首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
A systemic iridoviral disease associated with high mortality was initially recognized in cultured mullet, Mugil cephalus L., and tiger grouper, Epinephelus fuscoguttatus Forsskal, by histopathology and transmission electron microscopy. Polymerase chain reaction was performed on tissues and viral isolates, using four published primer sets developed for the Red Sea bream iridovirus (RSIV). An indirect fluorescent antibody test was also performed on virus-infected ATCC gruntfin (GF) and seabass, Lates calcarifer Bloch, (SB) cells using a monoclonal antibody, RSIV M10. Our results suggested that the mullet and tiger grouper iridovirus bears genetic and antigenic similarities to RSIV.  相似文献   

4.
An outbreak of a Megalocytivirus infection was found in the golden mandarin fish Siniperca scherzeri during September and October 2016, in Korea. Phylogeny and genetic diversity based on the major capsid protein (MCP) and adenosine triphosphatase (ATPase) genes showed a new strain. Designated as GMIV, this strain derived from the golden mandarin fish was suggested to belong to the red sea bream iridovirus (RSIV)‐subgroup I. Additionally, this train clustered with the ehime‐1 strain from red sea bream Pagrus major in Japan and was distinguished from circulating isolates (RSIV‐type subgroup II and turbot reddish body iridovirus [TRBIV] type) in Korea. The infection level, evaluated by qPCR, ranged from 8.18 × 102 to 7.95 × 106 copies/mg of tissue individually, suggesting that the infected fish were in the disease‐transmitting stage. The diseased fish showed degenerative changes associated with cytomegaly in the spleen as general sign of Megalocytivirus infection. The results confirm that the RSIV‐type Megalocytivirus might have crossed the environmental and species barriers to cause widespread infection in freshwater fish.  相似文献   

5.
大鲵虹彩病毒理化及生物学特性研究   总被引:8,自引:1,他引:7  
对大鲵虹彩病毒(Giant salamander iridovirus,GSIV)的理化特性及生物学特性进行了研究。结果表明:GSIV对热处理敏感,56℃和65℃处理30 min均可彻底灭活病毒;GSIV经酸(pH3)和碱(pH10)处理,病毒滴度(TCID50)与对照组相比较分别下降了8.58、9.04个对数级,差异极显著(P<0.01);GSIV经有机溶剂氯仿、乙醚以及胰蛋白酶处理,TCID50与对照组相比较分别下降了9.33、7.83、6.49个对数级,差异极显著(P<0.01)。冻融次数对GSIV滴度的影响不显著(P>0.05)。GSIV对细胞培养物的感染性试验结果表明,GSIV可在鲤上皮瘤细胞系(Epithelioma papilloma cyprini,EPC)、斑点叉尾鮰肾脏细胞系(Channel catfish kidney,CCK)、虹鳟鱼性腺细胞系(Rainbow trout gonadal,RTG-2)等细胞中增殖,但在EPC、CCK细胞中增殖速度快,TCID50高;GSIV在EPC细胞中的最适生长温度是25℃。GSIV在EPC细胞中增殖动态试验结果表明,GSIV感染细胞6 h后TCID50开始快速上升,进入对数增长期,72 h时TCID50达到最大值,以后趋于稳定。GSIV感染EPC细胞超薄切片透射电镜观察结果显示,在EPC细胞质中可见大量虹彩病毒样颗粒,呈晶格状排列,直径约140 nm。  相似文献   

