首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semi‐dwarf wheat is an important prerequisite for releasing a successful commercial cultivar in high‐yielding environments. In Northern Europe, this aim is achieved by using one of the dwarfing genes Rht‐B1 (formerly known as Rht‐1) or Rht‐D1 (Rht‐2). Both genes, however, result in a higher susceptibility to Fusarium head blight (FHB). We analysed the possibility to use the two non‐adapted FHB resistance quantitative trait loci Fhb1 and Fhb5 (syn. QFhs.ifa‐5A) to counterbalance the negative effect of the dwarfing allele Rht‐D1b in a winter wheat population of 585 doubled‐haploid (DH) lines segregating for the three loci. All lines were inoculated with Fusarium culmorum at four locations and analysed for FHB severity, plant height, and heading date. The DH population showed a significant (< 0.001) genotypic variation for FHB severity ranging from 3.6% to 65.9% with a very high entry‐mean heritability of 0.95. The dwarfing allele Rht‐D1b reduced plant height by 24 cm, but nearly doubled the FHB susceptibility (24.74% vs. 12.74%). The resistance alleles of Fhb1 and Fhb5 reduced FHB susceptibility by 6.5 and 11.3 percentage points, respectively. Taken all three loci together, Fhb5 alone was already able to reduce FHB susceptibility to the same extent as Rht‐D1b increased it. This opens new avenues for selecting semi‐dwarf wheat by marker‐assisted introgression of Fhb5 without the enhancement of FHB susceptibility.  相似文献   

2.
Wheat reduced height (Rht) genes encode modified DELLA proteins, which are gibberellin insensitive, accumulate under stress, restrain growth and affect plant stress response. The seedling reaction to soil water deficit regarding leaf gas exchange and chlorophyll fluorescence was compared in near‐isogenic lines carrying the alleles Rht‐B1a (tall), Rht‐B1b (semi‐dwarfing) and Rht‐B1c (dwarfing) and was related to leaf water content and anatomy. Under drought, Rht‐B1c line was characterized by less decreased CO2 assimilation, delayed non‐stomatal limitation of photosynthesis and higher instantaneous water use efficiency. The functional state of its photosynthetic apparatus was better preserved as evidenced by the less decreased actual quantum yield (ΦPSII) and potential maximum quantum yield (Fv/Fm) of PSII, and the less increased quantum yield of non‐regulated energy dissipation (ΦNO). Rht‐B1b line also tended to perform better than Rht‐B1a, but differences were less pronounced. Although the leaves of both dwarf lines were smaller, thicker and more pubescent, their water content was not higher in comparison with the tall line. Nevertheless, in Rht‐B1c, leaf thickness was less decreased and mesophyll cells were less shrunk under drought. The more effective performance of the photosynthetic machinery of dwarf lines under water deficit could be explained by a combination of morpho‐anatomical and metabolic characteristics.  相似文献   

3.
Reduction of plant height has played a significant role in improving wheat production and knowledge of dwarfing genes in Chinese wheat will be very important for developing high yielding cultivars. Molecular markers were used to detect the presence of genes Rht-B1b (Rht1), Rht-D1b (Rht2) and Rht8 in 220 wheat genotypes from autumn-sown wheat regions in China. They include landmark landraces, leading cultivars and core parents involved in wheat breeding from the 1950s to the present. Results indicated that Rht-D1b and Rht8 dominate with frequencies of 45.5% and 46.8%, respectively, followed by Rht-B1b with a frequency of 24.5%. The frequencies of Rht-B1b and Rht-D1b increased, from 8.6 to 32.2% and 36.2 to 53.4%, respectively, whereas the frequency of Rht8 has remained constant over time, when compared with cultivars released before and after 1990. This indicates that both the Rht-B1b and Rht-D1b were successfully used in wheat production in Chinese environments. Our study shows that Rht-B1b and Rht-D1b can be used in the post-anthesis heat stressed environments. Rht-B1b in Chinese wheats is derived from two sources, viz., Norin 10 and the Italian introduction St2422/464 (Rht-B1b and Rht8). The identity of Rht-B1b in these two sources still needs to be confirmed. Suwon 86 carrying both Rht-B1b and Rht-D1b, and Chinese cultivars, Huixianhong and Yaobaomai, are the primary sources of Rht-D1b in Chinese wheats. It is likely that Rht-D1b in Youbaomai derives from an unknown introduction. Italian introductions such as Funo and Abbondanza, and Lovrin 10 with the 1B/1R translocation, and Chinese landraces are the three major sources of Rht8. This information will be very valuable for wheat breeding in China, and internationally.  相似文献   

