首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
为利用高时空分辨率的航天数据对区域冬小麦播期实现尽早监测,对冬小麦播期的不同遥感监测时相精度进行了分析。首先利用耦合作物模型和辐射传输模型模拟不同播期冬小麦从播种至返青的冠层光谱反射率,分析不同播期的冠层光谱响应差异,选取对不同播种日期敏感的波段。然后,根据敏感波段的冠层光谱,选择训练样本并计算不同播期之间的J-M距离,初步判断出光谱可分性较好的时相。最后,对不同的播期进一步进行判别分析,判定未知类别样本的所属类别。根据正确分类的精度,在华北平原北部选择播期监测的最佳时相为12月中旬,精度达到89.5%。  相似文献   

2.
基于不同夏玉米品种在2个年份不同施氮水平下的田间试验,研究夏玉米叶片碳氮比随生育期的变化模式及其与冠层反射光谱的定量关系,建立玉米叶片碳氮比的定量监测模型。结果表明,夏玉米叶片碳氮比随施氮量的增加而降低,随生育进程呈"高-低-高"动态变化趋势。利用冠层反射光谱监测叶片碳氮比的适宜时期为孕穗期至吐丝期。13个光谱参数与2个品种叶片碳氮比有较好的相关性。通过比较模型的拟合决定系数(R2)和预测标准误(SE),确定转换型植被指数(TVI)与叶片碳氮比的线性回归方程为最佳监测模型。经不同年际独立试验数据的检验,叶片碳氮比监测模型的预测精确,相关系数(r)为0.682 4,根均方差(RMSE)为0.405 2,表明夏玉米冠层反射光谱可用来定量估测叶片碳氮比的变化状况。  相似文献   

3.
植被覆盖度对冬小麦冠层光谱的影响及定量化估产研究   总被引:4,自引:0,他引:4  
为避免土壤背景对冠层光谱的干扰,提高冬小麦定量化估产精度,以河北廊坊中低产田条件下的冬小麦为研究对象,利用ASD Field Spec高光谱仪定点获取冬小麦冠层光谱信息,分析了田间植被覆盖度和冠层NDVI在生育期内的变化,并利用植被覆盖度对冠层NDVI进行了校正。结果表明,通过三基色即RGB、色度和亮度可将数字图像中冬小麦和土壤背景进行分割,从而获得单位面积上冬小麦的覆盖百分比。而通过覆盖度校正后的植被指数即CNDVI能够更具针对性地反映植株冠层氮素信息。在本试验条件下利用灌浆中期的CNDVI与产量进行一元回归或利用全生育期的CNDVI与产量进行多元回归均取得了较好的效果,决定系数分别为0.849和0.853。由于多元回归模型考虑了不同时期的CNDVI的变化,因此模型具有更强的可靠性和稳定性,较适合于冬小麦定量化估产。  相似文献   

4.
播期是影响小麦产量与品质的一个重要因素,冬小麦生产管理对播期的及时和准确监测有强烈需求。遥感数据源的日趋丰富及遥感定量化水平的日益提高,为大面积、低成本监测小麦播期提供了可能。本文对冬小麦播期遥感监测的研究进展进行了回顾,系统归纳了当前国内外播期遥感监测方法,分析了目前冬小麦播期遥感监测中存在的问题。推进高时空分辨率遥感数据的使用、强化多尺度传感器遥感数据融合算法的应用、开展冬小麦生长前期不同播期光谱数据的挖掘、探索冬小麦生长前期光谱与上茬作物时序遥感数据的综合及尝试遥感数据与作物模型同化方法的借鉴是冬小麦播期遥感监测的未来发展方向。  相似文献   

5.
基于光谱指数的冬小麦冠层叶绿素含量估算模型研究   总被引:4,自引:0,他引:4  
为探索对冬小麦冠层叶绿素含量反应敏感的高光谱波段组合,同时比较不同光谱指数对小麦冠层叶绿素含量的估测效果,通过分析350~2 500nm波段范围内原始光谱反射率及其一阶导数光谱的任意两两波段交叉组合而成的主要高光谱指数与冬小麦冠层叶片叶绿素含量的定量关系,建立冬小麦冠层叶绿素含量估算模型。结果表明,选用归一化光谱指数(NDSI)、比值光谱指数(RSI)、差值光谱指数(DSI)和土壤调节光谱指数(SASI)建立的冬小麦冠层叶绿素含量监测模型决定系数均大于0.71,标准误差均小于1.842。利用独立试验资料进行检验,表现最好的是RSI(FD_(689),FD_(609))和SASI(R_(491),R_(666))L=0.01,预测精度高达98.2%,模型精确度和可靠性较高。  相似文献   

