首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ontogenesis of the alimentary tract and its associated structures (liver, pancreas, gall bladder) was studied histologically in common pandora from hatching (0 DAH, days after hatching) until day 50 (50 DAH). Larvae were obtained by natural spawning from a broodstock adapted to captivity. They were stocked in 1500 l tanks supplied with Isochrysis galbana and Tetraselmis suecica from hatching until the Artemia feeding stage, at a temperature of 18.5–20 °C. Larvae were fed Selco-enriched Brachionus plicatilis from day 3, Artemia nauplii from day 28 and formulated feed from day 35. At hatching, the digestive tract was a histologically undifferentiated straight tube lying dorsally to the yolk sac. At first feeding (3–4 DAH) both the mouth and anus had opened and the digestive tract was differentiated into four portions: buccopharynx, oesophagus, incipient stomach and intestine. The pancreas, liver and gall bladder were also differentiated at this stage. Within 2 days after the commencement of exogenous feeding, the anterior intestinal epithelium showed large vacuoles indicating the capacity for absorption of lipids, whereas supranuclear ninhydrin-Schiff (NS) positive inclusions indicating protein absorption were observed in the posterior intestinal epithelium. Both the bile and main pancreatic ducts had opened in the anterior intestine, just after the pyloric sphincter, at this stage. Intestinal coiling was apparent since 4 DAH, while mucosal folding began at 10 DAH. Scattered PAS-positive mucous cells occurred in the oral cavity and the intestine, while they were largely diffused in the oesophagus. Gastric glands and pyloric caeca appeared at 28 DAH, indicating the transition from larval to juvenile stage and the acquisition of an adult mode of digestion.  相似文献   

2.
The present study provides information on the histomorphological development of digestive system of discus, Symphyosodon spp., larvae during the first month of life. Discus larvae are altricial at hatching, with an undifferentiated digestive tract and a large yolksac, which is completely consumed within 7 days. The mouth opens 3 days after hatching (DAH) and the larvae starts feeding on AF Artemia at 4 DAH when offered. At 3 DAH the digestive tract is differentiated with distinct esophagus, stomach anlage, and mid- and hindguts. At 5 DAH, discus larvae is an active feeder, equipped with partly developed jaws and ossified gill arches and an inflated swim bladder. The liver and pancreas are present and supranuclear inclusion vacuoles (SIV) appear in the hindgut for the first time. Gastric glands in stomach were first observed 7 DAH and proliferated by 11–13 DAH. SIV were a common feature in the midgut and hindgut epithelium until 15–23 DAH. Therefore, exclusive use of artificial diets should be postponed until 2–3 weeks after hatching.  相似文献   

3.
斜带石斑鱼消化系统胚后发育的组织学研究   总被引:25,自引:0,他引:25       下载免费PDF全文
吴金英 《水产学报》2003,27(1):7-12
利用形态学和连续组织切片技术,对出膜后1-60d的斜带石斑鱼各期仔鱼、稚鱼和幼鱼的消化系统进行了光镜观察,描述了其消化器官发育过程和组织学特性。研究表明,实验水温为22.0-27.8℃时,孵化后第4天,上下颌形成,卵黄囊被吸收,消化系统明显分化成食道、胃、肠、直肠以及肝脏、胆囊和胰脏等,鱼体由内源性营养转向外源性摄食营养,表明其消化系统的形态变化与食性的变化相适应。此后随着鱼体的生长,其消化系统从功能和结构上逐步完善成熟。胰脏在出膜后第4天出现,是和肝脏相互分开的一个独立的器官,但是发育到第35-60天,位于肠道后部的胰脏组织内出现许多大空泡。  相似文献   

