首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to evaluate the effect of varying dietary levels of highly unsaturated fatty acids (HUFAs) in live prey (Artemia nauplii and a calanoid copepod, Schmackeria dubia) on the growth performance, survival, and fatty acid composition of the lined seahorse, Hippocampus erectus, juveniles. Artemia nauplii were enriched with a commercial product (SS? 50DE‐microcapsule as HUFA source, 2/3 DHA, 1/3 EPA. Shengsuo Fishery Feed Research Center of Shandong Province, Qingdao, China) at four concentrations of 0.0, 14.0, 28.0, and 56.0. Newly hatched juveniles were cultured for 35 days. The content of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n‐3 HUFAs in the Artemia nauplii was positively related to the enrichment concentration. At the end of the trials, growth performance of the juveniles was positively related to the enrichment concentration as well. However, the juveniles fed prey enriched with the highest concentration of enrichment (56.0 μL/L) had the significantly lower (P < 0.05) survival rate. The juveniles fed the copepod had the best growth performance and the highest survival rate, suggesting that the copepod, S. dubia, is suitable for feeding the seahorse juveniles. The comparisons between the growth, survival, and fatty acid profiles of the juveniles fed Artemia and copepods indicate that the seahorse juveniles require dietary levels of DHA beyond those achieved by enriching prey with the HUFA enrichment. Surplus EPA resulted from an imbalance between DHA and EPA in the enriched Artemia nauplii probably caused an adverse effect on the seahorse juveniles. This study suggests that DHA and EPA requirement of the lined seahorse juveniles is roughly 32% of total fatty acid, and the optimal DHA/EPA ratio for the species is circa 4:1. To avoid an adverse effect resulting from excessive EPA, maximum proportion of EPA in enriched Artemia nauplii should not exceed 13% of total fatty acid, and a recommended minimum DHA/EPA ratio in the enriched Artemia nauplii is 1.46. Arachidonic acid (20:4n‐6) might not be an essential fatty acid for the seahorse juveniles.  相似文献   

2.
High mortality frequently occurs in larval mass production of Korean rockfish, Sebastes schlegeli Hilgendorf. Nutritional deficiencies in live feeds, rotifers and Artemia nauplii, fed to larvae could be a reason. A series of experiments was carried out to evaluate the effect of nutritional enrichment of live feeds by ω‐yeast, Spirulina powder and Super SelcoTM on survival and growth rates in rockfish larvae. Preference of rockfish larvae for the live feeds was determined by analysis of stomach contents. In addition, the effect of green water produced by the use of Chlorella ellipsoidea and Spirulina powder on the growth performance of larvae was evaluated. Larvae fed rotifers nutritionally enriched with Super Selco showed significantly higher survival rates than those fed rotifers enriched with ω‐yeast. Larvae fed rotifers that were nutritionally enriched with both Super Selco and Spirulina together exhibited improved growth and survival rates. Larvae fed Artemia nauplii nutritionally enriched with Spirulina powder showed significantly higher survival than larvae fed Artemia nauplii without enrichment. When larvae were fed rotifers, Artemia nauplii or the mixture of rotifers and Artemia nauplii, the second and last group showed significantly higher survival than the first group. Fatty acid composition in live feeds was improved by enrichment of ω‐yeast and larvae fed this feed showed higher survival and growth rates compared with larvae fed non‐enriched feeds. No positive effect of green water in the tank produced with C. ellipsoidea or Spirulina powder was observed on survival and growth rates for larvae fed nutritionally enriched rotifers with Super Selco and Spirulina powder. However, when the larvae were fed Artemia nauplii that were nutritionally enriched with ω‐yeast and Spirulina powder, green water obtained by adding Spirulina powder to the tanks resulted in significantly higher growth rates of larvae than was obtained by adding C. ellipsoidea.  相似文献   

