首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous research showed that stocking 1.5 rohu (Labeo rohita) and 0.5 common carp (Cyprinus carpio) m−2 yields the highest production in small holder ponds in Bangladesh. The present study looked into the effects of additional stocking of Nile tilapia (Oreochromis nilotica) in fed or non‐fed ponds on water quality and fish production. A low, additional stocking density of 0.2 Nile tilapia m−2 was tested. All treatments were executed in triplicate in 100 m2 ponds and the duration of the experiment was 4.5 months. The results showed that tilapia addition increased nutrient concentrations and reduced total suspended solid concentration and phytoplankton biomass (P<0.05). Tilapia stocking resulted in additional production without affecting the growth and production of rohu and common carp. Supplemental feeding increased the nitrogen and phosphorus concentrations, phytoplankton availability and the growth and production of rohu and common carp (P<0.01). The combination of supplemental feeding and tilapia stocking resulted in a higher net yield than the other treatments (P<0.05). Stocking 1.5 rohu, 0.5 common carp and 0.2 tilapia m−2 in fed‐ponds is a good culture combination for polyculture farmers in South Asia.  相似文献   

2.
The effects of different densities of caged Nile tilapia, Oreochromis niloticus, on water quality, phytoplankton populations, prawn, and total pond production were evaluated in freshwater prawn, Macrobrachium rosenbergii, production ponds. The experiment consisted of three treatments with three 0.04‐ha replicates each. All ponds were stocked with graded, nursed juvenile prawn (0.9 ± 0.6 g) at 69,000/ha. Control (CTL) ponds contained only prawns. Low‐density polyculture (LDP) ponds also contained two cages (1 m3; 100 fish/cage) of monosex male tilapia (115.6 ± 22 g), and high‐density polyculture (HDP) ponds had four cages. Total culture period was 106 d for tilapia and 114 d for prawn. Overall mean afternoon pH level was significantly lower (P ≤ 0.05) in polyculture ponds than in CTL ponds but did not differ (P > 0.05) between LDP and HDP. Phytoplankton biovolume was reduced in polyculture treatments. Tilapia in the LDP treatment had significantly higher (P ≤ 0.05) harvest weights than in the HDP treatment. Prawn weights were higher (P ≤ 0.05) in polyculture than prawn monoculture. These data indicate that a caged tilapia/freshwater prawn polyculture system may provide pH control while maximizing pond resources in temperate areas.  相似文献   

3.
Recovering nutrients in a fish effluent to be used as a supplemental feed for shrimp culture could ease constraints (e.g., environmental issues and high production cost) that have limited the US shrimp farming industry in the past. In this study under laboratory scale conditions, fish effluent was collected from a commercial tilapia farm and nutrients from the waste stream were offered as supplemental feed as either (1) untreated solids from tilapia effluent or (2) microbial flocs generated from the biological treatment of the effluent by reducing soluble chemical oxygen demand >80%. The first feeding trial demonstrated that microbial flocs contributed significantly (P < 0.05) to overall growth while untreated solids did not. Moreover, microbial flocs were larger and contained higher levels (P < 0.05) of protein. The second feeding trial investigated different feeding rates of commercial diets with and without microbial floc supplementation. Weekly measurements of mass and specific growth rates demonstrated that microbial flocs significantly (P < 0.05) contributed to shrimp performance. Weekly food conversion ratios were also reported. Water quality in shrimp systems during both studies was within safe levels, and no differences (P > 0.05) between treatments were observed for dissolved oxygen, nitrate‐nitrogen, nitrite‐nitrogen, pH, salinity, total ammonia nitrogen, and temperature.  相似文献   