6.
大鲵虹彩病毒TaqMan实时荧光定量PCR检测方法的建立   总被引:4,自引:2,他引:2  
利用PCR技术扩增出大鲵虹彩病毒(giant salamander iridovirus, GSIV)主要衣壳蛋白(MCP)编码区长度为1 392 bp 的片段, 克隆到 pMD19-T载体上, 构建重组质粒 pMD19-T-MCP。经PCR鉴定确认正确后, 以10倍梯度稀释 pMD19-T-MCP重组质粒, 作为标准模板进行 TaqMan实时荧光定量PCR扩增, 制作标准曲线, 建立了大鲵虹彩病毒的 TaqMan实时荧光定量PCR检测方法。制作的标准曲线有极好的线性关系, 且线性范围宽, 相关系数为0.990 19。组内重复试验的CT值标准偏差为0.52%。检测结果显示, 该方法对大鲵虹彩病毒的检测有高度的特异性, 与锦鲤疱疹病毒、弗氏柠檬酸杆菌、嗜水气单胞菌以及鲤上皮瘤细胞基因组DNA之间均无交叉反应, 特异性好, 检测总DNA灵敏度为10个病毒核酸分子拷贝数, 约1.1×10-3 pg/μL病毒核酸, 较之常规PCR的敏感度高出约1 000倍。研究建立的大鲵虹彩病毒TaqMan实时荧光定量PCR方法灵敏度高、特异性强, 对大鲵虹彩病毒病的快速诊断与病毒病原定量检测有重要意义。  相似文献   

7.
Since 1993, an epizootic viral disease has occurred in net-cage cultured red sea bream, Pagrus major (Temminck & Schlegel), in Peng-hu Island located on the south-western coast of Taiwan. The diseased fish exhibited abnormal swimming and were lethargic, but few visible external signs were observed. The cumulative mortality because of the disease sometimes reached 50-90% over 2 months. Histopathogical studies of the affected fish showed enlarged basophilic cells in the gill, kidney, heart, liver and spleen. These necrotic cells were Feulgen-positive and stained blue using Giemsa. Transmission electron microscopy revealed icosahedral virions in the cytoplasm of the necrotic cells. The viral particles consisted of a central nucleocapsid (75-80 nm) and envelope, and were 120-150 nm in diameter. These results suggest that the virus belongs to the Iridoviridae. Using polymerase chain reaction (PCR), approximately 570 bp fragments were produced from the viral DNA using as a template 1-F and 1-R primers derived from red seabream iridovirus (RSIV) from red sea bream in Japan. Similar results were also obtained using nested-PCR with different primer sets (1-F, 2-R and 2-F, 1-R). Although the size and some features of epizootics of this virus differed from RSIV in Japan, it shows close genetic affinities with the latter and it is suggested that RSIV has been introduced to Taiwan.  相似文献   

8.
大鲵虹彩病毒β-丙内酯灭活方法的研究   总被引:4,自引:0,他引:4  
为探讨β-丙内酯(β-propiolactone,BPL)灭活大鲵虹彩病毒(Giant salamander iridovirus,GSIV)的最适条件,研究了BPL对GSIV的灭活方法。采用终浓度分别为0.025%、0.05%、0.1%、0.2%的BPL灭活细胞培养的GSIV,4℃条件下分别灭活24 h、48 h、72 h、96 h,通过细菌培养、细胞培养、病毒核酸PCR扩增以及鱼体感染试验进行灭活病毒的安全性检验,确定最适灭活条件。试验结果表明,GSIV经终浓度为0.1%的BPL 4℃灭活处理72 h后可完全灭活病毒,灭活病毒无细菌污染,接种对GSIV敏感的鲤上皮瘤细胞系(EPC)细胞无细胞病变效应(CPE)出现,病毒主衣壳蛋白(MCP)基因特异性引物PCR反应未扩增出靶基因产物,灭活病毒对健康大鲵的感染试验未出现疾病症状。灭活效果检测结果表明,与未灭活GSIV相比较,最适灭活条件下的GSIV结构蛋白与抗原性未发生显著变化。结论显示BPL可用来灭活GSIV,本研究确立了BPL灭活GSIV的最适条件,为大鲵虹彩病毒细胞培养灭活疫苗研究奠定了重要基础。  相似文献   

