首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Development of efficient cost‐effective diets is a critical component in the refinement of production technologies for the largemouth bass, Micropterus salmoides (LMB). One of the first steps in reducing feed costs can be to decrease the amount of fish meal in the diet. The objective of this study was to evaluate reduced levels of fish meal, and a least‐cost formulation diet, for second year growout of LMB under practical pond conditions. Twelve 0.04‐ha ponds were stocked with juvenile LMB (210.1 ± 3.3 g) at a stocking density of 8650 fish/ha (350 fish/pond). Each pond was randomly assigned one of the four dietary treatments with three replicate ponds per treatment. The three experimental diets contained varying levels of fish meal. Diets FM‐45, FM‐24, and FM‐8 contained 45, 23.5, and 8% fish meal, respectively. In diets FM‐24 and FM‐8, fish meal was replaced by varying levels of poultry by‐product meal, soybean meal, and blood meal. The fourth diet was a commercial salmonid diet widely used as a LMB growout feed (Nelson and Sons, Inc., Silvercup TM , Steelhead, Murray, UT, USA). This diet served as a commercial control (CC) and contained 46% crude protein. The experimental diets were formulated to be isonitrogenous and isocaloric with the CC diet and were fed once daily to apparent satiation for 180 d. At harvest, there were no significant differences between treatments ( P > 0.05 ) in terms of survival, which averaged 95% overall. Mean weights of fish fed the three experimental diets FM‐45, FM‐24 and FM‐8 were not significantly different ( P > 0.05 ) and averaged 518, 546, and 529 g, respectively, but were all significantly greater ( P≤ 0.05 ) than those fed the CC (488 g). Feed conversion ratio (FCR) of fish fed the FM‐45 and FM‐8 diets (1.43 and 1.46, respectively) was significantly greater ( P≤ 0.05 ) than those fed the FM‐24 diet (1.34). The FCR of fish fed the CC diet (1.39) was not significantly different ( P > 0.05 ) from fish fed other diets. Feed cost per unit of weight gain ($US/kg) was significantly lower ( P≤ 0.05 ) in fish fed the FM‐24 and FM‐8 diets ($0.73 and $0.72/kg, respectively) than in fish fed other diets. Feed cost per unit gain of fish fed the FM‐45 diet ($0.83/kg) was significantly lower ( P≤ 0.05 ) than those fed the CC diet ($1.04/kg). There were no significant differences ( P > 0.05 ) in dress‐out percentages or proximate composition among fish fed the four diets. This study indicates that fish meal levels in feeds used for the second year growout of LMB can be reduced to ≥ 8% of the formulation without reducing survival or growth and without negatively impacting body composition.  相似文献   

2.
To quantitatively define relationships among stocking densities, feeding rates, water quality, and production costs for channel catfish, Ictalurus punctatus, grown in multiple‐batch systems, twelve 0.1‐ha earthen ponds were stocked at 8,600, 17,300, 26,000, or 34,600 fingerlings/ha along with 2,268 kg/ha of carryover fish. Fish in all ponds were fed daily to apparent satiation using 32% protein floating feed. Temperature and dissolved oxygen in each pond were monitored twice daily; pH weekly; nitrite‐N, total ammonia nitrogen, and Secchi disk visibility every 2 wk; nitrate‐N, chlorophyll a, total nitrogen, total phosphorus, and chemical oxygen demand monthly; and chloride every other month. The costs of producing channel catfish at different stocking densities were estimated. There were no significant differences (P > 0.05) as a result of stocking density among treatment means of (1) gross or net yields, (2) mean weights at harvest, and (3) growth or survival of fingerlings (24–36%) and carryover fish (77–94%). Mean and maximum daily feeding rates ranged from 40 to 53 kg/ha/d and 123 to 188 kg/ha/d, respectively, and feed conversion ratios averaged 1.75. There were no differences in any feed‐related parameter as a result of density. Water quality variables showed few differences among densities at samplings and no differences when averaged across the production season. Yield of fingerlings increased as stocking density increased with significant differences between the two highest and the two lowest stocking densities. Breakeven prices were lower at the higher stocking densities as a result of the higher yield of understocked fish and similar mean individual fish weights produced at these higher stocking densities. Overall, varying stocking densities of fingerlings in multiple‐batch systems had little effect on production efficiency and water quality. Additional research on managing the population structure of carryover fish in commercial catfish ponds may be warranted.  相似文献   

