首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The knowledge on the critical crop-weed competition period is important for designing an efficient weed management program. Field studies were conducted in 2012 and 2013 at the Agricultural Research Institute, Kahramanmaras, Turkey to determine the effects of three row spacing (50, 70 and 90 cm) on the critical period for weed control (CPWC) in cotton. A four parameter logistic equation was fit to data relating relative crop yield to both increasing duration of weed interference and length of weed-free period. The relative yield of cotton was influenced by the duration of weed-infested or weed-free period, regardless of row spacing. In cotton grown at 50 cm row spacing, the CPWC ranged from 117–526 growing degree days (GDD) (V2–V11 growth stages) in 2012 and 124–508 GDD (V2–V10) in 2013 based on the 5% acceptable yield loss level. At 70 cm row spacing, the CPWC ranged from 98–661 GDD in 2012 (V2–V13) and 144–616 GDD (V2–V12) in 2013. At 90 cm row spacing, the CPWC ranged from 80–771 GDD in 2012 (V1–V14) and 83–755 GDD (V1–V14) in 2013. In order to obtain a 95% weed-free yield, the weed management should start at 16 days after crop emergence (DAE) and continued until 52 DAE (V2–V11) for crops grown in 50 cm row spacing, 15 and 60 DAE (V2–V13) for 70 cm row spacing and 11 and 67 DAE (V1–V14) for crops grown in 90 cm row spacing. This suggests that cotton grown in narrow row spacing (50 cm) had greater competiveness against weeds compared with wider row spacing (70 and 90 cm). Cotton growers can benefit from these results by improving cost of weed control through better timing of weed management.  相似文献   

2.
The critical period of weed competition was determined in three vegetable crops: early cabbage (Brassica oleracea var. capitata L.), pickling cucumbers (Cucumis sativus L.), and field-seeded processing tomatoes (Lycopersicon esculentum L.). There were significant interactions between weed-removal treatments, year, and row width. Cabbage yields were reduced if plots were not kept weed-free for at least 3 weeks after transplanting or if weeds which emerged with the crop were allowed to remain longer than 4–5 weeks, Cucumber yields were reduced if plots were not kept weed-free for up to 4 weeks after seeding or if plots remained weed-infested longer than 3–4 weeks. Higher crop population densities (narrower row widths) in cabbage and cucumbers resulted in smaller plants, earlier competition from weeds, and therefore a shorter period that the crop could remain weed-infested without suffering reduced yields. Yields of direct-seeded tomatoes were reduced if plots were not kept weed-free for up to 9 weeks after seeding or if weeds which emerged with the crop were allowed to remain longer than 5 weeks. In each crop the timing of the critical period of competition was verified by weed removal only during this interval. There was a true critical period in direct-seeded tomatoes, but not in cabbage or cucumbers where a single weeding was sufficient to prevent yield losses.  相似文献   

3.
Early growth and nutrient content of crops and weeds from weed-free and weedy no-tillage maize (Zea mays L, cv. TZB), cowpea (Vigna unguiculata (L) Walp. cv. VITA-5) and maize/cowpea intercrop at populations of 40000, 50000 and 30000 + 40000 plants ha?1 grown on a loamysand Oxic Ustropept in a subhumid tropical location were monitored in the early and late 1979 cropping seasons. In the first 6 weeks of growth in the early season, cropping pattern had no effect on weed growth; weeds did not suppress crop growth significantly until 5–6 weeks after sowing and total crop dry weights were not affected by cropping pattern. Three weeks after sowing, weeds from weedy crop plots had taken up two to four times as much nutrient (N, P, K, Ca + Mg) as was taken up by corresponding weed-free crops. In the late season, weed dry weight 6 weeks after sowing was depressed in the intercrop compared to monocultures and dry-matter production of the intercrop was higher than those of monocultures. The resource use index (RUI), defined as the amount of an environmental resource used by a weed-free crop divided by the combined amount of the same resource used by the corresponding weedy crop and the associated weeds, increased with age of crop and was higher for the intercrop than the monocultures only in the late season.  相似文献   