9.
利用Cytodex 3微载体悬浮培养系统规模化培养大鲵肌肉细胞(GSM)和大鲵虹彩病毒(GSIV),研究了微载体培养GSM细胞的形态和增殖特性,同时测定了病毒在培养系统中的增殖动态相关指标。结果显示,在Cytodex 3微载体培养系统中,将GSM细胞在贴壁期以转速30 r/min,每静置40 min搅拌2 min的方式间歇搅拌,10 h后贴壁率可达95%,培养基中最适血清浓度为10%,最适微载体浓度为2 g/L,最适细胞初始接种密度为1.2×10~5 cells/mL;增殖期以25 r/min的连续搅拌方式可以达到最佳的细胞生长效能。倒置显微镜与扫描电镜观察结果显示,GSM细胞呈长梭形,紧密贴附在Cytodex 3微载体上,生长良好。采用优化的工艺条件培养GSM细胞,以感染复数(MOI)为0.5的剂量接种GSIV至规模化培养的GSM细胞,48 h后GSM细胞出现典型的细胞病变效应,72 h病毒滴度达到最高TCID_(50)=10~(–8.50±0.20)/mL。本研究为大鲵虹彩病毒病疫苗的规模化生产工艺研究奠定了前期基础。  相似文献   

10.
A new continuous cell line (GF-1) was established and characterized. The GF-1 cell line, derived from the fin tissue of a grouper, Epinephelus coioides (Hamilton), was maintained in L15 medium containing 5% foetal bovine serum (FBS) at 28 °C, and has been subcultured more than 160 times since 1995. The majority of GF-1 cells are fibroblast-like, together with some epithelioid cells. Spontaneous transformation of GF-1 cells occurred during subculture 50 to subculture 80, and led to an increase of plating efficiency, less requirement of FBS and de novo susceptibility to grouper nervous necrosis virus (GNNV). Cytopathic effects (CPEs) could be observed in GF-1 cells 3–5 days post-infection with pancreatic necrosis virus (IPNV), hard clam reovirus (HCRV), eel herpes virus Formosa (EHVF) and GNNV. In addition, abundant GNNV particles were found in the cytoplasm of GNNV-infected GF-1 cells using electron microscopy and nucleic acids of GNNV virus were detected by polymerase chain reaction in the culture medium of GNNV-infected cells after CPE appeared. The experimental results indicated that GF-1 can effectively proliferate fish nodavirus and is a promising tool for studying fish nodavirus.  相似文献   

11.
根据Gen Bank中大鲵虹彩病毒主衣壳蛋白MCP(major capsid protein,MCP)基因序列(序列号:KF512820),设计一对特异性引物,以大鲵虹彩病毒贵州分离株基因组DNA为模板,PCR扩增大鲵虹彩病毒MCP基因并测序,与Gen Bank中大鲵虹彩病毒MCP基因进行比对,然后将其亚克隆到原核表达载体p ET-32a(+)中,转化大肠杆菌BL21(DE3)感受态细胞,经IPTG诱导后进行Western blot分析。结果显示:PCR扩增出长度为1 392 bp的片段,与Gen Bank中大鲵虹彩病毒MCP基因核苷酸序列相似性为99.7%~99.9%,SDSPAGE电泳显示该重组蛋白的相对分子质量约为67×103。免疫原性检测结果表明,该重组蛋白可与兔抗大鲵虹彩病毒阳性血清特异性反应,具有免疫原性。  相似文献   

12.
应用同源PCR技术,从被一种球状病毒感染的患病大菱鲆(Scophthalmus maximus)脾脏和肾脏组织中扩增出了一段长度为620bp的DNA片断。序列测定和Blast分析表明,该DNA片断与鱼类虹彩病毒主要衣壳蛋白(MCP)C末端编码区的DNA序列高度相似,由此证实感染养殖大菱鲆的这种球状病毒为一种鱼类虹彩病毒,暂命名为大菱鲆红体病虹彩病毒(TRBIV)。多序列比对和分析发现,TRBIV MCP C末端的205个氨基酸序列与GenBank中20种虹彩病毒相应序列的相似性分别为99.47%(韩国大菱鲆虹彩病毒)、97%~98%(待指定病毒属的7种病毒),以及50%以下(蛙病毒属、淋巴囊肿病毒属、虹彩病毒属的12种病毒),由此绘制出了包含TRBIV在内的21种虹彩病毒的系统发育树。研究结果表明,感染中国养殖大菱鲆的TRBIV属于虹彩病毒科待指定病毒属,位于该属ISKNV亚群和RSIV亚群之间,是该病毒属的一个新成员。  相似文献   