3.
As with many species of seahorses, Hippocampus hippocampus wild populations are being subjected to uncontrolled exploitation in their natural environment. Thus, aquaculture could contribute to satisfy the commercial demand for animals while promoting the recovery of wild stocks. The present study was conducted to compare the effect of the substituting Artemia nauplii with rotifers for first feeding seahorse juveniles. Survival, growth and biochemical composition of prey organisms and fish were studied during the feeding trial. In addition, to help the biometric study, an anaesthetic test was also carried out using clove oil. The results showed excellent survival (average 60%) in juveniles exclusively fed with Artemia, with better values than those reported previously obtained by other authors for this species. By comparison, high mortality and poor growth were observed during first feeding with seahorses fed on rotifers. This could have been related to the lower energy intake and poorer nutritional value of the rotifers. Furthermore, clove oil concentrations of 25 ppm were found to work well as an anaesthetic for seahorse juveniles. Overall, first feeding Artemia alone was found to be an efficient and simplified method for feeding young H. hippocampus fry, building the principles for their culture for ornamental or re‐stocking purposes.  相似文献   

4.
One of the main factors hindering aquaculture production of American lobsters (Homarus americanus) is the need for a cost‐effective and nutritionally sound diet. Live Artemia results in good growth, but is expensive and is a constant source of contamination. Frozen Artemia, although lower in cost, generally results in decreased survivorship and growth relative to live Artemia. The recent advent and mass production of enriched frozen Artemia products may provide for a cost‐effective and nutritionally complete food source for culturing American lobsters. Here, commercially available frozen adult Artemia enriched with either n‐3 fatty acids, or Spirulina was fed to juvenile American lobsters, and their growth and survivorship for three months was compared with that of animals fed unenriched frozen adult Artemia. Both enriched Artemia products produced survivorship superior to that for animals fed unenriched Artemia. Results for growth were equivocal although animals fed the Spirulina‐enriched Artemia had the greatest condition factor. Although more costly by the end of the experiment, enriched diets were more economically efficient than unenriched Artemia. This research demonstrates that enriched feedstuffs are cost‐effective over longer time intervals, and benefits may continue beyond the hatchery‐rearing phase. Enriched diets may also yield animals with a better condition factor, which may further influence their survivorship when released to the wild in enhancement programmes.  相似文献   

5.
The aim of this study was to evaluate the effect of microalgae on the rearing of newborn juveniles of the longsnout seahorse, Hippocampus reidi. Two treatments in three replicates were tested over a 15‐day period: with and without the addition of the microalgae Nannochloropsis oculata at a concentration of 2.02 ± 0.44 × 106 cells mL?1. At each replicate, beginning on the second day of life, 120 H. reidi juveniles (stocking density of 3 ind L?1) were fed the offspring of the benthic copepod Tisbe biminiensis (100 copepod cm?2) together with newly hatched Artemia nauplii (3.8 mL?1). From the sixth day of life, enriched Artemia metanauplii replaced newly hatched Artemia nauplii. After 15 days, the H. reidi individuals were counted, measured and weighed. Mean survival was significantly greater in the microalgae treatment (76.42 ± 5.07%) than in the treatment with no microalgae (25.44 ± 6.91%). Moreover, total length, height and dry weight were significantly larger in the microalgae treatment. Thus, the addition of microalgae increases the growth and survival of H. reidi juveniles fed T. biminiensis and Artemia. The higher growth and survival of H. reidi juveniles was not related to the larger ingestion rates but probably to the nutritional improvement of the live feeds or to the probiotic effect. The protocol developed for rearing H. reidi juveniles resulted in a high survival, and represents an advance in the farming of this species.  相似文献   