3.
Largemouth bass (LMB), Micropterus salmoides, are a highly desirable food fish especially among Asian populations in large cities throughout North America. The primary production method for food‐size LMB (>500 g) has been outdoor ponds that require two growing seasons (18 mo). Indoor, controlled‐environment production using recirculating aquaculture system (RAS) technologies could potentially reduce the growout period by maintaining ideal temperatures year‐round. Researchers conducted a 26‐wk study to evaluate optimal stocking densities for growout of second‐year LMB to food‐fish size in an indoor RAS. LMB fingerlings (112.0 ± 38.0 g) were randomly stocked into nine 900‐L tanks to achieve densities of 30, 60, or 120 fish/m3 with three replicate tanks per density. The RAS consisted of a 3000‐L sump, ¼ hp pump, bead filter for solids removal, mixed‐moving‐bed biofilter for nitrification, and a 400‐watt ultraviolet light for sterilization. Fish were fed a commercially available floating diet (45% protein and 16% lipid) once daily to apparent satiation. At harvest, all fish were counted, individually weighed, and measured. Total biomass densities significantly increased (P ≤ 0.05) with stocking rate achieving 6.2, 13.2, and 22.9 kg/m3 for fish stocked at 20, 60, and 120 fish/m3, respectively. The stocking densities evaluated had no significant impact (P > 0.05) on survival, average harvest weight, or feed conversion ratio which averaged 92.9 ± 5.8%, 294.5 ± 21.1 g, and 1.8 ± 0.3, respectively. After approximately 6 mo of culture, LMB did not attain target weights of >500 g. Observed competition among fish likely resulted in large size variability and overall poor growth compared to second‐year growth in ponds. Additional research is needed to better assess the suitability of LMB for culture in RAS.  相似文献   

4.
The presence of carryover (fish >350 g stocked the previous year but not yet market size) channel catfish, Ictalurus punctatus, in multiple‐batch production ponds has been shown to affect overall production performance and costs. However, little attention has been paid to effects of varying biomasses of carryover fish in ponds. Twelve 0.1‐ha earthen ponds were stocked March 20, 2007, with 15,000 catfish fingerlings per ha (mean weight 31 g), and carryover fish at either 726, 1460, or 2187 kg/ha (mean weight 408 g, range 204–703 g) to compare the effect of three different biomasses of carryover catfish on the production performance of understocked fingerlings. Gross and net yields increased with increasing biomass of carryover fish. Growth and mean weight at harvest of fingerlings were significantly greater at the lowest biomass of carryover fish (<1460 kg/ha), but there was no difference between the medium and high carryover density treatments. Net returns were highest with the highest biomass of carryover fish, but fell by $688/ha in Year 2 because of slower growth of fingerlings in Year 1.  相似文献   

5.
The responses of phase III sunshine bass Morone chrysops ♀× M. saxatilis ♂ to diets containing reduced levels of menhaden fish meal (30–10%, dry weight) and crude protein (40–36%, dry weight) were evaluated in two separate experiments. Reductions in fish meal were compensated by increase in dietary soybean meal, a meat and blood meal product, and additional amounts of a 1:1 catfish oil:menhaden oil mixture sprayed on as a top dressing. Fish were cultured in earthen ponds and fed commercially manufactured, extruded diets to apparent satiation. In Experiment 1, dietary crude protein was reduced from 40 to 36% and the menhaden fish meal ingredient was reduced from 30 to 15% (dry weight). The mean weight of fish stocked into each pond ranged from 144 to 188 g, the stocking density was 8641/ha, and the duration of the growout was 172 d. In Experiment 2, both dietary treatments contained 40% crude protein (dry weight) and either 30% or 10% menhaden fish meal. The mean weight of fish stocked into each pond ranged from 42 and 77 g, the stocking density was 8,500/ha, and the duration of the growout was 175 d. Simultaneous reductions in dietary menhaden fish meal and crude protein resulted in significant decreases in all production indices except survival and percent weight increase. Weights of filet, carcass, liver and intraperitoneal fat, expressed as a percent of total body weight, were not significantly different. A 66% reduction in dietary menhaden fish meal while the crude protein level was maintained at 40% did not significantly affect growth, production, and weights of filet, carcass, liver and intraperitoneal fat, expressed as a percent of total body weight, and represents a 6% decrease in the cost of feed. In both experiments, levels of protein, lipid, moisture, and ash of the whole body and the filet were not significantly different. Fatty acid composition of the filet and livers from fish fed the control and experimental diets in Experiment 2 were highly comparable. The comparable level of performance of fish fed diets believed to be deficient in HUFA suggests that the dietary levels reported to be required may not be totally applicable to diets formulated for pond culture.  相似文献   