4.
Fusarium head blight (FHB), leaf rust and stem rust are among the most destructive wheat diseases. High‐yielding, native disease resistance sources are available in North America. The objective of this study was to map loci associated with FHB traits, leaf rust, stem rust and plant height in a “Vienna”/”25R47” population. DArT markers were used to generate a genetic map, and quantitative trait loci (QTL) analysis was performed by evaluating 113 doubled haploid lines across three environments in Ontario, Canada. FHB resistance QTL were identified on chromosomes 4D, 4B, 2D and 7A, while a QTL for leaf and stem rust resistance was identified on chromosome 1B. The dwarfing alleles of both Rht‐B1 and Rht‐D1 were associated with increased FHB index and DON content.  相似文献   

5.
Water deficiency is a major constraint to wheat productivity in drought prone regions. The wheat DELLA‐encoding height‐reducing genes (Rht) are associated with significant increase in grain yield. However, the knowledge of their benefit in dry environments is insufficient. The objective of the study was to examine the effect of induced drought on leaf water content, level of oxidative stress, cell membrane stability, accumulation of osmoprotectants and activity of some antioxidant enzymes in wheat near‐isogenic lines carrying the alleles Rht‐B1b (semidwarfing) and RhtB1c (dwarfing) in comparison with the tall control Rht‐B1a. Six‐day‐long water deprivation was imposed at seedling stage. Plants carrying Rht‐B1c and, to a lesser extent, those carrying Rht‐B1b performed better under stress compared with Rht‐B1a in terms of more sustained membrane integrity, enhanced osmoregulation and better antioxidant defence. These differential responses could reflect pleiotropic effects of the Rht‐B1 gene associated with the accumulation of the mutant gene product, that is, altered DELLA proteins, or might be related to allelic variations at neighbouring loci carrying candidate genes for proteins with a major role in plant water regulations and stress adaptation. These findings might be of importance to breeders when introducing Rht‐B1 alleles into wheat cultivars designed to be grown in drought liable regions.  相似文献   

6.
The objective of the present study was to analyse the genetic basis of falling number in three winter wheat populations. Samples for falling number determination for each population originated from at least three test environments that were free from the occurrence of preharvest sprouting at harvest time. Quantitative trait locus (QTL) analysis employing falling number values from single environments identified eight, five and three QTL in the populations Dream/Lynx, Bussard/W332‐84 and BAUB469511/Format, respectively. A major QTL common to all three populations and consistently detected in each environment mapped to the long arm of chromosome 7B. The QTL was located to a similar genomic region as the previously described major QTL for high‐isoelectric point α‐amylase content. The T1BL.1RS wheat‐rye translocation and the dwarfing gene Rht‐D1 segregating in Dream/Lynx and BAUB469511/Format were found to be important factors of falling number variation. In both populations, the presence of Rht‐D1b or the absence of T1BL.1RS increased falling number. The results indicate that late maturity α‐amylase, responsible for low falling numbers, has now been documented in German wheat germplasm.  相似文献   

7.
Toshiaki Yamada 《Euphytica》1990,50(3):221-239
Summary The GA response, Rht genes and culm length of 133 Norin varieties, 6 breeding lines and 16 landraces of Japanese wheat were investigated. Out of 133 Norin varieties tested, 103 were GA-insensitive and 30 GA-responsive. The 6 breeding lines were all GA-insensitive. Out of 16 landraces tested, 10 were GA-insensitive and 6 GA-responsive. Among the 10 GA-insensitive landraces, only Daruma had a Rht1 genotype. The other 9 had a Rht2 genotype. None of the landraces tested carried both Rht1 and Rht2 or Rht3. Out of the 103 GA-insensitive Norin varieties, 22 carried only Rht1, another 79 carried only Rht2, and only Norin 10 and Kokeshikomugi carried both Rht1 and Rht2. No tested variety carried Rht3. Some Norin varieties carrying Rht2 showed tall culms comparable to that of the rht tester line Chinese Spring. These results suggest that these varieties had a nullifier or modifier gene(s) or height promoting genes in the background controlling the height-reducing effect of Rht2. Conversely, six GA-responsive Norin varieties were as short as Akakomugi which carries the GA-responsive Rht genes, Rht8 and Rht9. The also seemed to carry a GA-responsive Rht gene or genes, and moreover all but one may carry gene(s) other than the Akakomugi genes. The origin of Rht1 and Rht2 of Norin 10 was speculated on the GA-response and Rht genotypes of its related varieties and landraces.  相似文献   