4.
In this study, the embryonic and larval development stages of one of the most important ornamental fish serpae tetra (Hyphessobrycon eques) are described. The early life stage is documented from fertilization until the beginning of the juvenile period. The fertilized eggs (the average diameter = 938.55 ± 35.20 µm) were incubated at a water temperature of 26 ± 0.5°C. The cleavage finished in 1:10 hr (=h) and the early blastula stage occurred at 1:26 hr post fertilization (hpf). The gastrulation started at 3:05 hpf, and 50% epiboly was observed at 3:25 hpf. Segmentation stage was monitored at 7:26 hpf. Embryonic developmental stage was completed and hatching occurred 20–21 hpf. The total length (TL) of newly hatched larvae was 2.64 ± 0.21 mm. The larval development of serpae tetra was divided into four different periods: Yolk‐sac larva (1–4 DAH, TL = 2.77 ± 0.09 mm ‐ 3.85 ± 0.11 mm), preflexion larva (5–12 DAH), flexion larva (13–15 DAH, TL = 5.78 ± 0.46 mm on the 15th day) and post‐flexion larva (16–30 DAH, TL = 10.7 ± 0.27 mm on the 28th–30th days). The mouth and anus are closed at 1 DAH. The mouth and anus opened at 4 DAH. Exogenous feeding started on the 4th day. The first gulping of the swim bladder was on days 3. The larva begins to swim freely, and the yolk sac was completely consumed at 4 DAH. Histological structures of the eye and brain of new hatched larva were clearly identified at 1 day after hatching (DAH). According to histological findings, the digestive system (stomach, intestine) started to develop and the liver could be seen on the ventral side of the swim bladder at 5 DAH. No histological difference was observed between the anterior intestine and the posterior intestine at 15–16 DAH. The larval metamorphosis was completed, and the larvae transformed into juveniles at 28–30 DAH.  相似文献   

5.
This study on histological and mucous histochemistry characteristics of the digestive system of loach (Misgurnus anguillicaudatus) was carried out from hatching (0 day after hatching, DAH) until 45 DAH. The peculiar development of both digestion processes and air‐breathing functions of the intestine was revealed. At 3 DAH, both the mouth and anus opened along with the first feed. At 4 DAH, lipid vacuoles appeared in the anterior part of the intestine and at 5 DAH the acidophilic supranuclear vacuoles appeared in the posterior part of the intestine. Mucous cells occurred in the buccopharynx and oesophagus after mouth opening and grew both in number and size as larvae grew. At 15 DAH, blood capillaries were found in the posterior part of the intestine. At 20 DAH, as a valve appeared in the intestine, the whole intestine could be divided into anterior, mid and posterior parts. With large numbers of blood capillaries and a very thin wall, a gas–blood barrier formed in the posterior intestine, which indicated that the dual roles of intestine were formed. These results suggested that the air‐breathing function of the digestive tract formed from 15 to 20 DAH, which is a critical period for loach larvae.  相似文献   

6.
This work contributes basic knowledge on larval development of Seriola rivoliana. A histological study describes the development of the digestive tract and accessory glands in S. rivoliana larvae reared under laboratory conditions at 24 °C from hatching to 30 days post-hatching (DPH). At hatching (2.6 ± 0.12 mm), larvae had an undifferentiated digestive tract with a closed straight tube and a large yolk sac with an oil globule. The liver and pancreas were observed at 1 and 2 days, and the mouth and anus opened at day 2. Enriched rotifers were visible in their digestive tract. At the beginning of the pre-flexion stage, a mixed nutritional period was observed. At day 3, exogenous feeding began; the digestive tract became differentiated into the buccopharynx, esophagus, an undifferentiated stomach, and the intestines. Zymogen granules were visible in the exocrine pancreas. At day 4, supranuclear vacuoles were present in the posterior intestine, indicating the beginning of intracellular digestion. At day 5, goblet cells were present in the esophagus and became functional at day 7 in the esophagus and intestine. The buccopharynx goblet cells developed at day 15. The presence of gastric glands and differentiation of the stomach in the fundic, cardiac, and pyloric regions during the post-flexion stage occurred at day 20. This was the onset of the juvenile period and the beginning of weaning; however, a long co-feeding phase is recommended. Pyloric caeca were observed at day 30 (13.6 ± 1.6 mm). These results provide valuable information on S. rivoliana larvae biology and digestive physiology, which should be useful to improve cultivation techniques and identify ecological features involved in ontogeny.  相似文献   