4.
Intensive, recirculating aquaculture systems create concentrated wastes high in solid content. Geotextile has successfully dewatered aquaculture effluent; however, burlap, made from natural plant fiber, may provide similar filtering capabilities at a lower cost. The trial was designed as a 2 × 2 factorial to evaluate burlap bags and geotextile bags with or without polymer addition for dewatering Nile tilapia, Oreochromis niloticus, effluent from an intensive biofloc production system. There were no significant interactions (P > 0.05) between the main effects on the removal efficiency of total suspended solids (TSS) concentration. There were no significant differences (P > 0.05) in the main effect of textile; however, there were significant differences (P≤ 0.001) in the main effect of polymer on the removal efficiency of TSS concentration from effluent. Overall, TSS removal efficiency in textile‐only treatments was 81%, whereas textile treatments in combination with polymer removed 98%. Partial budget analysis indicated that the cost per kilogram of solids (dry weight) removed from untreated effluent was US$1.52, 1.51, 0.16, and 0.14 for the geotextile with polymer (GP), geotextile without polymer (GNP), burlap with polymer (BP), and burlap without polymer (BNP) treatments, respectively. The BP could provide an effective treatment process for removing TSS in discharged effluent.  相似文献   

5.
To date, most aquaponic research has been conducted outdoors in tropical climates or in greenhouses in subtropical climates. For more northerly latitudes, aquaponic production will require supplemental light in greenhouses or insulated buildings. Two separate 3‐wk growth trials were conducted to evaluate the effects of four different lighting technologies on the growth of Swiss chard, Beta vulgaris (Trial 1) and kale, Brassica oleracea (Trial 2) in aquaponic systems. Light technologies evaluated included fluorescent (FLO), metal halide (MH), induction (IND), and light‐emitting diode (LED). Four 1175‐L systems were used with all four light types represented in each system in a complete block design. Juvenile Nile tilapia, Oreochromis niloticus (241 g) were stocked in each system and fed a floating 32% protein diet at a rate of 60 g/m2 of plant grow space per day. In Trial 1, Swiss chard plants grown under LED lights for 3 wk achieved significantly higher (P ≤ 0.05) average individual weights (117.7 g), higher production per unit of area (3535 g/m2), and higher production per unit of energy (32.3 g/m2/kwh) than Swiss chard grown under the other three light types, which did not differ significantly (P > 0.05) from each other. In Trial 2, kale grown under LED lights achieved significantly higher (P ≤ 0.05) average individual weights (102.9 g), higher production per unit of area (2136.6 g/m), and higher production per unit of energy (381.5 g/m2/kwh) than kale grown under the other three light types, which did not differ significantly (P > 0.05). The results of the two trials are in agreement and indicate that LED lights were superior to MH, FLO, and IND lights in terms of absolute plant growth as well as growth per unit of energy consumed.  相似文献   

6.

The aim of this study was to investigate the possibility of improving the growth and physiological indices of plant and fish by adding different levels of ascorbic acid (vitamin C) to water in the aquaponic system using Nile tilapia (Oreochromis niloticus) and saffron plant (Crocus sativus). 240# fish (12.5?±?0.21 gr) and 120# saffron corms (2.8?±?0.12 gr) were randomly assigned to 15 experimental units and underwent treatments of adding 0 (control), 2, 4, 6, and 8 mg L?1 ascorbic acid to water, every 6 days, for 8 weeks. The fish final weight and subsequently other growth performance indices increased in the treatment of 4 mg L?1 vitamin C compared to other treatments (P?≤?0.05). Some growth performances of saffron plants such as saffron production, in treatment of 6 mg L?1, were significantly higher than the control group and reached from 17.34?±?0.27 mg flower?1 in the control group to 25.4?±?1.61 mg flower?1 in treatment of 6 mg L?1. Measuring the serum biochemical parameters of the fish showed that, in the treatment of 8 mg/L ascorbic acid, the cortisol content in the blood reached its maximum (21.49?±?2.42 µg dL?1). The trypsin activity in proximal intestine and mid-intestine significantly increased in treatments of 2, 4, and 6 mg L?1, respectively. The current experiment showed that, by adding 4–6 mg/L ascorbic acid to the aquaponic system water (every 6 days), the optimal levels of Nile tilapia and saffron plant growth performances would occur.