4.
Critical periods of weed competition in cotton in Greece   总被引:1,自引:0,他引:1  
Four experiments were conducted in central Greece during 1997 and 1998 to determine the late-season presence of weeds in cotton (Gossypium hirsutum L.) and the critical times for removing weeds. Experiments were conducted in natural, heavily infested cropland. The presence of weeds for more than 3 weeks after crop emergence caused significant reductions in crop growth and lint yields. However, weeds that emerged 11 weeks or more after crop emergence did not adversely impact yields. Total weed biomass increased with increasing time prior to weed removal. A weed-free period of 11 weeks after crop emergence was needed to prevent significant reductions in cotton height, biomass, number of squares, and yield. These results indicated that postemergence herbicides or other control measures should be initiated within 2 weeks after crop emergence to avoid significant yield reduction. For greater efficiency, soil-applied herbicides in cotton should provide effective weed control for at least 11 weeks. Curvilinear regression equations were derived to describe the relationship between critical periods of weed presence and cotton growth and fruit development.  相似文献   

5.
B Bukun 《Weed Research》2004,44(5):404-412
Field studies were conducted over 4 years in south‐eastern Turkey in 1999–2002 to establish the critical period for weed control (CPWC). This is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. A quantitative series of treatments of both increasing duration of weed interference and of the weed‐free period were applied. The beginning and end of CPWC were based on 5% acceptable yield loss levels which were determined by fitting logistic and Gompertz equations to relative yield data representing increasing duration of weed interference and weed‐free period, estimated as growing degree days (GDD). Total weed dry weight increased with increasing time prior to weed removal. Cotton heights were reduced by prolonged delays in weed removal in all treatments in all 4 years. The beginning of CPWC ranged from 100 to 159 GDD, and the end from 1006 to 1174 GDD, depending on the weed species present and their densities. Practical implications of this study are that herbicides (pre‐emergence residual or post‐emergence), or other weed control methods should be used in Turkey to eliminate weeds from 1–2 weeks post‐crop emergence up to 11–12 weeks. Such an approach would keep yield loss levels below 5%.  相似文献   

6.
Summary Field experiments were conducted from 1991 to 1993 to determine the critical period of weed control in chilli pepper. The maximum weed-infested period ranged between 0.7 and 3.2 weeks after transplanting (WAT) at a 5% yield loss level. To prevent losses in total and marketable yields, weeds should be removed 2.1 or 0.9 WAT respectively. The end of the critical period decreased as the predetermined yield loss level increased from 2.5% to 10%. The minimum weed-free period ranged between 6.7 and 15.3 WAT at a 5% yield loss level depending on crop yield category. The chilli pepper crop required an average of 12.2 weeks of weed-free maintenance to avoid losses above 5%. Using a 5% yield loss level, the duration of the critical period of weed control was 14 weeks in 1991 and 11.2 weeks in 1993, but was shortened to 5.1 weeks in 1992. The results suggest that weeds must be controlled during the first half of the crop's growing season in order to prevent yield losses.  相似文献   

7.
Competition between annual weeds and vining peas (Pisum sativum L.) at five target population densities between 11 and 194 plants/m2 was examined by means of periodic destructive sampling of weedy and weed-free plots. A further area of each plot was cut and vined to assess yields. Weeds impaired vegetative development, particularly by reducing tillering in low density crops. This resulted in weedy plots having fewer pods per plant at harvest but a lower proportion of flat pods than weed-free plots. Weeds had no effect on numbers or weights of peas in full pods nor on tenderometer values of samples of vined peas. Adverse effects of weeds on the growth of individual crop plants decreased with increasing crop density. However, at lower crop densities many of the additional pods on weed-free plots contributed little to vined yield, while at higher densities, direct or indirect effects of weeds increased the problem of maintaining sufficient photosynthetic area during pod swelling to prevent pod abscission and poor ovule development. Regression analysis of yield on crop density and of yield on numbers of pods per plant showed that vined yield per hectare was reduced by weeds by a constant amount across the range of densities and numbers of pods examined. Vining throughput was also reduced in weedy as compared with weed-free crops, even on high density plots where little or no weed vegetation remained at harvest. In general, weed presence had effects similar to those caused by increasing crop density, but without the additional contribution to yield made by extra plants. Higher density crops suppressed weeds very effectively but were no less vulnerable to yield loss than those of lower density; they therefore merit just as much attention to effective weed control as crops suffering more visibly from competition by weeds.  相似文献   