6.
The sutchi catfish, Pangasius sutchi (Fowler 1937) was grown at 10 stocking densities in cages suspended in a river‐fed channel during the summer of 2000. Catfish fingerlings (mean length 9.1–9.7 cm and mean weight 5.9–6.7 g) were stocked at densities of 60, 70, 80, 90, 100, 110, 120, 130, 140 and 150 fish m?3. After 150 days, growth and yield parameters were studied and a simple economic analysis was carried out to calculate profitability. The mean gross yield ranged from 15.6±0.27 to 34.5±0.44 kg m?3 and the net yield ranged from 15.2±0.22 to 33.5±0.36 kg m?3 and showed significant variations (P<0.05). The mean weights of fish at harvest were inversely related to stocking density. Both gross and net yields were significantly different and were directly influenced by stocking density but the specific growth rate, survival rate and feed conversion rate were unaffected. Higher stocking density resulted in higher yield per unit of production cost and lower cost per unit of yield. The net revenue increased positively with increasing stocking density. A density of 150 fish m?3 produced the best production and farm economics among the densities tested in this experiment.  相似文献   

7.
Multiple‐batch production is the most widely practiced method of raising channel catfish. Producers are increasingly adopting intensified production practices in multiple‐batch systems by increasing stocking density and aeration rates as a means to improve cost efficiencies. Proven stocking recommendations are required for the efficient implementation of recent developments in multiple‐batch production. Twelve 0.4‐ha ponds were understocked with 17,484, 20,612, and 26,124 fingerlings/ha (mean weight = 40 g/fish) over equal weights of carryover fish (0.46 kg/fish @ 4,589 kg/ha). Fish were fed once daily to apparent satiation with a 28% protein floating feed and aerated with a single 7.4‐kW electric paddlewheel aerator. Density‐dependent significant differences were absent for gross, net, daily net yields, marketable yields (≥0.54 kg), growth (g/day), and survival. Sub‐marketable yield (<0.54 kg) and feeding rate increased significantly with increased understocking density. Economic analysis revealed increased breakeven prices and diminished net returns with increased stocking density when sub‐marketable fish were not considered as revenue. These differences in production costs and profits among the three treatments became minimal when sub‐marketable fish were included as revenue. All three density treatments attained positive annual net cash flows. This study validates channel catfish understocking densities of 17,000–26,000 fish/ha to improve cost efficiency in intensively aerated, multiple‐batch production systems.  相似文献   

8.
The US catfish industry is evolving by adopting production‐intensifying practices that enhance productivity. Catfish producers have increased aeration rates over time, and some now use intensive rates of aeration (>9.33 kW/ha). Costs and production performance were monitored at commercial catfish farms using high levels of aeration (11.2–18.7 kW/ha) in Alabama, Arkansas, and Mississippi. A multivariate‐cluster analysis was used to identify four different management clusters of intensively aerated commercial catfish farms based on stocking density, size of fingerlings at stocking, and feed conversion ratios (FCR). Breakeven prices of hybrid catfish raised in intensively aerated pond systems were estimated to range from $1.86/kg to $2.17/kg, with the lowest costs associated with the second greatest level of production intensity. The two medium‐intensity clusters generated sufficiently high revenues for long‐term profitability. However, the least‐intensive and the most‐intensive clusters were economically feasible only when catfish and feed prices were closer to less probable market prices. Feed price, FCR, and yield contributed the most to downside risk. Intensive aeration in catfish ponds, up to the levels analyzed in this study, appears to be economically feasible under the medium‐intensity management strategies identified in this analysis.  相似文献   