  相似文献   

7.
An experiment was conducted in earthen ponds at the Asian Institute of Technology, Thailand to determine different phosphorus fertilizer dose effects on Nile tilapia production, water quality variables, nutrient utilization and cost‐benefit under supplemental feeding. Five phosphorus fertilization rates were used as treatments e.g. 100%, 75%, 50%, 25% and 0% of 7 kg P ha week?1. Nitrogen fertilization rate was fixed at 28 kg N ha week?1 for all the treatments. Sex‐reversed Nile tilapia were stocked at 3 fish m?2, and 30% CP floating feed fed at 50% satiation feeding rate. Nutrient budget showed higher phosphorus fertilizer input resulted in higher phosphorus sink in the sediment. Mean weight, mean weight gain, daily weight gain and net yield were not significantly different among treatments (P > 0.05). Total Kjeldahl nitrogen, total phosphorus and soluble reactive phosphorus were significantly different among treatments. Economic analysis showed phosphorus fertilization resulted in positive net returns. Though the gross income was not affected by different fertilization rates, significantly lowest cost was found in the treatment using 25% phosphorus fertilizer. It can be concluded from the research that 25% phosphorus fertilization might be used as an alternative strategy of Nile tilapia pond culture in terms of economic return and nutrient loss in sediment.  相似文献   

8.
Aquaponics has been considered as having great potential as an organic production method of aquatic organisms and vegetables, because the nutrient-rich water from aquatic organisms is utilized for plant growth. The essential elements of an aquaponic system consist of the following five: a tank to maintain aquatic organisms; a clarifier or sedimentation; a biofilter; a hydroponic component; and a sump pump. In this paper, we propose the design and implementation of a nutrient film technique-type aquaponic system, which does not include the sump pump. Aquaponic systems were tested during one production cycle of the Carolina cucumber (Cucumis sativus) and Parris Island lettuce (Lactuca sativa). The aquatic organism employed was tilapia (Oreochromis niloticus). Nine systems were utilized with the aquaponic technique, and the remaining three were utilized with only the hydroponic technique as controls in plant production. The proposed aquaponic system worked efficiently during the entire crop cycle without any problems or deficiencies from lack sump. No changes were made in the flow of water in the aquaponic system during the growing season. Tilapia survival was 97.2 ± 2.4 %. Specific growth and food conversion ratios were 4.95 and 0.99, respectively. In plant survival, there were no significant differences (p > 0.05) between both production techniques. In lettuce, foliar wet weight, foliar dry weight, and yield were higher (p < 0.05) in hydroponics. In cucumber, fruit number and yield were higher (p < 0.05) in the hydroponic system. Fruit length, width, and weight exhibited no differences (p > 0.05).  相似文献   

9.
The present research investigated the effect of stocking density on pond (75 m2, depth 1.2 m) production of Nile tilapia (Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) stocked at a fixed 3:1 tilapia:prawn ratio. Three stocking densities were tried in triplicate: 20 000 ha−1 (treatment TP‐20), 30 000 ha−1 (TP‐30) and 40 000 ha−1 (TP‐40). The ponds were provided with bamboo as substrate for periphyton development. Bamboo poles (mean diameter 5.5 cm and 5.0 poles m−2) were posted vertically into pond bottoms, resulting in 60% additional substrate area in each pond. On average, 43 genera of algae and 17 genera of zooplankton were identified from pond water, whereas 42 genera of algae and six genera of microfauna were attached to bamboo substrates. No differences were observed between treatments in the ash‐free dry matter (AFDM), chlorophyll a and phaeophytin a content of periphyton (P>0.05). Survival of tilapia and prawn and individual weight gain of tilapia were lower (P<0.05) in treatment TP‐40. The net yields were higher (P<0.05) in treatments TP‐30 (2209 and 163 kg ha−1 105 day−1 of tilapia and prawn respectively) and TP‐40 (2162 and 141 kg ha−1 of tilapia and prawn respectively) than in treatment TP‐20 (1505 and 136 kg ha−1 of tilapia and prawn respectively). The net tilapia yields were quadratic correlated (R2=0.92) with fish stocking density. The cost–benefit analysis shows that the net profit margin was highest in treatment TP‐30 (69%), followed by TP‐20 (50%) and TP‐40 (44%).  相似文献   