13.
Characterization of grouper nervous necrosis virus (GNNV)   总被引:6,自引:0,他引:6  
Grouper nervous necrosis virus (GNNV) was isolated from moribund grouper larvae, Epinephelus sp., using a fish cell line GF-1. The present study describes the biochemical and biophysical properties of GNNV and the expression of GNNV in diseased grouper larvae. Viral protein was detectable in most of the GNNV-infected GF-1 cells by the fluorescent antibody technique (FAT) after 12 h post-infection (p.i.), although no cytopathic effect (CPE) appeared at that time. Clear CPE developed on the third day, and complete disintegration of the monolayer occurred over the subsequent two days. The infectivity of GNNV can be blocked following treatment at 60 °C for 1 h. GNNV was sensitive to pH 3 and pH 10–12 with a 4 log10 drop in infectivity. Purified GNNV was analysed by SDS–PAGE, and then stained with periodic acid silver. The positive staining indicated that its two capsid proteins were glycoproteins. Genomic RNAs of GNNV were extracted from purified virions and analysed. The molecular weights of genomic RNAs were 1.02 × 106 and 0.50 × 106 Da. The T2 region of the coat protein gene of GNNV was amplified by polymerase chain reaction (PCR), and the multiple alignment of the T2 sequence of two GNNV isolates with four genotypes of fish nodaviruses revealed that these two isolates (GNNV9410 and GNNV9508) belong to the red-spotted grouper nervous necrosis virus (RGNNV) genotype. The tissue distribution of GNNV in naturally infected grouper larvae was investigated by in situ hybridization using a dig-labelled probe, which showed that GNNV was not only detected in the brain and retina, but also in the gill, skeletal muscle, liver, pyloric gland, intestine and blood cells in the heart.  相似文献   

14.
Viruses belonging to the genus Megalocytivirus in the family Iridoviridae are one of the major agents causing mass mortalities in marine and freshwater fish in Asian countries. Outbreaks of iridovirus disease have been reported among various fish species in Taiwan. However, the genotypes of these iridoviruses have not yet been determined. In this study, seven megalocytivirus isolates from four fish species: king grouper, Epinephelus lanceolatus (Bloch), barramundi perch, Lates calcarifer (Bloch), silver sea bream, Rhabdosargus sarba (Forsskal), and common ponyfish, Leiognathus equulus (Forsskal), cultured in three different regions of Taiwan were collected. The full open reading frame encoding the viral major capsid protein gene was amplified using PCR. The PCR products of approximately 1581 bp were cloned and the nucleotide sequences were phylogenetically analysed. Results showed that all seven PCR products contained a unique open reading frame with 1362 nucleotides and encoded a structural protein with 453 amino acids. Even though the nucleotide sequences were not identical, these seven megalocytiviruses were classified into one cluster and showed very high homology with red sea bream iridovirus (RSIV) with more than 97% identity. Thus, the seven iridovirus strains isolated from cultured marine fish in Taiwan were closer to the RSIV genotype than the infectious spleen and kidney necrosis virus genotype.  相似文献   

15.
中国大鲵(Andrias davidianus)是我国的特有物种,具有极高的产业开发价值,但病毒性疾病严重危害大鲵人工养殖产业的健康发展。本文对大鲵虹彩病毒的分类地位及主要特征、大鲵虹彩病毒病的病理症状及诊断防治措施几个方面进行了简要概述,以期为大鲵病毒性疾病的深入研究提供科学依据。  相似文献   