6.
This study evaluated the effect of exogenous digestive enzymes on the survival, growth performance and morphology of the digestive tract of juveniles of the longsnout seahorse Hippocampus reidi fed exclusively with Artemia and supplemented with five different concentrations of porcine pancreatin (PP) (0, 5, 25, 50 and 75 mg/L from birth until 30 days after release). The results found in the present study clearly show that there was a significant increase in survival and growth as well as substantial changes in the morphology of intestinal villi in seahorses fed exclusively with Artemia supplemented with 75 mg/L PP. Therefore, the use of digestive enzyme supplementation constitutes an important advance for the establishment of a more efficient and practical feeding protocol (exclusive use of Artemia) for juveniles of the longsnout seahorse.  相似文献   

7.
Taurine is an essential or conditionally essential nutrient for many species of marine fish, especially during early development. There is growing evidence that marine fish larvae benefit from taurine‐enriched rotifers; however, it is unknown if larvae benefit from taurine‐enriched Artemia. We investigated the effects of taurine‐enriched rotifers (Brachionus plicatilis) and Artemia franciscana on the growth and whole‐body taurine concentrations of California yellowtail (Seriola lalandi; CYT) larvae. The approach used in this study was to encapsulate taurine within microparticles (liposomes), which were then fed to rotifers and Artemia. We found that feeding taurine liposomes to rotifers and Artemia resulted in taurine concentrations in these prey species that were similar to or above those previously reported in copepods. At the end of the rotifer phase, CYT larvae fed taurine‐enriched rotifers showed increased growth (final dry weights; DW) and had higher whole body taurine concentrations when compared to larvae fed unenriched rotifers. At the end of the Artemia phase, CYT whole body taurine concentrations varied among dietary treatments. Larval lengths and DWs were not significantly different among treatments at the end of the Artemia phase, suggesting that the taurine concentrations of unenriched Artemia were sufficient to support the growth of CYT larvae.  相似文献   

8.
This investigation examined the effects on growth and survival of seahorses Hippocampus abdominalis Leeson 1827 fed a 25% body weight (wet weight) daily ration of live Artemia sp. enriched with Algamac‐3050, frozen mysids Amblyops kempi or a combination of live enriched Artemia and frozen mysids. After 3 months there was no difference in seahorse length, wet weight, condition factor (CF), or food conversion ratios (FCR) between the treatments. Mean daily specific growth rate (SGR) was higher for the Artemia‐only treatment than for the mysid‐only treatment (P<0.05). FCRs ranged from 6.14 g to 8.72 g dry weight of food required to give a 1‐g dry weight increase in seahorses. There was no difference in survival between treatments. Fatty acid analysis revealed that mysids had a higher percentage composition of EPA, 20 : 5n‐3, and DHA, 22 : 6n‐3, but a lower composition of AA, 20 : 4n‐6, than enriched Artemia. Percentage n‐3 highly unsaturated fatty acids (HUFAs) in mysid levels were approximately twice that of Artemia. Proximate analysis revealed mysids to be higher than the enriched Artemia in protein and fats, and lower in water content. This experiment demonstrates that, although no growth advantage was derived from the use of frozen mysids, they can be used successfully as an alternative food to live enriched Artemia for H. abdominalis. The use of frozen mysids is highly recommended in commercial seahorse culture if the seahorses are to be sold into the live aquarium trade, as this may increase their chances of survival after sale.  相似文献   

9.
This study aimed to establish feeding strategies covering the whole larval period of the forktail blenny, Meiacanthus atrodorsalis, based on the standard hatchery feeds of rotifers and Artemia. Three purposely designed experiments were conducted to determine the appropriate times and techniques to transition larvae from rotifers onto Artemia nauplii of a Great Salt Lake (GSL) strain, and a specialty AF strain, as well as subsequent transition onto enriched metanauplii of GSL Artemia. With a 3‐day co‐feeding period, larvae adapted well to a transition from rotifers to newly hatched GSL Artemia nauplii as early as 5 days posthatching (DPH), and as early as 3 DPH when fed the smaller AF Artemia nauplii. However, prolonging the rotifer‐feeding period up to 11 DPH did not negatively affect survival. Larvae fed Artemia nauplii of the AF strain showed 17–21% higher survival, 24–33% greater standard length and body depth, and 91–200% greater dry weight, after 20 days relative to those fed nauplii of the GSL strain. Meanwhile, enriched Artemia metanauplii of the GSL strain were shown to be an acceptable alternative to AF Artemia nauplii for later larvae, producing similar survival and growth when introduced from 8 DPH. Based on our findings, we recommend feeding M. atrodorsalis larvae rotifers as a first food between 0 and 2 DPH, introducing AF Artemia nauplii from 3 DPH, followed by enriched GSL Artemia metanauplii from 8 DPH onward, with a 3‐day co‐feeding period between each prey change.  相似文献   