8.
Planning effective weed control in cropping systems requires exact appraisal of the weed intensity and duration of their competition with the crops. This 2‐year study was carried out in order to determine the critical weed control period in sesame fields. Related and relative crop yields were monitored and analyzed using a four‐parametric log‐logistic model. We recorded data from weed‐free plots and compared these with data from different periods of weed interference. In both the study years, the longer period of weed interference decreased the relative yield of sesame, whereas the yield was increased with increasing duration of the weed‐free period. A 51–78.7% decline in sesame yield was noted if the weeds were allowed to compete with the crop from planting to harvest. In the first year, the duration of the critical period for weed control (CPWC) was 177–820 growing degree days (GDD), which corresponded to 14–64 days after crop emergence (DAE), and between 170 and 837 GDD (13–64 DAE) in the second year; this was based on a 5% acceptable yield loss. The results of this study clearly elaborated that maintaining weed‐free conditions is compulsory from as early as the second week after the emergence of sesame plants, and this should be maintained at least until the ninth week to avoid sesame yield losses by more than 5%. These findings show that growers can benefit from CPWC to improve weed control in sesame production, including the efficacy of a weed control program and its cost.  相似文献   

9.
Weeds are a major constraint to increasing production of lentil (Lens culinaris Medik.) in Sudan, Field studies were conducted to determine the yield loss due to weeds, to identify the critical period of weed interference, to evaluate the activity of different herbicide mixtures in controlting weeds and their selectivity for lentil, and to evaluate different methods of weed control for developing an integrated weed management practice. At Rubatab. unrestricted weed growth accounted for up to 84% loss in yield. The critical period of weed control was between 2 and 4 weeks after sowing. However, a weeding regime experiment at Dongola, a cooler location with a longer growing season, indicated that the critical period was between 4 and 6 weeks after sowing. suggesting that the critical period might vary with the environmental conditions. The herbicides imazethapyr (0.05 kg a.i. ha-1), terbutryn (1.0 kg a.i. ha-1) and prometryn (1.0 kg a.i. ha-1), each in a tank mixture with pendimethalin (1.2 kg a.i. ha-1), were tolerated by lentil, controlled weeds effectively and significantly increased yields at Wad Hamid. Their efficacy in controlling weeds at Rubatab was low, however, because of the presence of Tephrosia apollinea (Del.) DC. and Melilotus indica (L.) All., which tolerated these herbicides. Efficacy was also reduced in heavier soils. One supplementary hand-weeding at 4 weeks after sowing enhanced the performance of these herbicides under such conditions. A tank mixture of oxyfluorfen (0.24 kg a.i. ha-1) with either terbutryn (1.0 kg a.i. ha-1) or prometryn (1.0 kg a.i. ha-1) also provided good weed control and increased yield of lentil at Wad Hamid. Application of a higher dose (1.5 kg a.i. ha-1) of terbutryn and prometryn caused phytotoxicity. Irrigation before seed-bed preparation reduced grass and broad-leaved weeds by 58% and 40% respectively, and gave a 30% increase in grain yield over no irrigation. Pre-emergence application of oxyfluorfen (0.24 kg a.i. ha-1) and a supplementary hand-weeding at 4 weeks after sowing gave excellent control of weeds and increased lentil yield by 57% over the weedy control. Thus, use of presowing irrigation, pre-emergence herbicide and one hand-weeding form an effective integrated package for controiling weeds in northern Sudan.  相似文献   

10.
The critical period of weed interference in one variety of chickpea was determined in field experiments carried out at two sites, Tabriz 2002 and Kermanshah 2003, Iran. Chickpea culture was either kept free of weeds for 0, 12, 24, 36, 48 and 60 days after crop emergence (DAE) or weeds were allowed to grow for 0, 12, 24, 36, 48 and 60 DAE. In these experiments, chickpea yield increased with increasing duration of weed-free period and was reduced by increasing duration of weed-infested period. Unweeded conditions for the entire growing season caused 66.4% and 48.3% seed yield reduction when compared with the treatment that was weed-free throughout the growing season, at Tabriz 2002 and Kermanshah 2003, respectively. The results indicated that chickpea must be kept weed-free between the five-leaf and full flowering stages (24–48 DAE) and from the four-leaf to beginning of flowering stages (17–49 DAE) at the two sites, respectively, in order to prevent >10% seed yield loss. At both sites, reduction in seed yield, because of the increased weed interference period, was accompanied by simultaneous reduction in plant dry weight, number of branches, pods per plant and 100-seed weight. This was supported by significant and positive correlations between these traits and chickpea seed yield. There was no significant correlation between the number of seeds per pod and seed yield. A linear regression model was used to describe the relationship between weed dry weight and seed yield loss.  相似文献   