7.
An understanding of the development of the digestive system of marine fish larvae is of critical importance in determining optimal feeding regimes for their culture. The present study provides information on the histomorphological development of the digestive system of clown fish, Amphiprion percula , larvae during the first month of life. Before hatching, clownfish larvae possess an alimentary tract, liver and pancreas with absorptive and digestive capabilities. The yolk sac is completely consumed within 5–7 days at 25 °C. Clownfish larvae readily accept rotifers after hatching and a complete dietary shift from rotifer to Artemia can be accomplished at 10 days after hatch (DAH). Gastric glands in the stomach first develop 11 DAH and proliferate by 15 DAH. Both non-staining vacuoles (NSV) and supranuclear inclusion vesicles (SIV) appear at 11 DAH in the midgut and hindgut respectively. Pinocytosis and extracellular digestion coexist for about 2 weeks after hatching. While SIV disappeared completely at 25 DAH, NSV continued to be a prominent feature of the midgut during the first month.  相似文献   

8.
The ontogeny and differentiation stages of digestive systems related with trypsin expression in larvae of sharpsnout sea bream, Diplodus puntazzo, were investigated from hatching to 40 DAH (days after hatching), and total lengths and weights of larvae were determined. Histologic and enzymatic techniques were used to explain the functional development of the pancreas including trypsin activity. The pancreas was identified as a compact structure located in the region slightly posterior to the liver. At 3 DAH, first anus and then mouth opened. Incipient pancreas secretion polyhedral cells could be first observed as zymogen granules. During larval metamorphosis, the pancreas became diffuse, spreading throughout the mesentery in proximity to the stomach, the anterior intestine and the pyloric caeca. The specific activity of trypsin (42.54 ± 6.8 mU/mg protein−1) was found as early as after hatching at larvae size of 2.87 ± 0.34 mm at 0 DAH. Activity further increased until 10 DAH, especially after exogenous feeding. The highest trypsin activity was detected at 25 DAH as 119.26 ± 11.6 mU/mg protein−1. It is concluded that exocrine pancreas organogenesis is the main critical step in the development of digestive system that results in zymogen granules accumulation and increased trypsin activity.  相似文献   

9.
泥鳅仔稚鱼发育期间消化酶及碱性磷酸酶比活力的变化   总被引:2,自引:0,他引:2  
研究了泥鳅(Misgurnus anguillicaudatus)从孵化至30 DAH(日龄,Days after hatching)几种消化酶及碱性磷酸酶比活力的变化情况。胃蛋白酶直至30 DAH仍未检出活性。而胰蛋白酶表现出较高的比活力,其比活力在初次摄食之后显著上升,6 DAH达到最大值之后开始显著降低(P<0.05)。脂肪酶与淀粉酶的变化模式相似,在内源性营养向外源性营养转变及仔鱼向稚鱼转变这两个时间段出现两个高峰值。碱性磷酸酶比活力在2-6 DAH显著上升(P<0.05),之后开始下降并趋于平稳。研究表明,泥鳅在仔稚鱼阶段只具有结构性的胃而缺乏分泌细胞的分化。2-6 DAH是泥鳅仔鱼肠道功能迅速发育的阶段,也是向成鱼消化模式转变的一个重要过程。脂肪酶和淀粉酶比活力的持续性表明了泥鳅仔鱼对糖类和脂肪有较好的利用能力。  相似文献   

10.
《水生生物资源》2003,16(2):77-89
The histological development of the digestive tract in hatchery-reared green sturgeon (Acipenser medirostris) larvae and the effects of food deprivation on the digestive system organization were studied from hatching until 31 days post-hatching (dph). At hatching, the larval digestive system consisted of two rudiments: a large endodermal yolk sac and a primordial hind-gut. During the endogenous feeding phase, the wall of the yolk sac differentiated into the stomach (glandular and non-glandular regions) and the anterior and intermediate intestine, while the hind-gut primordium differentiated into the spiral valve and rectum. At the onset of exogenous feeding (15 dph at 16 °C), the organization and cytoarchitecture of the digestive system in green sturgeon larvae was generally similar to those of juveniles and adults. Larvae deprived of food exhibited a progressive deterioration, with subtle pathological changes observed after 5-d starvation: shrinkage of digestive epithelia, tissue degeneration, and necrosis were observed at 10–15 d of starvation (30 dph). No changes were observed in the mucous secretion of different regions of the digestive tract of food-deprived larvae. The histological analysis of the larval digestive system may be used to evaluate the nutritional condition of larval green sturgeon in their nursery habitats in spawning rivers, which are affected by dams and flow diversions.  相似文献   