10.
The effects of open‐water and caged fish density on growth, feed utilization, water quality and profitability were investigated to assess the feasibility of a small‐scale rotational system for production of Oreochromis niloticus (L.) in fertilized ponds. Hand‐sexed male fingerlings averaging 18.6 and 29.9 g were stocked in open water and cages, respectively in four treatments with open‐pond:caged tilapia ratios of 300:0 (control), 150:150 (L), 300:150 (H1) and 300:300 (H2). The ponds in L and H1 contained one cage, two cages in H2, and the control ponds had no cages. Each cage contained 150 fish, which were fed daily at 1.5% body weight for 125 days. All fish in the open water except the control fish were not fed. Growth of open water tilapia was significantly (P<0.05) higher in L than in control. Feed utilization, dawn DO and economic returns were significantly better (P<0.05) in caged than control ponds. Growth of tilapia in L was significantly lower (P<0.05) in cages than in open water. Fingerling production was significantly lower (P<0.05) in L than in other treatments. In conclusion, cage‐cum‐open‐pond integrated treatment (L) was optimal for O. niloticus production in fertilized ponds. However, the system could not rotate and needed further fine‐tuning to rotate.  相似文献   

11.
Five pond management strategies for Nile tilapia Oreochromis niloticus L. production were evaluated in 0.1‐ha earthen ponds in Egypt during a 145‐day production cycle. Pond management strategies developed by the Pond Dynamics/Aquaculture Collaborative Research Support Programme (PD/A CRSP) were compared with a traditional and a modified Egyptian pond management strategy. Young‐of‐year Nile (mixed‐sex or sex‐reversed) tilapia were stocked into ponds at 20 000 fish ha?1. Sex‐reversed tilapia were stocked into chemical fertilization, organic fertilization plus formulated feed and feed only treatment ponds, whereas mixed‐sex tilapia were stocked into organic fertilization plus formulated feed and chemical plus organic fertilization plus formulated feed treatment ponds. Nile tilapia yields ranged from 1274 to 2929 kg ha?1. Nile tilapia yields in organic fertilization plus formulated feed treatments were significantly greater than the yield from chemical fertilization ponds. PD/A CRSP pond management strategies did not produce significantly greater Nile tilapia yields than the traditional Egyptian system, but a larger percentage of harvested tilapia in the organic fertilization plus feed treatments were classified in the first and second class size categories compared with the traditional Egyptian system. Organic fertilization plus formulated feed pond management strategies had the highest net returns, average rate of return on capital and the highest margin between average price and break‐even prices to cover total variable costs or total costs.  相似文献   

12.
ABSTRACT

Fish cage culture is an intensive, continuous-flow fish farming system, allowing intensive exploitation of water bodies with relatively low capital investment. This study aimed to determine the production function of Nile tilapia, Oreochromis niloticus, in cages; the profit-maximizing biomass at 300–400 and 500–600 fish per m3 for cages of different volumes; and the influence of water body conditions in fish performance. Feed intake, survival rate, and water temperature were monitored daily; dissolved oxygen, pH, and transparency of water were monitored each 15 days. Caged tilapia were fed daily on commercial, floating pellets (32% crude protein) at 0900, 1300, and 1700, and feeding rate was adjusted based on weight gain and survival rate. Data were analyzed statistically by ANOVA (P = 0.05) and regression analysis; the Mitscherlich function was chosen to represent the production function. Carrying capacity of both stocking densities reached 200 kg/m3 and no differences were found (P > 0.05) regarding accumulated biomass and individual average weight over time. The larger stocking density yielded larger accumulated biomass and had better feeding efficiency and no differences between individual average weights of fish at both densities were observed (P > 0.05). Profit-maximizing biomass at 500–600 fish/m3 was 145 kg/m3 and at 300–400 fish/m3 was 121 kg/m3. Cage farming of Nile tilapia at 500–600 fish/m3, individual average weight 283 g, presented many advantages: optimization of space and production time, better feed efficiency, higher fish production per unit volume of cages, and increased profitability.  相似文献   