6.
基于支持向量机模型的冬小麦全蚀病为害等级遥感监测   总被引:1,自引:0,他引:1  
为了解利用高光谱遥感技术对小麦全蚀病进行有效监测的可行性,对感染不同发病等级全蚀病的冬小麦冠层光谱反射率数据进行采集分析,选取监测敏感波段,在Matlab和Libsvm工具箱支持下,利用支持向量机分类方法构建小麦全蚀病病害等级预测模型。结果表明,在不同程度小麦全蚀病的为害下,小麦冠层光谱反射率存在明显变化。通过对数据分析,选择700~900nm波段作为敏感波段进行训练建立模型的结果最好;经检验,基于此波段构建的预测模型预测值与实际值相关系数可达0.943,均方根达0.63,因此生产上可利用波段光谱特征对小麦全蚀病进行监测。  相似文献   

7.
为提高冬小麦覆盖度估测精度,从增强近红外与红光差别的数学变换原理出发,构建了一种新型植被指数(NDVIn),再基于2013、2014年冬小麦冠层高光谱和模拟的资源三号卫星宽波段多光谱数据,分别构建基于常规植被指数(NDVI)与NDVIn的冬小麦覆盖度估算模型,然后利用留一交叉验证法对模型精度进行评价。结果表明,当n=6时,新生成的植被指数NDVI6对冬小麦农田覆盖度具有最好的估算性能,利用其基于小麦冠层高光谱及卫星多光谱数据建立的冬小麦覆盖度估算模型的决定系数r2分别为0.84、0.85,RMSE分别为0.092、0.091,模型精度均好于常规指数NDVI的估算结果。说明NDVI6用于估测冬小麦覆盖度具有可行性。  相似文献   

8.
用投影寻踪降维方法估测冬小麦叶绿素密度   总被引:1,自引:0,他引:1  
为综合更多有效信息来提高冬小麦叶绿素密度的估测精度,应用投影寻踪降维方法对条锈病胁迫下冬小麦冠层光谱进行降维,生成一维向量,然后采用支持向量机回归方法对其叶绿素密度进行估测,并与高光谱植被指数估测结果进行了比较。结果表明,以小麦冠层一阶微分光谱与叶绿素密度相关性较高的波段(400~500nm、720~770nm和840~870nm)进行投影寻踪降维得到的最优一维向量为自变量,利用支持向量机回归方法构建的冠层叶绿素密度估测模型的精度最高,决定系数为0.867,均方根误差与相对误差均最小,分别为1.135μg·cm-2和13.6%。说明利用投影寻踪降维技术对条锈病胁迫下冬小麦冠层光谱进行降维处理,可以保留有效信息,提高冬小麦叶绿素密度估测精度。  相似文献   

9.
通过应用手持式植物冠层光谱测定仪对冬小麦Feekes6生育期的冠层归一化植被指数(NDVI)和地上部氮素营养状况的测定,探讨了NDVI与小麦氮素营养状况之间的关系,旨在为手持式植物光谱测定仪在黄淮地区冬小麦氮肥精准管理中的应用提供依据。结果表明。小麦冠层NDVI值与同一时期植物干重产量、地上部氮素积累量间存在显著相关性(P〈0.01);同时。Feekes6生育期冬小麦冠层NDVI值与收获期籽粒产量、地上部氮素积累量、籽粒氮素积累量之间存在显著相关性(P〈0.01)。对于地上部氮素积累量、籽粒氮素积累量与Feekes6生育期NDVI的关系,不同类型的拟合方程对比表明,直线方程比多项式、幂、指数和对数方程拟合结果的显著性更高。Feekes6生育期的红光/近红外比值(Red/NIR)与Feekes6生育期、收获期的作物产量、氮素积累量间也存在显著相关性。本文还讨论了利用Feekes6生育期NDVI值预测出的Feekes6生育期和收获期的作物地上部氮素积累量之差来计算冬小麦氮素追施量的方法。以上结果表明,黄淮海平原地区冬小麦Feekes6生育期冠层NDVI值和Red/NIR值可用于冬小麦的氮素精准管理。  相似文献   