11.
12.
运用组织学切片技术研究四指马鲅(Eleutheronema tetradactylum)出膜后1-30 d(Day after hatching,DAH)仔鱼的消化系统形态和结构的变化.结果显示,在温度29-32℃、盐度25-28、溶氧4.80-5.5 mg/L、pH 8.0-8.3条件下,1 DAH仔鱼消化管尚未分化,由紧贴腹壁和卵黄囊的肠管组成.卵黄囊在3 DAH时完全吸收完毕,仔鱼开口摄食,消化管也与外界相通,此后逐渐分化出食道、胃部和肠道,一定程度上能自主消化吸收食物维持自身生长,逐渐从内源性营养期过渡为外源性营养期.15 DAH时出现幽门盲囊和胃腺,消化道结构和功能成分进一步发育完善,消化能力显著提高,30 DAH仔鱼消化道具备与成体相似的结构和功能.肝脏和胰腺分别在2 DAH和5 DAH时分化,随着仔鱼的生长而快速发育,至30 DAH时具备与成体相似的结构和功能.四指马鲅消化系统的发育表现为结构与功能密切联系且逐渐发育成熟的特点.本研究根据四指马鲅消化系统的发育特点讨论了育苗过程中的三大危险期并提出应对措施.  相似文献   

13.
A histological method was used to describe the ontogenetic development of the digestive tract of laboratory-reared miiuy croaker (Miichthys miiuy) and to evaluate the effects of short-term food deprivation on the morphology and histology of the digestive tract. Larvae and juveniles were maintained at 24 °C in a thermostatically controlled system. Three starvation experiments were conducted during different developmental stages: 1–7 days after hatching (dah; prior to benthic swimming); 26–35 dah (during settling); and 42–53 dah (after benthic swimming). According to the structural changes in the ontogenetic development of the digestive tract, three stages were observed. The first stage was from hatching to 3 dah; the digestive tract was undifferentiated in newly hatched larvae and then showed remarkable morphological changes and differentiation. During this period, larvae depended on endogenous nutrition. The second stage (4–20 dah) was a critical period in which larvae transitioned from endogenous feeding to exogenous feeding and the digestive tract fully differentiated into the buccopharynx, oesophagus, stomach, anterior intestine and posterior intestine. Goblet cells and vacuoles appeared in the digestive tract, and pharyngeal teeth and taste buds developed. During the third stage (20–36 dah), the gastric glands developed and the stomach differentiated into the fundic, cardiac and pyloric regions. At 25 dah, pyloric caeca developed and mucosal folds and spiral valves were clearly distinguishable. After 30 dah, the digestive tract did not undergo any noticeable differentiation, indicating the complete development of the digestive system. The wet weight and SGR (specific growth rate) of miiuy croaker larvae and juveniles greatly decreased when they were deprived of food, and compensatory growth was observed in re-feeding juveniles. The livers of starved larvae and juveniles were atrophied and dark coloured, the intestines were transparent and thin, and the stomach cubages were reduced. The histological effects of starvation were mainly evident in the degeneration of cells in digestive organs, as seen in the shrinkage and separation of cells and the loss of intercellular substances in the liver, pancreas, intestine and stomach. These changes became more severe with increased duration of starvation. In addition, the histological structure of the digestive tracts of starved larvae and juveniles partly recovered after re-feeding, and the effects of starvation on miiuy croaker were age dependent.  相似文献   