8.
Factorial pot experiments were conducted to compare the responses of GA‐sensitive and GA‐insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near‐isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40 °C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+eb(tm)) described declining grain set with increasing t, and t5 was that fitted to give a 5 % reduction in grain set. Averaged over NIL, t5 for anthesis at FC was 31.7 ± 0.47 °C (S.E.M., 26 d.f.). Drought at anthesis reduced t5 by <2 °C. Maintaining FC at booting conferred considerable resistance to high temperatures (t5 = 33.9 °C) but booting was particularly heat susceptible without water (t5 = 26.5 °C). In one background (cv. Mercia), for NILs varying at the Rht‐D1 locus, there was progressive reduction in t5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht‐D1a, tall, 32.7 ± 0.72; Rht‐D1b, semi‐dwarf, 29.5 ± 0.85; Rht‐D1c, severe dwarf, 24.2 ± 0.72). This trend was not evident for the Rht‐B1 locus or for Rht‐D1b in an alternative background (Maris Widgeon). The GA‐sensitive severe dwarf Rht12 was more heat tolerant (t5 = 29.4 ± 0.72) than the similarly statured GA‐insensitive Rht‐D1c. The GA‐sensitive, semidwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht‐D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semidwarfing with GA‐insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison with effects of semidwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.  相似文献   

9.
Wheat grain protein content (GPC) is important for human nutrition and has a strong influence on the quality of pasta and bread. The objective of this study was to analyse the introduction of the Gpc‐B1 allele into two Argentinean bread wheat cultivars. Near‐isogenic lines were developed in ‘ProINTA Oasis’ and ‘ProINTA Granar’ using marker‐assisted selection. Gpc‐B1 lines showed a significant (P = 0.01) increase in GPC and a significant (P = 0.001) decrease in grain weight in comparison with control lines without Gpc‐B1. Differences in yield were not significant (P = 0.49) between lines. Gpc‐B1 lines significantly reduced (P = 0.02) straw nitrogen concentration at maturity and significantly increased (P = 0.02) the nitrogen harvest index. When data were analysed by genotype and environment, differences in some analysed parameters were found, indicating that Gpc‐B1 expression may be affected by different genetic backgrounds and environmental conditions. These results suggest that the introgression of the Gpc‐B1 allele into Argentinean wheat germplasm could be a valuable resource for improving GPC with no detrimental effect on grain yield.  相似文献   

10.
Wheat leaf rust (LR), caused by the obligate biotrophic fungus Puccinia triticina (Pt), is a destructive foliar disease of common wheat (Triticum aestivum L.) worldwide. The most effective, economic means to control the disease is resistant cultivars. The Romanian wheat line Fundulea 900 showed high resistance to LR in the field. To identify the basis of resistance to LR in Fundulea 900, a population of 188 F2:3 lines from the cross Fundulea 900/‘Thatcher’ was phenotyped for LR severity during the 2010–2011, 2011–2012 and 2012–2013 cropping seasons in the field at Baoding, Hebei Province. Bulked segregant analysis and simple sequence repeat markers were used to identify the quantitative trait loci (QTLs) for LR adult‐plant resistance in the population. Three QTLs were detected and designated as QLr.hebau‐1BL, QLr.hebau‐2DS and QLr.hebau‐7DS. Based on the chromosome positions and molecular marker tests, QLr.hebau‐1BL is Lr46, and QLr.hebau‐7DS is Lr34. QLr.hebau‐2DS was derived from ‘Thatcher’ and was close to Lr22. This result suggests that Lr22b may confer residual resistance on field nurseries when challenged with isolates virulent on Lr22b, or another gene linked to Lr22b confers this resistance from ‘Thatcher’. This study confirms the value of Lr34 and Lr46 in breeding for LR resistance in China; the contribution of the QTL to chromosome 2D needs further validation.  相似文献   