11.
The climbing growth habit of white yam (Dioscorea rotundata) coupled with its inability to shade the ground completely at any stage of its growth and development makes it very susceptible to weed interference. The critical period of weed interference in white yam was between the 8th and 16th week after planting (w.a.p.) for yam planted at the onset of rains. Keeping yam plants weedy for 16 w.a.p. or beyond significantly reduced tuber yield; keeping them weed-free for the same period resulted in a significant increase in tuber yield. A minimum of three weedings within 16 w.a.p. are necessary to minimize yield reduction caused by weeds. The lowest weed weight and highest crop yield from herbicide treatments were obtained where a mixture of fluometuron and metolachlor each at 2.0 kg a.i./ha was used for pre-emergence weed control.  相似文献   

12.
江苏省移栽油菜田杂草防治阈期研究   总被引:4,自引:0,他引:4  
综合多点试验,建立移栽油菜栽后有草或无草天数与油菜产量损失率之间的函数关系,研究了江苏省油菜田杂草的防治阈期。结果表明:油菜栽后有草天数(x)与油菜产量损失率(y)之间符合方程y=26.09/(1 43.35e^-0.0417x),栽后无草天数(x)与油菜产量损失率(y)之间符合方程y=0.00001 26.52e^-0.0227x。江苏省油菜田杂草的防治阈期约为栽后41-96d,相当于油菜全生育期的19.5%-45.7%,油菜处于7-9叶期,此前田间杂草的发生量占总量的90%左右。在此阈期内保持田间无草,既能保证杂草造成的减产率低于3%,又能充分发挥杂草在田间生态系统中所起的积极作用。  相似文献   

13.
Direct seeded red pepper is a cash crop in Kahramanmara? province of Turkey as well as some other nearby provinces. Weeds are a major constraint in red pepper production. Field studies were conducted to determine critical period for weed control (CPWC) in direct seeded spice pepper in Kahramanmara?, in 2008 and 2009. The CPWC in red pepper based on a 2.5%, 5% and 10% acceptable yield loss (AYL) was calculated by fitting logistic and Gompertz equations to relative yield data. The CPWC in red pepper was determined from 0 to 1087 growing degree days (GDD) in 2008 and from 109 to 796 GDD in 2009 for 10% AYL after crop emergence in red pepper. For 2.5–5% AYL, the CPWC starts with germination and lasts until harvest. Direct seeded red pepper is very vulnerable to weed competition and weed control programs for direct seeded spice pepper in Turkey should include pre‐emergence and residual herbicides.  相似文献   

14.
耕作方式对夏玉米地杂草关键无草期的影响   总被引:1,自引:0,他引:1  
在河北省夏玉米地调查了免耕地和常规翻耕地条件下杂草出苗和发生的情况,比较了这两种耕作方式的关键无草期。免耕地杂草出苗较常规耕地略有延后,但很快便趋于一致,两种耕作方式下杂草结束出苗的时间没有区别。耕作方式对夏玉米地关键无草期没有影响,在免耕和翻耕两种耕作方式下,玉米相对产量(RY)和苗后无草期(T)的模型为:RY=98.93×exp[-0.1439×exp(-0.04031×T)],关键无草期均为玉米苗后31d。  相似文献   

15.
In Northern Europe, inter-row hoeing has become a popular tactic for controlling weeds in organic cereals. Hoeing is highly effective and can be implemented from crop emergence until stem elongation to maintain a nearly weed-free inter-row zone. However, hoeing has a lesser effect on weeds growing in the intra-row zone, where crop–weed proximity results in heightened competition. In the hoed cereal system, it is investigated whether tall-growing, competitive, cruciferous weeds in the intra-row zone affect crop biomass, yield and thousand kernel weight (TKW). An additive experimental design is employed to enable the fitting of rectangular hyperbolas, describing and quantifying the effects of increasing intra-row surrogate weed density on crop growth parameters. Regressions were studied under the influence of crop (spring barley and spring wheat), row spacing (narrow [12.5 or 15.0 cm] and wide [25.0 cm]) and nitrogen rate (50 and 100 kg NH4-N/ha). Cruciferous surrogate weeds were found to impact crop yield and quality severely. For example, ten intra-row plants/m2 of surrogate weed Sinapis alba reduced grains yields by 7%–14% in spring barley and by 7%–32% in spring wheat with yield losses becoming markedly greater in wheat compared to barley as weed density increases. Compared to wheat, barley limited yield and quality losses and suppressed intra-row weed growth more. Row spacing did not have a consistent effect on crop or weed parameters; in one of six experiments, the 25 cm row spacing reduced yields and increased intra-row weed biomass in wheat. Nitrogen rate did not affect crop or weed parameters. Results warrant the implementation of additional tactics to control intra-row weeds and limit crop losses.  相似文献   

