首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
OBJECTIVE: To characterize the pharmacokinetics of zidovudine (AZT) in cats. ANIMALS: 6 sexually intact 9-month-old barrier-reared domestic shorthair cats. PROCEDURE: Cats were randomly alloted into 3 groups, and zidovudine (25 mg/kg) was administered i.v., intragastrically (i.g.), and p.o. in a 3-way crossover study design with 2-week washout periods between experiments. Plasma samples were collected for 12 hours after drug administration, and zidovudine concentrations were determined by high-performance liquid chromatography. Maximum plasma concentrations (Cmax), time to reach Cmax (Tmax), and bioavailability were compared between i.g. and p.o. routes. Area under the curve (AUC) and terminal phase half-life (t(1/2)) among the 3 administration routes were also compared. RESULTS: Plasma concentrations of zidovudine declined rapidly with t(1/2) of 1.4 +/- 0.19 hours, 1.4 +/- 0.16 hours, and 1.5 +/- 0.28 hours after i.v., i.g., and p.o. administration, respectively. Total body clearance and steady-state volume of distribution were 0.41 +/- 0.10 L/h/kg and 0.82 +/- 0.15 L/kg, respectively. Mean Tmax for i.g. administration (0.22 hours) was significantly shorter than Tmax for p.o. administration (0.67 hours). The AUC after i.v. and p.o. administration was 64.7 +/- 16.6 mg x h/L and 60.5 +/- 17.0 mg x h/L, respectively, whereas AUC for the i.g. route was significantly less at 42.5 +/- 9.41 mg x h/L. Zidovudine was well absorbed after i.g. and p.o. administration with bioavailability values of 70 +/- 24% and 95 +/- 23%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Cats had slower clearance of zidovudine, compared with other species. Plasma concentrations of zidovudine were maintained above the minimum effective concentration for inhibiting FIV replication by 50% (0.07 microM [0.019 microg/mL] for wild-type FIV clinical isolate) for at least 12 hours after i.v., i.g., or p.o. administration.  相似文献   

2.
OBJECTIVE: To determine pharmacokinetics of single and multiple doses of rimantadine hydrochloride in horses and to evaluate prophylactic efficacy of rimantadine in influenza virus-infected horses. ANIMALS: 5 clinically normal horses and 8 horses seronegative to influenza A. PROCEDURE: Horses were given rimantadine (7 mg/kg of body weight, i.v., once; 15 mg/kg, p.o., once; 30 mg/kg, p.o., once; and 30 mg/kg, p.o., q 12 h for 4 days) to determine disposition kinetics. Efficacy in induced infections was determined in horses seronegative to influenza virus A2. Rimantadine was administered (30 mg/kg, p.o., q 12 h for 7 days) beginning 12 hours before challenge-exposure to the virus. RESULTS: Estimated mean peak plasma concentration of rimantadine after i.v. administration was 2.0 micrograms/ml, volume of distribution (mean +/- SD) at steady-state (Vdss) was 7.1 +/- 1.7 L/kg, plasma clearance after i.v. administration was 51 +/- 7 ml/min/kg, and beta-phase half-life was 2.0 +/- 0.4 hours. Oral administration of 15 mg of rimantadine/kg yielded peak plasma concentrations of < 50 ng/ml after 3 hours; a single oral administration of 30 mg/kg yielded mean peak plasma concentrations of 500 ng/ml with mean bioavailability (F) of 25%, beta-phase half-life of 2.2 +/- 0.3 hours, and clearance of 340 +/- 255 ml/min/kg. Multiple doses of rimantadine provided steady-state concentrations in plasma with peak and trough concentrations (mean +/- SEM) of 811 +/- 97 and 161 +/- 12 ng/ml, respectively. Rimantadine used prophylactically for induced influenza virus A2 infection was associated with significant decreases in rectal temperature and lung sounds. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of rimantadine to horses can safely ameliorate clinical signs of influenza virus infection.  相似文献   

3.
The pharmacokinetics of florfenicol and its active metabolite florfenicol amine were investigated in rabbits after a single intravenous (i.v.) and oral (p.o.) administration of florfenicol at 20 mg/kg bodyweight. The plasma concentrations of florfenicol and florfenicol amine were determined simultaneously by an LC/MS method. After i.v. injection, the terminal half-life (t(1/2lambdaz)), steady-state volume of distribution, total body clearance and mean residence time of florfenicol were 0.90 +/- 0.20 h, 0.94 +/- 0.19 L/kg, 0.63 +/- 0.06 L/h/kg and 1.50 +/- 0.34 h respectively. The peak concentrations (C(max)) of florfenicol (7.96 +/- 2.75 microg/mL) after p.o. administration were observed at 0.90 +/- 0.38 h. The t(1/2lambdaz) and p.o. bioavailability of florfenicol were 1.42 +/- 0.56 h and 76.23 +/- 12.02% respectively. Florfenicol amine was detected in all rabbits after i.v. and p.o. administration. After i.v. and p.o. administration of florfenicol, the observed Cmax values of florfenicol amine (5.06 +/- 1.79 and 3.38 +/- 0.97 microg/mL) were reached at 0.88 +/- 0.78 and 2.10 +/- 1.08 h respectively. Florfenicol amine was eliminated with an elimination half-life of 1.84 +/- 0.17 and 2.35 +/- 0.94 h after i.v. and p.o. administration respectively.  相似文献   

