the 2 °C condition indicated the effects of cold storage. During storage, respiration activity declined only slightly, irrespective of the CO2 and temperature regime. Spears stored at 20 °C under both CA and normal air became less stiff and more elastic, however, tissue toughness increased significantly. Changes in toughness were associated primarily with the dynamics of lignin and cellulose, revealing a strong correlation (r2 = 0.81). High CO2 concentration inhibited the synthesis of cellulose and, to some extent, lignin accumulation at 20 °C. Additionally, elevated CO2 inhibited the degradation of soluble carbohydrates. In contrast, slightly lower temperatures of 10 °C in combination with high CO2 did not have a pronounced effect on changes in structural carbohydrates (lignin, cellulose, hemicellulose and pectins). The effect low temperature (2 °C) under normal atmosphere conditions resulted in the inhibition of cell wall changes in asparagus spears.  相似文献   

12.
The agricultural sector is highly affected by climate change and it is a source of greenhouse gases. Therefore it is in charge to reduce emissions. For a development of reduction strategies, origins of emissions have to be known. On the example of sugar beet, this study identifies the main sources and gives an overview of the variety of production systems. With data from farm surveys, calculations of greenhouse gas (GHG) emissions in sugar beet cultivation in Germany are presented. Emissions due to the production and use of fertilizers and pesticides, emissions due to tillage as well as field emissions were taken into account. All emissions related to the growing of catch crops during fall before the cultivation of sugar beet were also included. The emissions are related to the yield to express intensity.The median of total GHG emissions of sugar beet cultivation in Germany for the years 2010–2012 amounted to 2626 equivalents of CO2 (CO2eq) kg ha−1 year−1 when applying mineral plus organic fertilizer and to 1782 kg ha−1 when only organic fertilizer was applied. The CO2eq emissions resulting from N fertilization exclusively were 2.5 times higher than those caused by diesel and further production factors. The absence of emissions for the production of organic fertilizers led to 12% less total CO2eq emissions compared to the use of mineral fertilizer only. But by applying organic fertilizer only, there were more emissions via the use of diesel due to larger volumes transported (126 l diesel ha−1 vs. 116 l ha−1 by applying mineral fertilizer exclusively).As there exists no official agreement about calculating CO2eq emissions in crop production yet, the authors conclude that there is still need for further research and development with the aim to improve crop cultivation and crop rotations concerning GHG emissions and the therewith related intensity.  相似文献   

13.
Phosphine (PH3) fumigation with different concentrations and exposure durations at low temperature was studied to determine its effects on Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae) on carnations, and on postharvest quality. Laboratory tests showed that tolerance of L. huidobrensis to phosphine fumigation at 5 °C varied with different life stages. 1 d-old eggs and adults showed the highest susceptibility, and 3 d-old eggs was the most tolerant stage. In the fumigation tests of 3 d-old eggs with a range of phosphine concentrations from 0.46 to 2.73 mg L−1 and exposure durations from 6 to 144 h at 5 °C, 85.96–282.08 h fumigation durations were required to achieve 99% mortality with different phosphine concentrations. The expression of C0.77T = k was obtained, which indicated that exposure duration other than phosphine concentration was the critical factor in the toxicity of phosphine against the 3 d-old eggs of L. huidobrensis. Controlled atmosphere (CA) treatment with increased CO2 and reduced O2 had synergistic effects on phosphine toxicity. Phosphine fumigation could achieve 100% mortality for insects of L. huidobrensis on carnation, and had no significant adverse effects on vase life and damage indices of carnation at 1.92 mg L−1 PH3 and 8% CO2 for 32 h, and at 3.44 mg L−1 for 3 d at 5 °C. All results suggested that phosphine fumigation at low temperature could be used as an alternative for postharvest control of L. huidobrensis on carnations.  相似文献   

14.
The increase in atmospheric CO2 concentration [CO2] has been demonstrated to stimulate the growth of C3 crops. However, little information exists about the effect of elevated [CO2] on biomass production of sugar beet, and data from field experiments are lacking. In this study, sugar beet was grown within a crop rotation over two rotation cycles (2001, 2004) at present and elevated [CO2] (375 μl l?1 and 550 μl l?1) in a free air CO2 enrichment (FACE) system and at two levels of nitrogen supply [high (N2), and 50% of high (N1)], in Braunschweig, Germany. The objective of the present study was to determine the CO2 effect on seasonal changes of leaf growth and on final biomass and sugar yield. Shading treatment was included to test whether sugar beet growth is sink limited under elevated [CO2]. CO2 elevation did not affect leaf number but increased individual leaf size in early summer resulting in a faster row closure under both N levels. In late summer CO2 enrichment increased the fraction of senescent leaves under high but not low N supply, which contributed to a negative CO2 effect on leaf area index and canopy chlorophyll content under high N at final harvest. Petioles contained up to 40% water-soluble carbohydrates, which were hardly affected by CO2 but increased by N supply. More N increased biomass production by 21% and 12% in 2001 and 2004, respectively, while beet and sugar yield was not influenced. Concentration of α-amino N in the beet fresh weight was increased under low N and decreased under high N by CO2 enrichment. The CO2 response of total biomass, beet yield and white sugar yield was unaffected by N supply. Averaged over both N levels elevated [CO2] increased total biomass by 7% and 12% in 2001 and 2004, respectively, and white sugar yield by 12% and 13%. The shading treatment in 2004 prevented the decrease in leaf area index under elevated [CO2] and high N in September. Moreover, the CO2 effect on total biomass (24%) and white sugar yield (28%) was doubled as compared to the unshaded conditions. It is concluded that the growth of the storage root of sugar beet is not source but sink limited under elevated [CO2], which minimizes the potential CO2 effect on photosynthesis and beet yield.  相似文献   