16.
The effects of crop genotype and sowing time on competition between safflower (Carthamus tinctorius L.) and weeds were investigated in a 2-year field study. Each year, safflower was grown as a pure stand and in mixture with a natural weed infestation, mostly represented by Polygonum aviculare L., Fallopia convolvulus (L.) A. Löve and Chenopodium album L., in an additive design including weed stands grown without the crop. Grain yield reduction ranged from about 50% to 80% depending on crop genotype, and was higher under spring sowing (mid-March) than under winter sowing (mid-February). In general, those genotypes incurring the least yield reduction gave the greatest suppression of weed biomass. More competitive genotypes also tended to reduce the proportion of C. album in the weed biomass at harvest, particularly in 1994 (the wetter growing season). The competitive ability of the crop was mainly correlated with its biomass at early growth stages, but was not related to its grain-yielding ability in the absence of weeds. Results showed that more competitive crops may be obtained by sowing the most competitive genotypes early. Selecting for higher competitive ability in safflower does not seem to imply a reduction in grain-yielding ability.  相似文献   

17.
A. BERTI  M. SATTIN 《Weed Research》1996,36(3):249-258
The importance of the position of weeds with respect to crop rows in the determination of crop yield-weed density relationships and the usefulness of relative cover (RC) of the weeds as an explanatory variable were studied in soyabean [Glycine max (L.) Merrill] competing with two summer weeds with contrasting canopy structure (Xanthium strumarium L. ssp. italicum and Echinochloa crus-galli L.). The position of the weeds was of little importance in the relationship between yield loss and weed density. This information is important because published experiments have used different types of weed distribution (e.g. evenly distributed or sown in rows). For both weed species it was possible to obtain a single relationship between yield loss and RC for measurements made from 30 days after crop emergence to soyabean canopy closure. The competitive effect of the weeds appeared to be strictly related to RC, indicating that for weeds growing taller than the crop the main competitive factor may be the shading caused by the leaves of the weeds situated above the crop canopy.  相似文献   

18.
In direct-seeded upland rice (Oryza sativa L.) yield reductions due to weed competition ranged from 42 to 65% in field experiments conducted in eastern Utter Pradash, India. The most critical period, when crop losses due to weed competition were most severe, ranged from 10 to 20 days after emergence. Yields generally continued to increase, however, as the length of the weed-free period increased. The weed flora consisted of various grasses, sedges and broadleaved species. The most effective herbicide treatment evaluated was a pre-emergence application of alachlor followed by a post-emergence application of propanil or one mechanical weeding.  相似文献   

19.
J PETERSEN 《Weed Research》2005,45(2):103-113
The changes in weed:crop competition as affected by the interaction of slurry distribution pattern with crop sowing pattern was examined, using the parameters dry matter (DM) production, nitrogen (N) uptake and recovery of applied N in spring wheat and weeds. Pig slurry enriched with isotopic nitrogen (15N) was applied either fully incorporated or in concentrated bands. The two slurry distribution patterns were combined with either crop density or distance between the slurry band and seed row. Spring wheat and weeds were sampled separately seven times during the season. A high and fast crop recovery of applied N coincident with a low recovery in weeds may be obtained by at least three management elements: sowing the crop with a high seed density, sowing the crop row close to the band-applied slurry N, and early sowing. The effects on crop DM, N-uptake and 15N recovery of a high crop density and a narrow distance between the slurry band and crop row appear clearly at the beginning of the spring wheat elongation phase. For weeds the effects were most pronounced for 15N recovery, and using DM as the only response variable may cause insignificant results. However, methods for N application may be part of a strategy controlling weeds, but to obtain satisfactory weed control the N management needs to be supplemented with chemical or mechanical weed management.  相似文献   

20.
A new simple empirical model for early prediction of crop losses by weed competition was introduced. This model relates yield loss to relative leaf area of the weeds shortly after crop emergence using the relative damage coefficient q as the single model parameter. The model is derived from the hyperbolic yield density relationship and therefore accounts for the effects of weed density. It is shown that the model also accounts for the effect of different relative times of weed emergence. A strong advantage of the approach is that it can be used when weeds emerge in separate flushes. The regression model described experimental data on sugar-beet – lambsquarters (Beta vulgaris L. –Chenopodium album L.) and maize-barnyard grass (Zea mays L. –Echinochloa crus-galli L.) competition precisely. The model describes a single relationship between crop yield loss and relative leaf area of the weeds over a wide range of weed densities and relative times of weed emergence. Possibilities for scientific and practical application of the model are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号