9.
Sunshine bass from Phase I or pond production were graded into two weight classes, 3 and 5 g, and stocked into experimental earthen ponds at a density of either 8,649/ha or 11,120/ ha in a 2 × 2 factorial design. After stocking, the fish were fed a commercially manufactured feed (43.0-45.5% crude protein) twice daily to satiation for 17 mo. At harvest, mean survival ranged from 67.4 to 84.8% but was highest for the fish stocked at 5g. Average production Tor ponds stocked at 8,649/ha and 11,120/ha, regardless of stocking weight, was 4,506 kg/ha and 5350 kg/ha, respectively. Production and percentages of assigned weight classes were not significantly different among treatments as a result of wide variation among replicates. Using size-dependent market prices assigned to the different harvest size groups, an economic analysis revealed gross receipts, variable costs, and total costs for the 11,120/ha 5-g treatment. Net returns were not significantly different among the four treatments due to large variation among replicates per treatment. These results confirm that the traditional phase II of pond production can be eliminated in favor of a direct stocking of phase I fish into a single production phase and economically competes very well with traditional three-phase growout management. The potential reduction in turnover time of production units achieved through the direct stock practice is an efficiency trait that should translate into significantly higher returns and a greater profit over the long term. Further reduction of stocking density combined with a stocking weight greater than 5 g should translate into greater proportion of larger, higher valued fish at harvest and a growout period of 18-20 mo, rather than the 24-30 mo traditionally needed for the combined phase II and phase III of production.  相似文献   

10.
Channel catfish Ictalurus punctatus farming is the largest component of aquaculture in the USA. Culture technologies have evolved over time, and little recent work has been conducted on the effects of stocking density on production characteristics and water quality. Twelve 0.1‐ha ponds were stocked with 13‐ to 15‐cm fingerlings (16 g) at either 8600, 17,300, 26,000, or 34,600 fish/ha in single‐batch culture with three replicates per treatment. Fish were fed daily to apparent satiation with a 32% floating commercial catfish feed. Nitrite‐N, nitrate‐N, total ammonia nitrogen (TAN), total nitrogen, total phosphorus, chemical oxygen demand (COD), Secchi disk visibility, chlorophyll a, chloride, total alkalinity, total hardness, pH, temperature, and dissolved oxygen (DO) were monitored. Ponds were harvested after a 201‐d culture period (March 26, 2003 to October 13, 2003). Net yield increased significantly (P < 0.05) as stocking density increased, reaching an average of 9026 kg/ha at the highest density. Growth and marketable yield (>0.57 kg) decreased with increasing stocking density. Survival was not significantly different among densities. Mean and maximum daily feeding rates increased with density, but feed conversion ratios did not differ significantly among treatments (overall average of 1.42), despite the fact that at the higher stocking densities, the feeding rates sometimes exceeded 112 kg/ha per d (100 lb/ac per d). Morning DO concentrations fell below 3 mg/L only once in a 34,600 fish/ha pond. Concentrations of chlorophyll a, COD, nitrite‐N, and TAN increased nominally with increasing feed quantities but did not reach levels considered problematic even at the highest stocking densities. Breakeven prices were lowest for the highest stocking density even after accounting for the additional time and growth required for submarketable fish to reach market size. While total costs were higher for the higher density treatments, the relatively higher yields more than compensated for higher costs.  相似文献   

11.
Growout production of the camouflage grouper, Epinephelus polyphekadion (Bleeker), in a 10-m3-capacity fibreglass tank culture system was evaluated, using hatchery-produced fingerlings (56-59 g initial weight) at stocking densities of five, 15 and 45 fish m?3. During the first 9 months of a 12-month growout period, the fish were fed twice a day with a moist pellet feed containing 40.9% protein. From month 10 onwards until harvest, the fish were fed moist pellets in the morning and trash fish in the evening at a 1:1 ratio. The final weight of fish at harvest was up to 900 g, with mean weights of 544.6 ± 170.72 g at five fish m?3, 540.2 ± 150.82 g at 15 fish m-?3 and 513.3 ± 134.52 g at 45 fish m?3. The results showed no significant differences (P > 0.05) in growth rate and fish size between the different stocking densities tested. The average daily growth rate ranged from 0.62 to 3.38 g fish?1 day?1, with mean weights of 1.49 ± 0.74 g fish?1 day?1 at five fish m?3 through 0.53 to 2.38 g fish?1 day?1, 1.32 ± 0.57 g fish?1 day?1 at 15 fish m?3 to 0.48-3.32 g fish?1 day?1 and 1.31 g fish?1 day?1 at 45 fish m?3 stocking density. Although up to 100% survival was observed at the lowest stocking density, the survival rate significantly decreased (P < 0.05) with increasing stocking density. The food conversion ratio (FCR) significantly decreased (P <0.05) with increasing stocking densities, showing efficient feed utilization with increasing stocking densities of E. polyphekadion. The FCR averaged 2.1 at a stocking density of 45 fish m?3. The yield in terms of kg fish produced m?3 of water used in the culture system significantly increased (P < 0.001) from five to 45 fish m?3. The yield averaged 17.3 ±0.53 kg m?3 at a stocking density of 45 fish m?3. The present results show that the present tank culture system could sustain more biomass in terms of increasing fish stocking densities. The growth performance of E. polyphekadion observed during this investigation has been reviewed with other grouper species.  相似文献   