13.
The effect of different dietary oil sources on the innate immunity and resistance of Nile tilapia, Oreochromis niloticus, to Streptococcus agalactiae infection were evaluated. Fish were fed with diets containing different lipid sources (soybean oil [SO], corn oil, linseed oil [LO], fish oil [FO], and olive oil [OO]). Fish fed SO presented the highest (P < 0.05) hematocrit and serum protein. LO and FO diets increased (P < 0.05) the erythrocyte resistance to osmotic lysis in comparison with other treatments. Fish fed OO showed the highest (P < 0.05) iron‐binding capacity and the lowest serum lysozyme and bactericidal activities (P < 0.05). No difference (P > 0.05) was found between diets in alternative complement activity. Fish fed the SO diet had the highest (P < 0.05) survival rate against S. agalactiae challenge. In conclusion, diets with LO oil and FO, rich in ω‐3 fatty acids, and OO, rich in ω‐9 fatty acids, have an immunomodulatory effect in Nile tilapia juveniles. The use of SO in the Nile tilapia diet improved immune function and resistance against S. agalactiae.  相似文献   

14.
Mushroom stalk waste (MSW) generated from the oyster mushroom industry is drastically increasing and safe disposal of MSW is becoming a critical issue worldwide. Mushrooms are an established, excellent source of nutraceuticals and antioxidants, and therefore MSW may confer similar effects when consumed. The severe deterioration of aquatic habitat may compromise the homoeostasis of antioxidative metabolism of Nile tilapia, Oreochromis niloticus, which resulted in a reduced total production. Based on this paradigm, hot water extracts (HWE, 2‐ and 5‐h) of MSW were evaluated as a supplement in fish feed and determined the effect on growth performance and the antioxidant status of Nile tilapia, O. niloticus, in vivo. The HWE 5‐h contained significantly higher amounts of nutrient and β‐glucan than HWE 2‐h (P < 0.05). Four standardized in vitro antioxidant assays showed that HWE 5‐h was a better antioxidant agent than HWE 2‐h (P < 0.05). Tilapia fingerlings fed 5 g kg?1 HWE supplemented feed produced better (P < 0.05) growth and higher antioxidant enzyme activities than 10 g kg?1 HWE, CD and BD. Thus, HWE of MSW included at 5 g kg?1 may be beneficial to tilapia farming and may also provide a way of disposing the waste created by mushroom farming.  相似文献   