10.
利用Matlab软件对玉米子粒灌浆过程用Richards方程进行拟合后,通过编程实现灌浆次级特征参数计算,并对不同播期子粒灌浆特征进行分析和探讨。结果表明,在黑龙港地区生态条件下,不同播期玉米各部位子粒灌浆均符合"S"形生长曲线,可用Richards方程很好地拟合。不同播期条件下,早播处理子粒起始势最高,达到灌浆盛期时间最早,平均灌浆速率及最大灌浆速率最大,活跃灌浆期较长,粒重最高。各播期玉米不同部位子粒,穗下部与上部相比,子粒的起始生长势较大,平均灌浆速率较高,达到灌浆高峰期时间较短,粒重较高。  相似文献   

11.
《Plant Production Science》2013,16(4):400-411
Abstract

Non-destructive monitoring and diagnosis of plant nitrogen (N) concentration are of significant importance for precise N management and productivity forecasting in field crops. The present study was conducted to identify the common spectra wavebands and canopy reflectance spectral parameters for indicating leaf nitrogen concentration (LNC, mg N g-1 DW) and to determine quantitative relationships of LNC to canopy reflectance spectra in both rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Ground-based canopy spectral reflectance and LNC were measured with seven field experiments consisting of seven different wheat cultivars and five different rice cultivars and varied N fertilization levels across three growing seasons for wheat and four growing seasons for rice. All possible ratio vegetation indices (RVI), difference vegetation indices (DVI), and normalized difference vegetation indices (NDVI) of key wavebands from the MSR16 radiometer were calculated. The results showed that LNC of wheat and rice increased with increasing N fertilization rates. Canopy reflectance, however, was a more complicated relationship under different N application rates. In the near infrared portion of the spectrum (760?1220 nm), canopy spectral reflectance increased with increasing N supply, whereas in the visible region (460?710 nm), canopy reflectance decreased with increasing N supply. For both rice and wheat, LNC was best estimated at 610, 660 and 680 nm. Among all possible RVI, DVI and NDVI of key bands from the MSR16 radiometer, NDVI(1220, 610) and RVI(1220, 610) were most highly correlated to LNC in both wheat and rice. In addition, the correlations of NDVI(1220, 610) and RVI(1220, 610) to LNC were found to be higher than those of individual wavebands at 610, 660 and 680 nm in both wheat and rice. Thus LNC in both wheat and rice could be indicated with common wavebands and vegetation indices, but separate regression equations are necessary for precisely describing the dynamic change patterns of LNC in wheat and rice. When independent data were fit to the derived equations, the root mean square error (RMSE) values for the predicted LNC with NDVI(1220, 610) and RVI(1220, 610) relative to the observed values were 10.50% and 10.52% in wheat, and 13.04% and 12.61% in rice, respectively, indicating a good fit. These results should improve the knowledge on non-destructive monitoring of leaf N status in cereal crops.  相似文献   

12.
不同施氮条件下小麦冠层的高光谱和多光谱反射特征   总被引:23,自引:4,他引:19  
为了更好地利用冠层反射光谱特征监测小麦生长及氮素营养状况。以宁麦9号、淮麦20、徐麦26和扬麦10号四个小麦品种为材料,通过田间小区试验,研究了不同小麦品种在不同生育时期和不同氮素水平下冠层反射光谱的变化规律。结果表明,相同氮素水平下不同小麦品种冠层反射光谱的反射率有差异,且近红外部分差异较明显。小麦从拔节开始,随生育期的推进,冠层反射光谱在可见光波段的反射率先降低然后升高,以孕穗期反射率最低。随着叶片的逐渐变黄。反射率又增大,并且绿光波段的反射峰也逐渐消失。而近红外区反射率则表现出相反的趋势,以开花期为分界,先上升然后下降,直到成熟前降为最低。随着施氮水平的提高,冠层反射光谱在近红外反射平台(750-1300nm)的反射率呈上升趋势,而可见光部分反射率则下降,并且反射光谱的绿峰和红边位置也随着施氮水平的提高分别向蓝光方向(波长变短)和红光方向(波长变长)移动。  相似文献   