11.
Plants develop juvenile phase to adult phase in vegetative stage. Although soybean is a very important crop worldwide, there has been only one study of the juvenile–adult phase change. In this study, we determined that the juvenile–adult phase change occurred at different stages in two soybean cultivars that differ in their photosensitivity. Cultivar ‘Enrei’ (E1e2e3E4) is weakly photosensitive and cultivar ‘Peking’ (E1E2E3E4) is strongly photosensitive. In ‘Enrei’, the leaf size gradually increased at a constant leaf position regardless of the difference in day length. In ‘Peking’ plants transferred to short‐day conditions at several leaf development stages, leaf size gradually increased at different leaf positions. Expression of miR156 by ‘Enrei’ transferred to short‐day conditions had nearly the same pattern as that of ‘Enrei’ grown under long‐day conditions. In ‘Peking’, the expression of miR156 had different patterns in younger leaves of plants subjected to either a short‐day treatment or long‐day conditions. These results indicate that the E2 and E3 loci that regulate photosensitivity also regulate the expression of miR156 and the juvenile–adult phase change in soybean.  相似文献   

12.
Wheat, among all cereal grains, possesses unique characteristics conferred by gluten; in particular, high molecular weight glutenin subunits (HMW‐GS) are of considerable interest as they strictly relate to bread‐making quality and contribute to strengthening and stabilizing dough. Thus, the identification of allelic composition, in particular at the Glu‐B1 locus, is very important to wheat quality improvement. Several PCR‐based molecular markers to tag‐specific HMW glutenin genes encoding Bx and By subunits have been developed in recent years. This study provides a survey of the molecular markers developed for the HMW‐GS at the Glu‐B1 locus. In addition, a selection of molecular markers was tested on 31 durum and bread wheat cultivars containing the By8, By16, By9, Bx17, Bx6, Bx14 and Bx17 Glu‐B1 alleles, and a new assignation was defined for the ZSBy9_aF1/R3 molecular marker that was specific for the By20 allele. We believe the results constitute a practical guide for results that might be achieved by these molecular markers on populations and cultivars with high variability at the Glu‐B1 locus.  相似文献   

13.
Waxy (Wx) protein is a key enzyme for synthesis of amylose in endosperm. Amylose content in wheat grain influences the quality of end‐use products. Seven alleles have been described at the Wx‐D1 locus, but only two of them (Wx‐D1b, Wx‐D1e) were genotyped with codominant markers. The waxy wheat line K107Wx1 developed by treating ‘Kanto 107’ seeds with ethyl methanesulphonate carries the Wx‐D1d allele. However, no molecular basis supports this nomenclature. In the present study, DNA sequence analysis confirmed that a single nucleotide polymorphism in the sixth exon of Wx‐D1 changed tryptophan at position 301 into a termination codon. Based on this sequence variation, a PCR‐based KASP marker was developed to detect this point mutation using 68 BC8F1 plants and 297 BC8F2 lines derived from the cross ‘Ningmai 14’*9/K107Wx1. Combined with codominant markers for the Wx‐A1 and Wx‐B1 alleles, waxy and non‐waxy near‐isogenic lines were distinguished. The KASP marker was efficient in identifying the mutant allele and can be used to transfer waxiness to elite lines.  相似文献   

14.
The height-reducing gene Rht8 was introduced into Italian wheats by breeder Nazareno Strampelli from the Japanese landrace Akakomugi, and has been widely used in wheats adapted to southern and eastern European conditions. Following identification of a close linkage to Rht8, microsatellite marker Gwm261 has been used extensively to screen large numbers of diverse international germplasm. A 192bp allele at this locus has been taken as “diagnostic” for Rht8 and used to infer the international distribution of Rht8. In this paper, we report several instances of cultivars and mapping populations that vary for the presence of the 192bp allele at the Xgwm261 locus (Xgwm261 192 ), but with no associated reduction in height, suggesting a lack of association with Rht8. For instance, in the population derived from a cross between Sunco (Rht-B1b, Xgwm261 165 ) and Tasman (Rht-D1b, Xgwm261 192 ), there were significant height differences associated with the segregation of Rht-B1b and Rht-D1b, but no height differences between Xgwm261 genotypes. Similar results were obtained in a population derived from the cross between Molineux (Rht-B1b, Xgwm261 192 ) and Trident (Rht-D1b Xgwm261 208 ). In contrast, the cross between Trident and Chuanmai 18 (Xgwm261 192 ) gave significant height effects at both the Rht-D1 and Xgwm261 loci, with no epistatic interaction between loci. Chuanmai 18 is closely related to the Strampelli wheat Mara (ancestrally derived from Akakomugi) and is therefore likely to carry Rht8. The old Japanese cultivar Norin 10, used by Norman Borlaug to introduce Rht-B1b and Rht-D1b into Mexican wheats, also has a 192bp allele at the Xgwm261 locus, and the sequence of the amplified product is identical to that of Akakomugi. We suggest that the widespread use of Norin 10-derived germplasm during and after the Green Revolution introduced a second haplotype into international germplasm, in which Xgwm261 192 has no association with Rht8. Therefore, the presence of Xgwm261 192 is only indicative of Rht8 in wheat cultivars that have inherited this allele from Akakomugi or a Strampelli wheat ancestor.  相似文献   