14.
In order to assess the digestive physiological capacity of the American shad Alosa sapidissima and to establish feeding protocols that match larval nutritional requirements, we investigated the ontogenesis of digestive enzymes (trypsin, amylase, lipase, pepsin, alkaline phosphatase, and leucine aminopeptidase) in larvae, from hatching to 45 days after hatching (DAH). We found that all of the target enzymes were present at hatching, except pepsin, which indicated an initial ability to digest nutrients and precocious digestive system development. Trypsin rapidly increased to a maximum at 14 DAH. Amylase sharply increased until 10 DAH and exhibited a second increase at 33 DAH, which coincided with the introduction of microdiet at 30 DAH, thereby suggesting that the increase was associated with the microdiet carbohydrate content. Lipase increased until 14 DAH, decreased until 27 DAH, and then increased until 45 DAH. Pepsin was first detected at 27 DAH and then sharply increased until 45 DAH, which suggested the formation of a functional stomach. Both alkaline phosphatase and leucine aminopeptidase markedly increased until 18 DAH, which indicated intestinal maturation. According to our results, we conclude that American shad larvae possess the functional digestive system before mouth opening, and the significant increases in lipase, amylase, pepsin, and intestinal enzyme activities between 27 and 33 DAH suggest that larvae can be successfully weaned onto microdiets around this age.  相似文献   

15.
Ontogenic development of the main enzymes and histological structure of digestive organs were studied in Jullien's golden carp (Probarbus jullieni) from hatching until 50 days after hatching (DAH). The larval fish were produced by artificial insemination and fed only Moina sp. till end of experiment. Body weight (mg) and total length (cm) of Jullien's golden carp increased exponentially and linearly. The results indicate the fish weight grew fast with increasing rate, while length increased at a constant rate over the studied period. Up‐regulation of acid protease was observed in newly hatched larvae and the specific activity gradually decreased with time. Trypsin specific activity was relatively stable within the first 35 DAH, while fluctuations in chymotrypsin were observed. Among these three proteolytic enzymes, acid proteases exihibited relatively high specific activity in newly hatched larvae, suggesting a role in yolk protein degradation. Alkaline proteases became more prominent with age and correlated with an abrupt decrease in acid proteases. Increased lipase‐specific activity appeared within 3 DAH and then gradually decreased with time, indicating the capacity to digest yolk lipid reserve. Amylase and cellulase‐specific activities changed in a similar manner, and the sensitivity to time was higher in amylase than in cellulase. The digestive organs and accessory organs developed around 3–5 DAH. However, intestinal histology was almost fully developed around 18 DAH. These findings should be useful for deciding the preferred timing for weaning, as well as on developing artificial diets referenced to the physiological changes of digestive enzymes.  相似文献   

16.
The development of digestive enzymes was examined in laboratory-reared yellowtail kingfish larvae from hatching to 36 days after hatching (DAH). The specific activities of amylase, lipase, and alkaline phosphatase showed three distinct phases: a sharp increase in enzyme activity from hatching to the onset of exogenous feeding on 3 DAH, followed by a fluctuation and a general decline toward 18 DAH, and then a period of low activity from 18 to 36 DAH. The total activities of these three enzymes showed a gradual increase from hatching to 18 DAH, followed by a sharp increase toward 36 DAH. In contrast to other enzymes, the specific and total activities of trypsin reached the maximum on 15 DAH and 24 DAH, respectively, and then both activities declined to low levels toward 36 DAH. The dynamics of digestive enzymes corresponded to the anatomical development of the digestive system. The enzyme activities tend to be stable after the formation of gastric glands in the stomach on 15 DAH. The composition of digestive enzymes indicates that yellowtail kingfish is able to digest protein, lipid and carbohydrates at an early stage. However, due to the low level of amylase specific activity after 18 DAH, the carbohydrate component should remain at a low level in formulated diets for fish larvae.  相似文献   

17.
Histological development of the digestive tract and specific activities of three digestive enzymes (trypsin, alkaline phosphatase, and pepsin) were studied in rock bream Oplegnathus fasciatus from hatching to 50 days after hatching (DAH). At hatching, the digestive tract appeared as an undifferentiated straight tube and differentiated into the buccopharynx, esophagus, stomach, intestine, and rectum at mouth opening by 3 DAH. The taste bud and mandibular teeth were present in the buccopharyx at 8 DAH. The goblet cells appeared in the esophagus at 8 DAH and in the buccopharyx at 9 DAH. The stomach anlage was formed at 2 DAH and developed into cardia, fundus, and pylorus at 14 DAH. The gastric glands were visible at 16 DAH, and the pepsin was firstly detected on 22 DAH. At 2 DAH, the intestinal valve appeared and divided the intestine into anterior intestine (AI) and posterior intestine (PI). The rectum was differentiated from the PI at 3 DAH. The supranuclear vacuoles were visible in the rectum by 6 DAH, and the lipid inclusions were present in the AI at 8 DAH. The alkaline phosphatase was detected at 1 DAH, and the increase in its activity indicated the maturation of the intestine after 40 DAH. The hepatocytes and pancreatic cells were differentiated from the blast cells at 2 DAH, and the acidophilic zymogen granules in the exocrine pancreas were observed simultaneously. The trypsin was detected by 1 DAH and increased to the maximum at 19 DAH, followed by a decrease as the stomach became functional.  相似文献   