13.
为给滴灌小麦氮营养状况实时评估和氮肥合理施用提供参考,通过2年田间定位试验,以当地主栽品种新冬22号为试验材料,设置5个施氮水平(0、120、240、360、480 kg· hm-2),利用主动式光谱仪RapidScan CS-45获取各生育时期冠层归一化植被指数(NDVI)和归一化红边植被指数(NDRE),分析其与滴...  相似文献   

14.
播期和播量对滴灌冬小麦群体性状及产量的影响   总被引:4,自引:0,他引:4  
为了给滴灌冬小麦种植选择适宜的播期和播量组合, 以两个冬小麦品种新冬22号和新冬27号为材料,设置2个播期(9月27日和10月7日)和3个播量(150、225和300 kg·hm-2),通过大田裂区试验研究了播期和播量对滴灌冬小麦的群体性状、产量以及产量构成的影响。结果表明,冬前总茎数、返青后总茎数、成熟期收获穗数和主茎穗比重均随播量的增大而增加,且不同播量间差异显著;播期推迟,出苗数、冬前总茎数和返青后总茎数均降低。各处理均在孕穗期叶面积指数达到最大,且孕穗后10月7日播种的冬小麦叶面积指数下降比较慢。适当晚播有利于花后同化物和花前贮藏同化物在花后向籽粒的转运。播期和播量对滴灌冬小麦产量及其构成影响显著性,在10月7日播种、播种量为225 kg·hm-2处理下产量达到最高。  相似文献   

15.
小麦叠加叶片的叶绿素含量光谱反演研究   总被引:5,自引:0,他引:5  
为了给田间冠层水平叶绿素含量高光谱反演研究提供参考,研究了小麦单层及叠加叶片不同波长光谱反射率及几种常用植被指数对叶绿素含量的响应特征。结果表明,可见光波段的绿光到红光波段范围内叶片光谱反射率与叶绿素含量存在良好的相关关系,其中在绿光反射峰550 nm附近和红边区域的705 nm附近反射率都可以用来预测叶绿素含量。红谷吸收表现为随叶绿素含量提高而蓝移的特征。常用植被指数NDVI在本研究中对小麦叶片的叶绿素含量的监测效果并不理想。SR705虽然与单层叶片叶绿素含量相关性较好,但是对叠加多层叶片的叶绿素含量反演效果不好。光谱参数中TCARI对单层叶片和不同叠加层数的叶片均有最好的预测能力,因此可以利用TCARI监测小麦叶绿素含量,进而用于评价其光合特性。  相似文献   

16.
为对大田冬小麦叶片氮素含量(LNC)进行快速、准确及无损监测,通过在江苏省泰州泰兴市、盐城大丰区和南通如皋市布设冬小麦遥感监测大田试验,在获取试验样点冬小麦冠层红光波段反射率(REDref)、近红外波段反射率(NIRref)和计算的十个光谱指数(RVI、NDVI、DVI、SAVI、OSAVI、MSR、RDVI、EVI2、NLI和SVI)基础上,将12个遥感光谱指标与冬小麦LNC进行相关分析,选出与LNC相关性较好的作为模型输入变量,构建基于BP神经网络的冬小麦LNC估测模型, 并利用GF-6/WFV卫星遥感影像对县域冬小麦LNC的空间分布开展监测。结果表明,12个遥感光谱指标与冬小麦LNC之间存在不同程度的相关性,其中NDVI、RVI、MSR、OSAVI和NLI与冬小麦LNC的相关性较好(相关系数不低于0.65)。将优选的5个遥感光谱指标作为模型输入变量,构建基于BP神经网络的冬小麦LNC估测模型(LNC-BPEM),模型的估测精度r2=0.866,RMSE=0.246%,ARE=12.9%。将冬小麦LNC-BPEM估测模型和GF-6/WFV影像结合对县域冬小麦LNC的空间信息监测,获得了如皋县域冬小麦LNC的空间分布特征,该区域冬小麦LNC范围在0.9%~2.0%(长势正常)的种植面积为29 693.3 hm2,占冬小麦总种植面积的74%。这说明利用GF-6/WFV卫星的多个遥感光谱指标与神经网络结合建模可有效估测县域大田冬小麦叶片氮素含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号