12.
An in‐pond confinement system to separate channel catfish, Ictalurus punctatus, by size within a single pond provides an opportunity for improved growth of understocked fish in ponds with larger market‐sized fish. A barrier of polyvinyl chloride–coated galvanized wire mesh was constructed in five 0.10‐ha earthen ponds to partition the pond into one‐third and two‐third sections, while five other 0.10‐ha ponds were left as traditional open ponds for a control. To evaluate catfish performance in this confinement system, fingerlings (25 g) were stocked at 14,820/ha into the smaller one‐third section of the barrier and carryover fish (408 g) at 2580 kg/ha into the larger two‐third section of the barrier. The control ponds were stocked with the same sizes and numbers of fish in a traditional earthen pond without a barrier. Yield, survival, feed conversion ratio (FCR), growth, and economics were compared between treatments. Fingerling yields were greater in the barrier system that allowed fingerlings to be separated physically from larger carryover fish. There were no differences in yield of carryover fish, survival, FCR, or growth between the control and the barrier ponds. Partial budget analysis revealed a positive net change of $367/ha or $38,125 for a 104‐ha catfish farm (at a market price of $1.54/kg of additional stockers produced). The value of the greater weight of understocked fish produced in the barrier system was greater than the annualized cost of installing the barrier, for farmers raising fish in multiple batch. Thus, on an experimental basis, the confinement system was economically profitable; however, trials on commercial farms are needed to evaluate performance on a larger scale.  相似文献   

13.
Fingerling HS‐5 channel catfish, Ictalurus punctatus, NWAC 103 channel catfish, D&B blue catfish, Ictalurus furcatus, HS‐5 female channel × D&B male blue catfish F1 hybrids, and NWAC 103 female channel × D&B male blue catfish F1 hybrids were stocked into twenty‐five 0.04‐ha earthen ponds at 12,500 fish/ha and grown for 277 d. Fish were fed daily at rates from 1.0 to 3.0% biomass based on feeding activity and temperature and adjusted weekly assuming a feed conversion ratio (FCR) of 1.8 and 100% survival. At harvest, 40 fish from each pond were sampled, and all other counted and weighed. Mean survival, growth rate indexes (a), FCR, and skin‐on fillet percentages were not significantly different. Mean harvest weights and net production were higher for HS‐5 channel and its hybrid than for the NWAC 103 channel, NWAC 103 hybrid, and D&B blue catfish, partially because of their larger mean stocking weights. D&B blue catfish was more uniform in size than NWAC 103 channel and NWAC 103 hybrid. D&B blue catfish was the easiest to seine. HS‐5 hybrids and NWAC 103 hybrids had lower mean head percentage and a better processing yield than their parent channel catfish.  相似文献   

14.
A multiple-batch study was conducted using stocker catfish (0.09 kg/fish) and carryover fish (0.39 kg/fish) to look at the effects of different stocker densities on fish production. Twelve 0.1-ha ponds were stocked with 7,400; 11,120; or 14,825 stockers/ha, and equal weights of carryover fish (2,268 kg/ha). Fish were fed once daily to apparent satiation with a 32% protein floating feed and aerated with a single 0.37-kW electric paddlewheel aerator. No significant differences were detected for gross, net, and net daily yields, growth (g/d), or survival. Sub-marketable yield (<0.57 kg) increased as stocking density increased. However, marketable yields (≥0.57 kg) were not affected by density. Carryover fish in high-density ponds had a significantly lower (P < 0.05) mean weight at harvest, but mean stocker weight was not different across densities. Economic analysis found breakeven prices increased and net returns decreased with increased stocking density when sub-marketable fish were not considered as revenue. The study indicated the possibility that stockers compete with large carryover fish, particularly at higher densities.  相似文献   