15.
Abstract.— A 12‐wk feeding trial was conducted in cages with juvenile Nile tilapia Oreochromis niloticus to evaluate distillers grains with solubles (DDGS) as a direct feed, the effects of pelleting on its utilization, and the compatibility of caged tilapia and prawns in polyculture. Nine 1.0‐m3 cages were stocked with 200 juvenile (26 ± 0.9 g) tilapia. Cages were suspended in a 0.2‐ha pond stocked with juvenile freshwater prawns Macrobrachium rosenbergii at 40,000/ha. Three replicate cages were randomly assigned to each dietary treatment. In one dietary treatment DDGS was fed as an unpelleted loose grain ration (26% protein). In a second dietary treatment fish were fed DDGS that had been steam‐pelleted (23% protein). Fish in a third dietary treatment were fed a commercial catfish diet (31% protein) for comparison. After 12 wk, individual weight, individual length, and specific growth rate were significantly higher (P < 0.05) and feed conversion ratio was significantly lower (P < 0.05) for fish fed the commercial catfish diet than for fish fed either unpelleted or pelleted DDGS. Specific growth rate was significantly higher (P < 0.05) for fish fed pelleted DDGS than for fish fed unpelleted DDGS. Survival did not differ significantly (P > 0.05) among treatments (>95%). Although growth was increased in fish fed the commercial diet, their cost of production (<0.66/kg gain) was significantly higher (P < 0.05) than in fish fed unpelleted and pelleted DDGS (<0.26/ kg gain and <0.37/kg gain, respectively). The costs of gain in fish fed unpelleted DDGS was significantly lower (P < 0.05) than in fish fed the pelleted DDGS. Prawn production was 1,449 kg/ha and addition of tilapia in polyculture increased total pond productivity approximately 81 %. These data suggest that DDGS provides economical growth in tilapia when fed as a direct feed and that polyculture of tilapia may improve overall pond efficiency in freshwater prawn production ponds, even at temperate latitudes.  相似文献   

16.
Abstract

β-hydroxy-b-methylbutyrate (HMB), a leucine catabolite, has been shown to cause increased disease resistance and growth in animal production. A vaccine produced from formalin killed bacteria and concentrated extracellular products of the ARS-98-60 Streptococcus iniae isolate has been used for the prevention of streptococcal disease in Nile tilapia, Oreochromis niloticus. In the present study, the effects of feeding HMB were determined in tilapia vaccinated by intraperitoneal (IP) injection of the S. iniaevaccine or unvaccinated (controls). Nile tilapia were fed diets containing either 0, 12.5, 25, or 50 mg HMB/kg diet for 14 days. The mean daily growth rate and feed efficiency showed no significant (P> 0.05) differences between the treatment groups. Dietary HMB supplementation did not enhance antibody production in unvacci-nated Nile tilapia following challenge. Dietary HMB supplementation did not enhance the survival of vaccinated Nile tilapia following challenge injection with 1 X108 CFU of S. iniae.  相似文献   

17.
Two experiments (E1 and E2) to assess the performance of tilapia broodstock and tilapia sex‐reversed fry in overwintering were conducted at the Research Institute for Aquaculture No.1 (RIA‐1) in the cold seasons of 1995–96 and 1996–97. Nile tilapia Oreochromis niloticus (L.) broodstock of the Thai, GIFT, Egypt and Viet strains were overwintered in deep and shallow ponds, as well as in deep and shallow hapas suspended in a single deep pond for evaluation of the influence of overwintering systems on the survival and growth of fish. Large (> 1 g) and small (< 1 g) tilapia seed were overwintered in deep hapas‐in‐ponds for comparison of their performance. In 1995–96, the coldest pond water temperature was 10–11 °C, and survival of tilapia broodfish overwintered in deep and shallow hapas‐in‐ponds was 99.6–100%. This was significantly (P < 0.05) higher than fish stocked in deep and shallow ponds (74.4–90%). The survival rate of larger monosex tilapia fry was 54%, which was significantly (P < 0.05) higher than that of smaller fry (33.4%). In 1996–97, the lowest pond water temperature was 15.8 °C, and fry showed similarly high survival rates in all treatments (97–100%). There was no significant difference between fry in the two size classes. The results of this study clearly indicate that hapas‐in‐ponds are useful for reducing the risk and improving the survival of tilapia broodstock and fry in the cold season. Differences in the decline in ambient temperatures year on year mean that the need for special overwintering conditions varies. Hapas‐in‐ponds are a low‐cost overwintering method that can be one of the appropriate strategies for tilapia seed production under the variable, cool temperature regimes in northern Vietnam.  相似文献   