10.
The effect of varying levels of dietary n-3 highly unsaturated fatty acid (HUFA) and docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratios on growth, survival and osmotic stress tolerance of Eriocheir sinensis zoea larvae was studied in two separate experiments. In experiment I, larvae were fed rotifers and Artemia enriched with ICES emulsions with 0, 30 and 50% total n-3 HUFA levels but with the same DHA/EPA ratio of 0.6. In experiment II, larvae were fed different combinations of enriched rotifers and Artemia, in which, rotifers were enriched with emulsions containing 30% total n-3 HUFA, but different DHA/EPA ratio of 0.6, 2 and 4; while Artemia were enriched with the same emulsions, but DHA/EPA ratio of 0.6 and 4. In both experiments, un-enriched rotifers cultured on baker's yeast and newly-hatched Artemia nauplii were used as control diets. Larvae were fed rotifers at zoea 1 and zoea 2 stages; upon reaching zoea 3 stage, Artemia was introduced.Experiment I revealed no significant effect of prey enrichment on the survival of megalopa among treatments, but higher total n-3 HUFA levels significantly enhanced larval development (larval stage index, LSI) and resulted in higher individual dry body weight of megalopa. Furthermore higher dietary n-3 HUFA levels also resulted in better tolerance to salinity stress. Experiment II indicated that at the same total n-3 HUFA level, larvae continuously receiving a low dietary DHA/EPA ratio had significantly lower survival at the megalopa stage and inferior individual body weight at the megalopa stage, but no negative effect was observed on larval development (LSI). The ability to endure salinity stress of zoea 3, zoea 5 and megalopa fed diets with higher DHA/EPA ratio was also improved.  相似文献   

11.
To study the effect of dietary supplementation of iodine in Solea senegalensis, larvae were randomly distributed in six tanks. Larvae in three tanks were given rotifers and Artemia enriched with iodine in addition to Rich Advance or Super Selco from 2 days after hatch (DAH) until 31 DAH. Larvae in a second set of three tanks were fed control rotifers and Artemia, enriched only with Rich Advance or Super Selco. Samples were collected at 2, 5, 10, 15 and 31 DAH to determine dry weight, total length, myotome height and thyroid status. Larvae fed the iodine‐enriched diet had significantly higher weight at 31 DAH and higher levels of whole body iodine concentration, compared to control larvae. At 31 DAH, larvae from the control treatment showed typical goitrous thyroid follicles. Thyroid cells of larvae from this treatment appeared columnar or afollicular, with the colloid partly or completely depleted, representative of hyperplasia (goitre). The lower growth rate in fish larvae from the control treatment was possibly a consequence of the hyperplasia, and the iodine enrichment prevented Senegalese sole larvae from developing goitre. This study demonstrates the importance of iodine enrichment of live feed for fish reared in a recirculation system.  相似文献   