15.
The present study was conducted to evaluate production management methods to improve overall survival of channel catfish, Ictalurus punctatus, fry to the fingerling stage by incorporating the use of a live, attenuated vaccine against Edwardsiella ictaluri and employing an extended hatchery phase. In this experiment, four treatments were used. In Treatment 1, 10‐d posthatch (PH) fry were vaccinated and then directly stocked into earthen ponds. In Treatments 2 and 3, 10‐d PH fry were sham‐vaccinated (control) and vaccinated, respectively, kept in nursery tanks for 22 d, and then stocked into earthen ponds. Fry in Treatment 4 were sham‐vaccinated at 10 d PH, kept in nursery tanks for 22 d, and then vaccinated prior to stocking into earthen ponds. Mean fingerling yield at harvest ranged from 4716 kg/ha in Treatment 1 to 8112 kg/ha in Treatment 4. Mean individual fish weight ranged from 38.8 g in Treatment 1 to 40.9 g in Treatment 4, and feed conversion ratios (FCR) ranged from 1.15 in Treatment 4 to 1.51 in Treatment 1. Mean survival ranged from 47.5% in Treatment 1 to 73.4% in Treatment 4. In specific comparisons to evaluate the nursery effect (Treatments 1 and 3), yield and overall survival were significantly different (P < 0.05) between these two treatments. In specific comparisons to evaluate the effect of the use of the vaccine (Treatments 2, 3, and 4), overall survival was significantly different (P < 0.05) between Treatment 2 (sham‐vaccinated control with nursery phase) and Treatment 4 (vaccinated at 32 d PH with nursery phase). No significant differences (P > 0.05) in yield, average weight, and FCR were observed between treatments. Results indicate that implementing an extended hatchery phase and vaccination strategy with older fry can improve overall survival of fingerling fish.  相似文献   

16.
Fingerling channel catfish, "Ictalurus punctatus," were stocked into sixteen, 0.4-ha ponds at 11,120 fish/ha or 19.770 fish/ha. Half the ponds at either density were managed as single-batch cropping systems and half as multiple-batch cropping systems. Each of the four combinations in the 2 X 2 factorial design was replicated in four ponds over a 3-year study period. Ponds were not drained until the study was terminated. Average net fish production (totaled over 3 years) was 23,717 kg/ha for the single-batch, high-density treatment; 19,501 kg/ha for the multiple-batch, high-density treatment; 17,396 kg/ha for the single-batch, low density treatment; and 16,857 kg/ha for the multiple-batch, low- density treatment. Both stocking density and cropping system significatly (P < 0.05) influenced net production. Average size of fish at harvest was significantly (P < 0.05) lower at the high stocking density and in the single-batch cropping system. Feed conversion was better (P < 0.05) at the low stocking density and in the single-batch cropping systems. Poorer feed conversion in multiple-batch systems is believed due to harvest-to-harvest carryover of large fish, which convert feed to flesh less efficiently than small fish. Observed mortality and total fish loss (observed mortality plus fish unaccounted for upon termination of the study) were not affected (P > 0.05) by cropping system but were significantly (P < 0.05) higher in ponds stocked at the high density. Production data were used to assess discounted net revenues from a synthetic 131-ha farm based upon a price of $1.54/kg either for all fish harvested or for fish harvested that were ≥0.35kg. When based on all fish harvested, discounted net revenue was highest for the single-batch, high-density treatment, but the low average size of fish harvested from ponds in that treatment (0.49 kg/fish) would not be acceptable across the industry. The multiple-batch, low-density treatment had the second highest discounted net revenue based upon all fish harvested and the highest revenue when only fish ≥ 0.34 kg were valued. Of the treatments analyzed, this was judged the economic choice for the channel catfish industry.  相似文献   

17.
Juvenile largemouth bass Micropterus salmoides , trained to accept artificial diets, were stocked into six 0.04-ha ponds at stocking densities of either 6,175 or 12,350 fish/ha. Fish were fed a floating custom-formulated diet, containing 44% protein, once daily to satiation for 12 mo (May 1994–May 1995). At final harvest, the total yield of fish was significantly greater (P < 0.05) and feed conversion ratio (FCR) was significantly lower, for bass stocked at the higher density (4,598 kg/ha and 2.3, respectively) than when stocked at the lower density (2,354 kg/ha and 3.3, respectively). There was no significant difference (P > 0.05) in average weight, length, or survival of bass stocked at the two densities. Averaged over the study period, there were no significant differences (P > 0.05) in total ammonia-nitrogen (TAN), nitrite-nitrogen, or un-ionized ammonia concentrations in ponds in which bass were stocked at the two densities. These data indicate that largemouth bass of the size used in this study are amenable to pond culture at densities of at least 12,350 fish/ha and that higher stocking densities may be possible.  相似文献   