18.
This study determined the growth performance and acquired resistance of Nile tilapia, Oreochromis niloticus (L.) that survived Streptococcus iniae infection. Tilapia were challenged with three doses of S. iniae (8.8 × 103, 8.8 × 104 and 8.8 × 105 CFU fish?1 for low, medium and high challenges respectively). Groups of non‐injected and tryptic soy broth‐injected fish were maintained as controls. Significantly (P<0.05) higher mortality (45.0%) occurred in the high challenge treatment than in the low challenge treatment group (29.6%). The medium challenge group had mortality (36.3%) that did not differ significantly from the high or low treatment. Few fish died in the non‐injected and broth‐injected treatments (3.4% and 0.8% respectively). The tilapia that survived S. iniae infection used to assess growth performance were selected from survivors without gross clinical signs of disease. These fish were randomly stocked at a rate of 30 fish into each 57 L aquarium in triplicate and fed to apparent satiation for 8 weeks. No significant differences were detected in weight gain, feed intake, feed efficiency ratio or survival between S. iniae‐survived tilapia and the control treatments following the 8‐week growth performance trial. Following the 8‐week feeding study, tilapia were challenged with 1 × 106 CFU fish?1 of S. iniae to assess acquired immunity. Mean cumulative mortality was significantly higher (P<0.05) in the control treatments (41.7% for the non‐injected and 43.3% for the broth‐injected fish) than in the low, medium and high challenge treatments (7.4%, 3.3% and 8.3% respectively). Serum protein was significantly (P<0.05) elevated in the S. iniae‐survived tilapia that were subsequently challenged when compared with controls challenged for the first time. Agglutinating antibody titre was significantly higher in the fish in the medium and high challenge treatments, compared with the control fish challenged for the first time. The results suggest tilapia that survive S. iniae challenge without showing overt disease signs performed as well as non‐infected tilapia. Further, the S. iniae‐survived tilapia challenged following the 8‐week growth performance trial gained acquired resistance to homologous S. iniae challenge.  相似文献   

19.
Cage‐pond integration system is a new model for enhancing productivity of pond aquaculture system. A field trial was conducted using African catfish (Clarias gariepinus) and Nile tilapia (Oreochromis niloticus) in cages and carps in earthen ponds. There were four treatments replicated five times: (1) carps in ponds without cage, (2) tilapia at 30 fish m?3 in cage and carps in open pond, (3) catfish at 100 fish m?3 in cage and carps in open pond, (4) tilapia and catfish at 30 and 100 fish m?3, respectively, in separate cages and carps in open pond. The carps were stocked at 1 fish m?2. The cage occupied about 3% of the pond area. The caged tilapia and catfish were fed and the control ponds were fertilized. Results showed that the combined extrapolated net yield was significantly higher (P < 0.05) in the catfish, tilapia and carps integration system (9.4 ± 1.6 t ha?1 year?1) than in the carp polyculture (3.3 ± 0.7 t ha?1 year?1). The net return from the tilapia and carps (6860 US$ ha?1 year?1) and catfish, tilapia and carps integration systems (6668 US$ ha?1 year?1) was significantly higher than in the carp polyculture (1709 US$ ha?1 year?1) (P < 0.05). This experiment demonstrated that the cage‐pond integration of African catfish and Nile tilapia with carps is the best technology to increase production; whereas integration of tilapia and carp for profitability.  相似文献   

20.
This experiment was conducted to evaluate the seminal characteristics of Nile tilapia males exposed to water‐borne 17α,20β‐dihydroxy‐4‐pregnen‐3‐one (17,20βP). Male Nile tilapia (Oreochromis niloticus L.) were exposed to the steroidal pre‐ovulatory pheromone 17,20βP, added to water at a concentration of 5×10?9 M. The pheromone‐exposed males had higher sperm volume and concentration. In addition, the spermatozoa contained in the sperm had higher motility and the motility duration was longer than ethanol‐exposed males (control group). The percentage of live spermatozoa was not affected by the treatments. Our results suggest that this pheromone can improve sperm quality characteristics and could become a non‐invasive method for enhancing spawning in Nile tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号