12.
The effect of semi-continuous culture on the nutritional value of microalgae was tested in the rotifer Brachionus plicatilis in short-term enrichment experiments. Isochrysis aff. galbana clone T-ISO was cultured semi-continuously with renewal rates from 10 to 50% of the volume of the culture per day and used to feed the rotifers. After 24 h, dramatic differences in dry weight and protein, lipid and carbohydrate contents were observed in the rotifers depending on the renewal rate applied to the microalgal culture. Rotifers fed T-ISO cultured with low renewal rates showed low dry weight and organic content, whereas rotifers fed microalgae from nutrient-sufficient, high renewal rate cultures showed higher dry weight and increases up to 60% in protein, 35% in lipid and 100% in carbohydrate contents. Feed conversion rate (FCR) and organic FCR decreased with increasing renewal rates, indicating a more efficient assimilation of the microalgal biomass obtained at high growth rates. The fatty acid profile of rotifers reflected that of T-ISO, with maximum content of polyunsaturated fatty acids (PUFAs), n-3 fatty acids and docosahexaenoic acid (DHA) being found in the rotifers fed microalgae from the renewal rate of 40%. Results demonstrate that the biochemical composition of B. plicatilis is strongly modified through the use of semi-continuous cultures of microalgae in short-term enrichment processes. This technique provides an excellent tool to improve the nutritional value of the live feed used in fish larvae cultures.  相似文献   

13.
Live prey used in aquaculture to feed marine larval fish – rotifer and Artemia nauplii – lack the necessary levels of n‐3 polyunsaturated fatty acids (n‐3 PUFA) which are considered essential for the development of fish larvae. Due to the high voracity, visual feeding in conditions of relatively high luminosity, and cannibalism observed in meagre larvae, a study of its nutritional requirements is needed. In this study, the effect of different enrichment products with different docosahexaenoic acid (DHA) concentrations used to enrich rotifers and Artemia metanauplii have been tested on growth, survival, and lipid composition of the larvae of meagre. The larvae fed live prey enriched with Algamac 3050 (AG) showed a significantly higher growth than the rest of the groups at the end of the larval rearing, while the larvae fed preys enriched with Multigain (MG) had a higher survival rate. DHA levels in larvae fed prey enriched with MG were significantly higher than in those fed AG‐enriched prey. High levels of DHA in Artemia metanauplii must be used to achieve optimal growth and survival of meagre larvae.  相似文献   

14.
Larval growth and survival of marine finfish in mass seed production are affected by the nutritional value of live feeds such as rotifers and Artemia. Thus far, many studies have been conducted to develop effective methods for the enrichment of live feeds with essential fatty acids and vitamins. In this study, a practical method for enrichment of rotifers with zinc was investigated. Changes in the concentrations of other minerals when zinc was added to the rotifer-enrichment tanks were also studied. The mineral composition of rotifers and Chlorella after zinc enrichment revealed that the direct addition of zinc to the culture media was not effective because rotifers cannot efficiently accumulate waterborne zinc. The ability of Chlorella to absorb waterborne zinc is much higher than that of rotifers, and hence, zinc was pre-accumulated in Chlorella, which was then fed to the rotifers. The maximum zinc content of the rotifers was 585.0 μg g? 1 (dry matter) when the rotifers were enriched with zinc alone. This zinc concentration is comparable to that found in natural zooplankton. In rotifers simultaneously enriched with zinc and n?3 highly unsaturated fatty acids (HUFAs), the zinc content increased, but the n?3 HUFA content did not. Therefore, separate enrichment with zinc and fatty acids was adopted. The zinc content of rotifers fed zinc-enriched Chlorella was significantly higher than that of rotifers fed unenriched Chlorella. After zinc enrichment, rotifers were enriched with fatty acids, and the docosahexaenoic acid (DHA) and n?3 HUFA levels in rotifers were higher than the levels obtained after simultaneous enrichment with zinc and fatty acids. With regard to the concentration of other minerals in rotifers after zinc enrichment, the manganese content tended to decrease when the zinc content increased.The results of this study demonstrated that zinc enrichment of rotifers was successfully performed by using microalgae that had accumulated zinc, and the enrichment of rotifers with fatty acids was also achieved after the completion of zinc enrichment and before feeding the larvae. This method could be utilized for the enrichment of zooplankton with other minerals as well.  相似文献   