15.
Heterosis, or hybrid vigour, has been used to improve seed yield in several important crops for decades and it has potential applications in soybean. The discovery of over‐dominant quantitative trait loci (QTL) underlying yield‐related traits, such as seed weight, will facilitate hybrid soybean breeding via marker‐assisted selection. In this study, F2 and F2 : 3 populations derived from the crosses of ‘Jidou 12’ (Glycine max) × ‘ZYD2738’ (Glycine soja) and ‘Jidou 9’ (G. max) × ‘ZYD2738’ were used to identify over‐dominant QTL associated with seed weight. A total of seven QTL were identified. Among them, qSWT_13_1, mapped on chromosome 13 and linked with Satt114, showed an over‐dominant effect in two populations for two successive generations. This over‐dominant effect was further examined by six subpopulations derived from ‘Jidou12’ × ‘ZYD2738’. The seed weight for heterozygous individuals was 1.1‐ to 1.6‐fold higher than that of homozygous individuals among the six validation populations examined in different locations and years. Therefore, qSWT_13_1 may be a useful locus to improve the yield of hybrid soybean and to understand the molecular mechanism of heterosis in soybean.  相似文献   

16.
Bean golden mosaic virus (BGMV) is the causal agent of bean golden mosaic of common beans. A transgenic bean line that has been developed based on RNA interference to silence the BGMV rep gene showed immunity to the virus. Crosses were done between the transgenic line and six bean cultivars followed by four backcrosses to the commercial cultivars ‘Pérola’ and ‘BRS Pontal’. The transgene locus was consistently inherited from the crosses analysed in a Mendelian fashion in the segregating populations. The disease resistance reaction co‐inherited with the transgene. Nevertheless, the expression of disease resistance displayed a dosage effect phenomenon in the F1 generation. The analysis of the homozygous near‐isogenic lines in field conditions, under high BGMV disease incidence, indicated that the transgenic lines were completely resistant. These results show the strength of the disease resistance obtained, the stability of the trait across generations and its usefulness in the management of a disease for which there is no reported Phaseolus germplasm with immunity.  相似文献   

17.
K. Murai 《Plant Breeding》2002,121(4):363-365
A ‘two‐line system’ using photoperiod‐sensitive cytoplasmic male sterility (PCMS) caused by Aegilops crassa cytoplasm under a long‐day photoperiod ( 15 h) has been proposed as a new means of producing hybrid varieties in common wheat. The PCMS line is maintained by self‐pollination under short‐day conditions, and hybrid seeds can be produced through outcrossing of the PCMS line with a pollinator under long‐day conditions. Two kinds of fertility restoration systems against the PCMS are known. One is involved with a set of multiple fertility‐restoring (Rf) genes in the wheat cultivar ‘Norin 61’ located on (at least) chromosomes 4A, 1D, 3D and 5D. The other is controlled by a single dominant major Rf gene, Rfd1, located on the long arm of chromosome 7B in the wheat cultivar ‘Chinese Spring’. To examine the degree of fertility restoration by these two systems, nine PCMS lines were crossed with ‘Norin 61’ and ‘Chinese Spring’ as the restorer lines, and the F1 hybrids were investigated. The degree of fertility restoration was estimated by comparing the seed set rates in the F1 hybrids having the Ae. crassa cytoplasm and those with normal cytoplasm. The results revealed that the fertility restoration ability of a set of multiple Rf genes in ‘Norin 61’ was higher than that of the Rfd1 gene in ‘Chinese Spring’.  相似文献   