18.
An economic analysis of a hypothetical small‐scale marine recirculating aquaculture system (RAS) is conducted for ongrowing small, wild black sea bass Centropristis striata at the University of North Carolina Wilmington, Center for Marine Science (UNCW‐CMS) aquaculture facility in Wrightsville Beach, North Carolina (NC). The analysis is based on production data from field trials and marketing data from the sale of tank‐grown product. The growout facility consists of four 16.7‐m3 (dia. x ht. = 5.58 × 1 m) fiberglass tanks supported by state‐of‐the‐art RAS components, including particle traps and swirl separators, drum screen filter, trickling biological filter, UV sterilizer, heat pump, protein skimmer, and oxygen cone. Wild‐caught, above minimum legal size black sea bass (24.2 cm TL, 350 g, 0.77 lb) were purchased from a commercial fisherman for $3.14/ kg ($1.4011b), stocked at a density of 21.1 kg/m3, and grown to a final weight of 1 kg (2.24 lb) in 200 d at 23 C resulting in 1.8 production cycles per year. Fish were fed a commercial pelleted diet ($0.94/kg; $0.42/Ib) with a feed conversion ratio of 1.5. Final harvest density was 60 kg/m3 (0.50 lb/gal), and total harvestable weight was 3,982 kg (8,919 Ibs) of fish per cycle, or 6,760 kg (15,022 lb) per year. The economic analysis assumes that the facility owner manages and operates the system on coastal property zoned commercial/industrial, where full strength seawater is available on demand from natural sources. Under the base case scenario, initial investment in construction and equipment is $84,506 (10‐yr life), fish are grown to a harvestable weight of lkg/fish (2.24 lb/fish), product price (farm gate basis) is $10.10/kg ($4.50/lb), and breakeven price is $7.02/kg ($3.13/lb). Depreciation, fingerlings, interest paid, electricity, and feed, account for 19.6%,17.4%, 16.9%, 16.6%, and 12.3%, respectively, of total annual costs. Measures of financial performance for the base case, 10‐yr scenario are: annual return to management, $18,819; net present value (5% discount rate), $145,313; internal rate of return on initial investment, 37%; and discounted payback period on initial investment, 3.2 yr. Sensitivity analysis showed that product price changes have the largest impact on annual returns, while changes in daily growth rate, initial weight, and survival have a strong impact on financial performance. Moderate effects are seen with changes in fingerling costs, feed costs, feed conversion ratio (FCR), final weight, and interest rates.  相似文献   

19.
Previous research has shown that winter feeding is beneficial in preventing weight loss and maintaining catfish health. Although several studies suggest the importance of winter feeding of channel catfish, Ictalurus punctatus, less is known about optimal winter feeding strategies for channel‐blue hybrid catfish (♀ Ictalurus punctatus × ♂ Ictalurus furcatus). Three winter feeding treatments (unfed, fed daily, and fed based on temperature‐threshold feeding) were each assigned randomly to four replicate 0.10‐ha earthen ponds. All ponds were stocked with large channel‐blue hybrid catfish (0.96 ± 0.40 kg) at the rate of 3409 kg/ha and fed using a slow‐sink 28% protein pelleted feed. The two feeding treatments showed significantly greater mean weight at harvest, gross yield, and growth rates than the unfed fish after the 113‐d winter trial. Partial budget analysis indicated that additional costs incurred from the additional feed, fuel, and labor costs over the winter in fed treatments offset the additional revenue from daily winter feeding. However, in the temperature‐threshold feeding treatment, additional costs were similar to additional revenues when 10‐yr average prices were used. Results were sensitive to feed prices and spring catfish prices with positive net benefits from winter feeding at fish prices above $1.58/kg and feed prices below $0.286/kg.  相似文献   

20.
Diets containing 28% and 32% crude protein were compared for pond‐raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04‐ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia‐nitrogen (TAN) and nitrite‐nitrogen (NO2‐N) than ponds stocked at lower densities. However, stocking density had no significant effect on un‐ionized ammonia‐nitrogen (NH3‐N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single‐batch cropping systems. Optimum dietary protein concentration for pond‐raised channel catfish does not appear to be affected by stocking density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号