15.
The effect of enriching rotifer prey with highly unsaturated fatty acids on sunshine bass Morone chrysops × M. saxatilis larval survival and growth from ages 4 to 12 d posthatch was determined. Comparisons were made among larvae fed (1) rotifers cultured with Nannochloropsis paste versus rotifers cultured with Nannochloropsis paste and enriched with Culture Selco 3000; (2) no rotifers versus rotifers cultured with Nannochloropsis paste and enriched with Culture Selco 3000; and (3) rotifers cultured with Nannochloropsis paste and enriched with Culture Selco 3000, rotifers cultured with Nannochloropsis and Pavlova pastes and enriched with Culture Selco 3000, and rotifers cultured with Nannochloropsis paste and enriched with Culture Selco 3000 and Super Selco. The only differences in survival were unfed larvae with practically no survival compared to 55.4% survival for larvae fed rotifers cultured with paste plus Culture Selco 3000. Larvae fed rotifers cultured with paste plus Culture Selco 3000 were longer and had greater condition than those fed rotifers cultured with paste. Additional enrichment with Pavlova sp. or Super Selco had no affect. A canonical analysis of fatty acid contents of diets, rotifers, and fry supported evidence from harvest results. Distances between centroids indicated distinct differences among diets, less distinction among the rotifers, and little difference among fry. Enrichment enhanced growth, but additional enrichment beyond that done during rotifer culture did not increase survival, growth, or condition.  相似文献   

16.
ABSTRACT

The Japanese flounder, Paralichthys olivaceus, is one of the most common finfish cultured in Japan and Korea. Despite the relatively high production of fingerlings, some problems remain, mainly related to the larval feeding and cost of maintaining microalgae and rotifers. In order to determine the effects of different diets on the Japanese flounder larval growth and survival, a series of experiments was carried out related to the size and nutritional value of different live feeds. The larvae culture conditions were at 10 or 20 larvae/L in 50 to 2,000 L tanks, with aeration and with or without “green water,” and a temperature range of 18.5 to 22.5°C. The live foods used were microalgae (Chlorella ellipsoidea and Nannochloris oculata), baker's yeast, experimental n-yeasts, oyster trochophore larvae, three strains of rotifer Brachionus plicatilis (L-type, S-type and U-type) and Artemia nauplii. Variations were detected in size, dry weight, and chemical composition of the three strains of rotifers used. The maximum number of rotifers ingested by flounder larvae increased steadily from 7 individuals, at first feeding (3.13 mm), to 42 individuals at 5.25 mm of total length (6 days after first feeding). There was a relationship between larval total length and size of the rotifers ingested. The effect of rotifer size on larval growth and survival appeared to be limited to the first two days of feeding. Of the diets tested in the growth and survival of larval flounder during 14 days after hatching, rotifers fed on C. ellipsoidea and raised in green-water gave the best results. Rotifers cultured on enriched N. oculata and n-yeasts did not support larval growth and caused higher mortalities. The n-yeasts used as rotifer enrichment appeared to satisfy, partially, the nutritional requirement of 7-day-old flounder larvae, as did n-yeast squid wintering oil the requirements of 14-day-old larvae. From 7-9-days after hatching and throughout the second 14-day period, rotifers and Artemia cultured on N. oculata improved the survival of flounder compared with those fed on rotifers cultured on C. ellipsoidea. Moreover, the larval growth did not vary significantly between both microalgae-rotifer feedings. No clear relation was found between total protein, lipid, amino acids and fatty acids of live feeds with the growth and survival of flounder larvae, although the total lipid was higher in C. ellipsoidea than in N. oculata. The Artemia nauplii San Francisco strain appeared to be more suitable for the growth and survival of flounder larvae, than the Utah strain. The nutritional value of Artemia nauplii (Utah strain) for flounder larvae remained unchanged despite the use of either microalgae as nauplii enrichment.  相似文献   