18.
To study the influence of genes from Thinopyrum intermedium on traits affecting the bread‐making quality of wheat, two derivatives from a putative disomic addition line in cultivar ‘Vilmorin 27’ were used in cytological, biochemical and molecular characterization. Cytological analysis suggested that one of the derivatives (Line‐1) had a terminal deletion involving the long arm of chromosome 1D (2n = 42, Del‐1DL”), and the other (Line‐2) was a conventional addition line, but also carried the same deletion on chromosome 1D (2n = 44, Thi”+Del‐1DL”). Amplification and sequencing of high‐molecular‐weight glutenin subunit (HMW‐GS) genes coded by the Th. intermedium chromosome in Line‐2 indicated the presence of one x‐type with an extra cysteine and four (rather than one) unique y‐type genes. Rheological studies of Line‐1 showed significantly lower dough strength compared to ‘Vilmorin 27’, confirming the recognized role of Glu‐1D coded HMW‐GSs. Line‐2 showed significantly higher dough strength compared to the background cultivar, indicating a significant potential of Th. intermedium for improvement of bread‐making quality in wheat.  相似文献   

19.
L. Reddy    R. E. Allan    K. A. Garland  Campbell 《Plant Breeding》2006,125(5):448-456
In wheat, variation at the orthologus Vrn‐1 loci, located on each of the three genomes, A, B and D, is responsible for vernalization response. A dominant Vrn‐1a allele on any of the three wheat genomes results in spring habit and the presence of recessive Vrn‐1b alleles on all three genomes results in winter habit. Two sets of near‐isogenic lines (NILs) were evaluated for DNA polymorphisms at their Vrn‐A1, B1 and D1 loci and for cold hardiness. Two winter wheat cultivars, ‘Daws’ and ‘Wanser’ were used as recurrent parents and ‘Triple Dirk’ NILs were used as donor parents for orthologous Vrn‐1 alleles. The NILs were analysed using molecular markers specific for each allele. Only 26 of 32 ‘Daws’ NILs and 23 of 32 ‘Wanser’ NILs had a plant growth habit that corresponded to the marker genotype for the markers used. Freezing tests were conducted in growth chambers programmed to cool to ?21.5°C. Relative area under the death progress curve (AUDPC), with a maximum value of 100 was used as a measure of death due to freezing. The average relative AUDPC of the spring habit ‘Daws’Vrn‐A1a NILs was 86.15; significantly greater than the corresponding winter habit ‘Daws’Vrn‐A1b NILs (42.98). In contrast, all the ‘Daws’Vrn‐A1bVrn‐B1aVrn‐D1b and Vrn‐A1bVrn‐B1bVrn‐D1a NILs (spring habit) had relative AUDPC values equal to those of their ‘Daws’ sister genotypes with Vrn‐A1bVrn‐B1bVrn‐D1b NILs (winter habit). The average AUDPC of spring and winter habit ‘Wanser’ NILs differed at all three Vrn‐A1, Vrn‐B1 and Vrn‐D1 locus comparisons. We conclude that ‘Daws’ and ‘Wanser’ have different background genetic interactions with the Vrn‐1 loci influencing cold hardiness. The marker for Vrn‐A1 is diagnostic for growth habit and cold hardiness but there is no relationship between the Vrn‐B1 and Vrn‐D1 markers and the cold tolerance of the NILs used in this study.  相似文献   

20.
Reduced height genes are the genetic basis of the “green revolution”. Two agronomically important gibberellic acid (GA)-insensitive genes, Rht-B1b (Rht1) and Rht-D1b (Rht2), localised on chromosomes 4BS and 4DS, respectively, and the GA-responsive gene Rht8, localised on chromosome 2DS, were introduced into many cultivars worldwide. An alternative GA-insensitive gene Rht-B1e (=Rht11) was introduced into Russian wheat cultivars. In this study, we investigated the importance of Rht-B1b, Rht-B1e, Rht-D1b and Rht8 in south Russian bread wheat cultivars. The cultivars were divided into five groups: (1) Rht8c; (2) Rht-B1b; (3) Rht-B1b, Rht8; (4) Rht-B1e, Rht8; and (5) Rht-D1b, Rht8. In the Krasnodar region of south Russia 3,222,321 ha were evaluated for estimating the commercial value of each of these genes in 2009–2011. The results showed that coupling Rht-B1e with Rht8 or Rht-B1b with Rht8 was more successful compared with the effects of other genes or their combinations. The average yield of cultivars carrying Rht-B1e exceeded the average yield of cultivars from the other groups. Our study demonstrates that Rht-B1e can be recommended for use in breeding programs and the presence of a molecular marker for this allele simplifies its transfer to elite wheat germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号