18.
Squaliobarbus curriculus is an economically important freshwater fish. The ontogenetic development of the digestive system of S. curriculus larvae was studied histologically and enzymatically from hatching to 30 days posthatching (DPH). Amylase, lipase, alkaline phosphatase and pepsin activities were detected from the hatching stage, indicating that these enzymes were genetically preprogrammed. Marked increases in intestinal amylase, trypsin and alkaline phosphatase activities between 10 and 20 DPH corresponded to feed acquisition and transformation. Larval development in S. curriculus could be divided into three phases: phase I (endotrophic period): 1–3 DPH; phase II (endo‐exotrophic period): 4–5 DPH; and phase III (exclusively exotrophic period): from 6 DPH onward. At hatching, the digestive tract of the larvae was an undifferentiated straight tube. On 3 DPH, the digestive tract differentiated into the mouth cavity, oesophagus and intestine. On 6 DPH, feeding was totally exotrophic and the yolk sac was completely exhausted. During the growth of S. curriculus larvae, the intestinal mucosa formed and the number of goblet cells and microvilli increased, demonstrating maturation of the digestive system. The study about the digestive development of S. curriculus larvae will contribute to better larval‐rearing strategies.  相似文献   

19.
The consolidation of meagre (Argyrosomus regius) in aquaculture requires an understanding and optimization of larval rearing and nutritional conditions. The aim of this study was to analyse the effects of an early introduction of inert diets during larval rearing, on growth performance, digestive enzymes activity and development of skeletal anomalies. This study evaluated the effects of three different timings for the introduction of inert diet during larval rearing: a control group (CTRL) where inert diet was initiated at 14 days after hatching (DAH) and two treatment groups that had an earlier introduction of inert diet at 8 DAH (T1) and 11 DAH (T2). Meagre larvae exhibited similar pancreatic and intestinal enzymatic activities among the different dietary treatments. No differences in the overall prevalence of anomalies were observed between treatments at 25 or 50 DAH, however, a significant reduction was observed in all groups with the transition from larval to juvenile stage. The precocious introduction of inert diet shifted the distribution of vertebral anomalies to a more anterior vertebral column region. Altogether, this study shows that earlier introduction of inert diets in meagre hatcheries can be beneficial for meagre production in aquaculture.  相似文献   

20.
We describe digestive enzyme activity during the larval development of spotted rose snapper, Lutjanus guttatus. Trypsin, chymotrypsin, leucine aminopeptidase, pepsin, amylase, lipase, and acid and alkaline phosphatase activities were evaluated using spectrophotometric techniques from hatching through 30 days. The spotted rose snapper larvae present the same pattern of digestive enzyme activity previously reported for other species in which pancreatic (i.e., trypsin, chymotrypsin, amylase, and lipase) and intestinal (i.e., acid and alkaline phosphatases and leucine aminopeptidase) enzymatic activities are present from hatching allowing the larvae to digest and absorb nutrients in the yolk-sac and live prey by the time of first feeding. The digestive and absorption capacity of the spotted rose snapper increases during the larval development. A significant increase in individual activity of all enzymes occurs at 20 DAH, and around 25 DAH, the juvenile-type of digestion is observed with the appearance of pepsin secreted by the stomach, suggesting that maturation of the digestive function occurs around 20–25 DAH. Our results are in agreement with a previous suggestion that early weaning may be possible from 20 DAH. However, the patterns of enzymatic activities reported in our study should be considered during the formulation of an artificial diet for early weaning of the spotted rose snapper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号