17.
Flatfish metamorphosis is initiated by the actions of thyroid hormones (TH) and iodine is an essential part of these hormones. Hence, an iodine deficiency may lead to insufficient levels of TH and incomplete metamorphosis. In this study, different iodine sources for enrichment of Artemia were evaluated and the levels of iodine obtained in Artemia were within the range of 60–350 μg g?1 found in copepods. Larval Atlantic halibut was fed Artemia enriched with either normal DC‐DHA Selco or DC‐DHA Selco (commercial enrichments) supplemented with iodine from days 9 to 60 postfirst feeding. There was no significant difference in growth, mortality or metamorphic development between the groups. The analyses showed that we were able to enrich Artemia with iodine. Further, the larvae‐fed iodine‐enriched Artemia had higher whole body iodine concentration compared to larvae‐fed Artemia without iodine enrichment.  相似文献   

18.
Two groups of Senegal sole (Solea senegalensis) larvae were cultured. One used rotifers for the first 10 days after hatching (dph) and enriched Artemia metanauplii from 6 to 30 dph and the other without rotifers, using enriched Artemia metanauplii as the sole food source. The quantity of metanauplii used was the same (group A), twice (group A2) and three times (group A3) the quantity of live prey (in dry weight) of the group fed with rotifers (group R). At the end of the experiment, the growth, in terms of total length and individual dry weight was significantly higher for the larvae on group A2 whilst rotifer fed larvae (R) showed the poorest results. Eye migration was also delayed by approximately 2 days in the group R. No significant differences were found in survival rates. The influence of diet on Senegal sole metamorphosis and its relationship with the size rather than the age of the fish are discussed.  相似文献   

19.
Differences in survival and growth rates in seahorse Hippocampus guttulatus juveniles feeding on Artemia sp. or copepods have been related to specific digestive capacities of seahorse newborn, which are capable of actively forage on available prey from the first day of live. Other seahorse species, such as H. abdominalis and H. hippocampus, show high success feeding on Artemia nauplii suggesting species-specific differences in the digestibility of prey among seahorses. In this study, the profiles of digestive enzyme activity during the initial 15 days after release (DAR) were very low for trypsin, chitinase and α-amylase. In contrast, higher activities towards any of the assayed substrates for lipase (butyrate, octanoate and oleate) were evident from 0 DAR onwards. From 15 DAR onwards, the effect of diet composition became evident in juveniles previously fed on a mixed diet (Artemia + copepods), which showed a clear increase in all the assayed enzymes when compared with juveniles fed on Artemia as a sole prey. As a practical applicability of this study, a feeding schedule ensuring an adequate digestibility of the prey is proposed based on ontogenetic enzymatic activities of seahorse juveniles fed on different prey.  相似文献   

20.
The aim of this study was to compare the nutritional composition and effects of short periods with cultivated copepod nauplii versus rotifers in first‐feeding. Atlantic cod (Gadus morhua) and ballan wrasse (Labrus bergylta) larvae were given four different dietary regimes in the earliest start‐feeding period. One group was fed the copepod Acartia tonsa nauplii (Cop), a second fed enriched rotifers (RotMG), a third fed unenriched rotifers (RotChl) and a fourth copepods for the seven first days of feeding and enriched rotifers the rest of the period (Cop7). Cod larvae were fed Artemia sp. between 20 and 40 dph (days posthatching), and ballan wrasse between 36 and 40 dph, with weaning to a formulated diet thereafter. In addition to assessing growth and survival, response to handling stress was measured. This study showed that even short periods of feeding with cultivated copepod nauplii (7 days) had positive long‐term effects on the growth and viability of the fish larvae. At the end of both studies (60 days posthatching), fish larvae fed copepods showed higher survival, better growth and viability than larvae fed rotifers. This underlines the importance of early larval nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号