15.
Nitrogen fertilisation of maize (Zea mays L.) has become an important economic and environmental issue, especially in high-yielding irrigated Mediterranean areas. Producers have traditionally applied more N fertiliser than required and, as a result, some environmental problems have appeared in recent decades. A 4-year study (2002–2005) was conducted and six N rates (0, 100, 150, 200, 250 and 300 kg N ha?1 year?1) were compared. Before planting 50 kg N ha?1 were applied. The rest of the N was applied in two sidedresses, the first at V3–V4 developing stage and the second at V5–V6. Yield, biomass, grain N uptake, plant N uptake and SPAD-units were greatly influenced by both N fertilisation rate and soil NO3?-N content before planting and fertilising [Nini (0–90 cm)]. At the beginning of the experiment, Nini was very high (290 kg NO3?-N ha?1) and there was therefore no yield response to N fertilisation in 2002. In 2003, 2004 and 2005, maximum grain yields were achieved with 96, 153 and 159 kg N ha?1, respectively. Results showed that N fertilisation recommendations based only on plant N uptake were not correct and that Nini should always be taken into account. On the other hand, the minimum amount of N available for the crop [N applied with fertilisation plus Nini (0–90 cm)] necessary to achieve maximum grain yields was 258 kg N ha?1. This value was similar to plant N uptake, suggesting that available N was able to predict N maize requirements and could be an interesting tool for improving maize N fertilisation.  相似文献   

16.
The effect of nitrogen (N) supply through animal and green manures on grain yield of winter wheat and winter rye was investigated from 1997 to 2004 in an organic farming crop rotation experiment in Denmark on three different soil types varying from coarse sand to sandy loam. Two experimental factors were included in the experiment in a factorial design: (1) catch crop (with and without), and (2) manure (with and without). The four-course crop rotation was spring barley undersown with grass/clover – grass/clover – winter wheat or wheat rye – pulse crop. All cuttings of the grass–clover were left on the soil as mulch. Animal manure was applied as slurry to the cereal crops in the rotation in rates corresponding to 40% of the N demand of the cereal crops.Application of 50 kg NH4–N ha?1 in manure increased average wheat grain yield by 0.4–0.9 Mg DM ha?1, whereas the use of catch crops did not significantly affect yield. The use of catch crops interacts with other management factors, including row spacing and weed control, and this may have contributed to the negligible effects of catch crops. There was considerable variation in the amount of N (100–600 kg N ha?1 year?1) accumulated in the mulched grass–clover cuttings prior to ploughing and sowing of the winter wheat. This was reflected in grain yield and grain N uptake. Manure application to the cereals in the rotation reduced N accumulation in grass–clover at two of the locations, and this was estimated to have reduced grain yields by 0.1–0.2 Mg DM ha?1 depending on site. Model estimations showed that the average yield reduction from weeds varied from 0.1 to 0.2 Mg DM ha?1. The weed infestation was larger in the manure treatments, and this was estimated to have reduced the yield benefit of manure application by up to 0.1 Mg DM ha?1. Adjusting for these model-estimated side-effects resulted in wheat grain yields gains from manure application of 0.7–1.1 Mg DM ha?1.The apparent recovery efficiency of N in grains (N use efficiency, NUE) from NH4–N in applied manure varied from 23% to 44%. The NUE in the winter cereals of N accumulated in grass–clover cuttings varied from 14% to 39% with the lowest value on the coarse sandy soil, most likely due to high rates of N leaching at this location. Both NUE and grain yield benefit in the winter cereals declined with increasing amounts of N accumulated in the grass–clover cuttings. The model-estimated benefit of increasing N input in grass–clover from 100 to 500 kg N ha?1 varied from 0.8 to 2.0 Mg DM ha?1 between locations. This is a considerably smaller yield increase than obtained for manure application, and it suggests that the productivity in this system may be improved by removing the cuttings and applying the material to the cereals in the rotation, possibly after digestion in a biogas reactor.Cereal grain protein content was increased more by the N in the grass–clover than from manure application, probably due to different timing of N availability. Green-manure crops or manures with a relatively wide C:N ratio may therefore be critical for ensuring sufficiently high protein contents in high yielding winter wheat for bread making.  相似文献   