16.
Large yellow croaker iridovirus (LYCIV) is an important pathogen of mariculture fish. The complete gene of an important protective antigen, major capsid protein (MCP), of LYCIV was amplified by polymerase chain reaction and was cloned into pET‐16b for expression in Escherichia coli. The MCP‐encoded gene was in‐frame fused to the E. coliα‐hemolysin transport elements to construct the MCP secretory expression plasmid pMOhlyM, and its secretion characters in E. coli and attenuated Vibrio anguillarum MVAV6203 were investigated. With the aid of E. coliα‐hemolysin transport system, about 400 μg/L MCP was secreted into culture supernatant in E. coli, while intracellularly expressed MCP in MVAV6203 was not secreted. The study provides the foundation for attempts to secrete viral‐originated antigens by the E. coli HlyA transporter in bacterial hosts and to explore feasible ways to develop multivalent live vaccines against both bacterial and viral pathogens.  相似文献   

17.
Two iridovirus-susceptible cell lines were established and characterized from grouper Epinephelus awoara kidney and liver tissues. These cell lines have been designated GK and GL, respectively. The cells multiplied well in Leibovitz's L-15 medium, supplemented with 10% foetal bovine serum, at temperatures between 20 and 32 °C, and have been subcultured more than 120 times, becoming continuous cell lines. The cell lines consist of a heterogeneous mixture of fibroblastic and epithelial cells. The viability of cells, stored frozen in liquid nitrogen (−196 °C), was 95% after 1 year. Chromosome morphologies of GK and GL cells were homogeneous. Both cell lines were susceptible to grouper iridovirus, and yielded high titres of up to 108 TCID50 mL−1. In addition, both cell lines effectively replicated the virus, which could be purified to homogeneity by cesium chloride gradient centrifugation. Electron microscopy studies showed that purified virus particles were 170±10 nm in diameter, and were hexagonal in shape. Virus-infected cells showed an abundance of virus particles inside the cytoplasm. These results show that the GK and GL cell lines effectively replicate grouper iridovirus, and can be used as a tool for studying fish iridoviruses.  相似文献   

18.
Zebrafish (Danio rerio) is a laboratory model organism used in different areas of biological research including studies of immune response and host–pathogen interactions. Thanks to many biological tools available, zebrafish becomes also an important model in aquaculture research since several fish viral infection models have been developed for zebrafish. Here, we have evaluated the possible use of zebrafish to study infections with fish viruses that have not yet been tested on this model organism. In vitro studies demonstrated that chum salmon reovirus (CSV; aquareovirus A) and two alloherpesviruses cyprinid herpesvirus 1 (CyHV‐1) and cyprinid herpesvirus 3 (CyHV‐3) are able to replicate in zebrafish cell lines ZF4 and SJD.1. Moreover, CSV induced a clear cytopathic effect and up‐regulated the expression of antiviral genes vig‐1 and mxa in both cell lines. In vivo studies demonstrated that both CSV and CyHV‐3 induce up‐regulation of vig‐1 and mxa expression in kidney and spleen of adult zebrafish after infection by i.p. injection but not in larvae after infection by immersion. CyHV‐3 is eliminated quickly from fish; therefore, virus clearing process could be evaluated, and in CSV‐infected fish, a prolonged confrontation of the host with the pathogen could be studied.  相似文献   

19.
20.
‘Gold standard’ OIE reference PCR assay was utilized to detect the presence of infectious spleen and kidney necrosis virus (ISKNV) in freshwater ornamental fish from Malaysia. From total of 210 ornamental fish samples representing 14 species, ISKNV was detected in 36 samples representing 5 fish species. All positive cases did not show any clinical signs of ISKNV. Three restriction enzymes analyses showed that the fish were infected by identical strains of the same virus species within Megalocytivirus genus. Major capsid protein (MCP) genes of 10 ISKNV strains were sequenced and compared with 9 other reference nucleotide sequences acquired from GenBank. Sequence analysis of MCP gene showed that all strains detected in this study were closely related to the reference ISKNV with nucleotide sequence identity that was ranging from 99.8% to 100%. In addition, phylogenetic analysis of MCP gene revealed that viruses from genus Megalocytivirus can be divided into three genotypes: genotype 1 include reference ISKNV and all other strains that were detected in this study, genotype 2 include viruses closely related to red sea bream iridovirus (RSIV), and genotype 3 include viruses closely related turbot reddish body iridovirus (TRBIV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号