17.
Standard quality parameters, consumer acceptability, emission of volatile compounds and ethylene production of ‘Mondial Gala®’ apples (Malus × domestica Borkh.) were determined in relation to storage atmosphere, storage period and shelf-life period. Fruit were harvested at the commercial date and stored in AIR (21 kPa O2:0.03 kPa CO2) or under three different controlled atmospheres (CAs): LO (2 kPa O2:2 kPa CO2), ULO1 (1 kPa O2:1 kPa CO2), or ULO2 (1 kPa O2:2 kPa CO2). Fruit samples were analysed after 12 and 26 weeks of storage plus 1 or 7 d at 20 °C.Apples stored in CA maintained better standard quality parameters than AIR-stored fruit. The volatile compounds that contributed most to the characteristic aroma of ‘Mondial Gala®’ apples after storage were butyl, hexyl and 2-methylbutyl acetate, hexyl propanoate, ethyl butanoate, ethyl hexanoate, ethyl, butyl and hexyl 2-methylbutanoate. Data obtained from fruit analysis were subjected to principal component analysis (PCA). The apples most accepted by consumers showed the highest emission of ethyl 2-methylbutanoate, ethyl hexanoate, tert-butyl propanoate and ethyl acetate, in addition to the highest titratable acidity and firmness values.  相似文献   

18.
Pre-storage application of 40% CO2 at 0 °C for 24 or 48 h and controlled atmosphere (12% O2 + 12% CO2) storage at 0 °C for up to eight weeks on decay control and quality of organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes were studied as a postharvest disease control alternative. To simulate different potential field conditions, these organic treatments were applied to organic-grown grapes that were naturally infected (without inoculation), surface inoculated (berries inoculated by spraying with a conidia suspension), and nesting inoculated (clusters inoculated by placing in the middle an artificially infected berry) with the pathogen Botrytis cinerea, the cause of grape gray mold. Under these three conditions, a 40% CO2 for 48 h pre-storage treatment followed by controlled atmosphere reduced the gray mold incidence from 22% to 0.6% and from 100% to 7.4% after four and seven weeks, respectively. High CO2 pre-storage alone limited botrytis incidence in both naturally and artificially infected grapes, but was more effective when combined with CA. These treatments did not affect visual or sensory fruit quality. Exposure to high CO2 for 24 or 48 h effectively inhibited mycelial growth of B. cinerea in PDA plates incubated at 22 °C for up to 72 h. Conidia germination in PDA plates was reduced ∼60% after 12 h incubation. In vitro studies demonstrated a fungistatic effect, but further studies on the mechanism of action could improve treatment performance. This novel high CO2 initial fumigation followed by controlled atmosphere during storage or transportation could be a commercially feasible alternative for postharvest handling of organic and conventional table grapes. Our results encourage validating this combined physical treatment in other cultivars and under commercial conditions.  相似文献   

19.
Anthropogenic increases in atmospheric carbon dioxide concentration [CO2], and subsequent increases in surface temperatures, are likely to impact the growth and yield of cereal crops. One potential means for yield reduction is for climate parameters to increase the occurrence of lodging. Using an in situ free-air CO2 enrichment (FACE) system, two morphologically distinct rice cultivars, KH (Koshihikari) and SY (Shan you 63), were grown at two [CO2]s (ambient and ambient + 200 μmol mol−1) and two soil temperatures (ambient and ambient ± 1.8 °C) over a two year period to assess and quantify lodging risk. Elevated [CO2] per se had no effect on lodging resistance for either cultivar. However, elevated [CO2] and higher soil temperature increased the lodging risk for SY, due to a relatively higher increase in plant biomass and height at the elevated, relative to the ambient [CO2] condition. Elevated soil temperature per se also increased lodging risk for both cultivars and was associated with longer internodes in the lower portion of the tillers. These findings illustrate that lodging susceptibility in rice, an important cereal crop, can be increased by rising [CO2] and soil temperature; however, variation observed here between rice cultivars suggests there may be sufficient intraspecific variability to begin choosing rice lines that minimize the potential risk of lodging.  相似文献   

20.
Quality, microbiological and enzymatic characteristics of fresh-cut lettuce (Lactuca sativa var. longifolia, ‘Duende’), grown in floating system with three electrical conductivities of nutrient solutions (2.8, 3.8 and 4.8 mS cm?1), were investigated in order to evaluate the effect of salinity on product shelf-life during cold storage (9 d at 4 °C). Pre-harvest salinity of 3.8 and 4.8 mS cm?1 improved the properties of fresh-cut lettuce, since CO2 production was reduced with a subsequent control of the decay process. Fresh-cut processing caused an activation of polyphenol oxidase and peroxidase; in all cases the product obtained by salinity treatments was less subject to oxidase activity and browning phenomena during storage. Increased salinity reduced the number of mesophilic bacteria and of moulds and yeasts, assessed by plate counts on different culture media; in contrast, Enterobacteriaceae levels were unaffected by pre-harvest treatments. The research demonstrated that an increase in nutrient solution electrical conductivity, through the use of floating system, affects fresh-cut lettuce characteristics, improving shelf-life of the product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号