4.
The pharmacokinetics of enrofloxacin administered orally and i.v. to American alligators (Alligator mississippiensis) at 5 mg/kg was determined. Plasma levels of enrofloxacin and its metabolite ciprofloxacin were measured using high-performance liquid chromatography and the resulting concentration versus time curve analyzed using compartmental modeling techniques for the i.v. data and noncompartmental modeling techniques for the oral data. A two-compartment model best represented the i.v. data. Intravenous administration of enrofloxacin resulted in an extrapolated mean plasma concentration of 4.19 +/- 4.23 microg/ml at time zero, with average plasma drug levels remaining above 1.0 microg/ml for an average of 36 hr. Plasma volume of distribution for i.v. enrofloxacin was 1.88 +/- 0.96 L/kg, with a harmonic mean elimination half-life of 21.05 hr and mean total body clearance rate of 0.047 +/- 0.021 L/hr/kg. Plasma levels of p.o. enrofloxacin remained below 1.0 microg/ml in all test animals, and average concentrations ranged from 0.08 to 0.50 microg/ml throughout the sampling period. Oral administration of enrofloxacin achieved a mean maximum plasma concentration of 0.50 +/- 0.27 microg/ml at 55 +/- 29 hr after administration, with a harmonic mean terminal elimination half-life of 77.73 hr. Minimal levels of ciprofloxacin were detected after both oral and i.v. enrofloxacin administration, with concentrations below minimum inhibitory concentrations for most susceptible organisms. On the basis of the results of this study, enrofloxacin administered to American alligators at 5 mg/kg i.v. q 36 hr is expected to maintain plasma concentrations that approximate the minimum inhibitory concentration for susceptible organisms (0.5 microg/ml). Enrofloxacin administered to American alligators at 5 mg/kg p.o. is not expected to achieve minimum inhibitory values for susceptible organisms.  相似文献   

5.
The pharmacokinetic properties and bioavailability of cyclooxygenase (COX)-2 selective nonsteroidal anti-inflammatory drug nimesulide were investigated in female goats following intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 4 mg/kg BW. Blood samples were collected by jugular venipuncture at predetermined times after drug administration. Plasma concentrations of nimesulide were determined by a validated high-performance liquid chromatography method. Plasma concentration-time data were subjected to compartmental analysis and pharmacokinetic parameters for nimesulide after i.v. and i.m. administration were calculated according to two- and one-compartment open models respectively. Following i.v. administration, a rapid distribution phase was followed by the slower elimination phase. The half-lives during the distribution phase (t1/2alpha) and terminal elimination phase (t1/2beta) were 0.11+/-0.10 and 7.99+/-2.23 h respectively. The steady-state volume of distribution (Vd(ss)), total body clearance (ClB) and mean residence time (MRT) of nimesulide were 0.64+/-0.13 L/kg, 0.06+/-0.02 L/h/kg and 11.72+/-3.42 h respectively. After i.m. administration, maximum plasma concentration (Cmax) of nimesulide was 2.83+/-1.11 microg/mL attained at 3.6+/-0.89 h (tmax). Plasma drug levels were detectable up to 72 h. Following i.m. injection, the t1/2beta and MRT of nimesulide were 1.63 and 1.73 times longer, respectively, than the i.v. administration. The bioavailability of nimesulide was 68.25% after i.m. administration at 4 mg/kg BW. These pharmacokinetic data suggest that nimesulide given intramuscularly may be useful in the treatment of inflammatory disease conditions in goats.  相似文献   

6.
Biological availability and pharmacokinetic properties of tylosin were determined in broiler chickens after oral (p.o.) and intravenous (i.v.) administration at a dose of 10 mg/kg. The calculated bioavailability--F%, by comparing AUC values--p.o. and AUC--i.v., ranged from 30%-34%. After intravenous injection tylosin was rapidly distributed in the organism, showing elimination half-life (t1/2 beta) values of 0.52 h and distribution volume (Vd) of 0.69 L/kg, at a clearance rate (Cl) of 5.30 +/- 0.59 ml/min/kg. After oral administration, tylosin has a similar distribution volume (Vd = 0.85 L/kg), while the elimination half-life t1/2 beta of 2.07 h was four times bigger than after i.v. administration at Cl = 4.40 +/- 0.27 ml/min/kg. The obtained value tmax = 1.5 h for tylosin after oral administration indicates that using this antibiotic with drinking water in broiler chickens is the method of choice. However, a relatively low value Cmax = 1.2 micrograms/ml after oral administration of tylosin shows that dosing of this antibiotic in broiler chickens should be higher than in other food producing animals.  相似文献   

7.
The pharmacokinetics and bioavailability of trimethoprim-sulfamethoxazole (TMP-SMX) were studied in six healthy male-castrate alpacas (Lama pacos) after intravenous (i.v.) or oral (p.o.) drug administration of 15 mg/kg TMP-SMX using a crossover design with a 2-week washout period. After 90 days one group (n = 3) was given a p.o. dose of 30 mg/kg TMP-SMX and the other group (n = 3) was given a p.o. dose of 60 mg/kg TMP-SMX. After i.v. administration of 15 mg/kg of TMP-SMX the mean initial plasma concentration (C0) was 10.75 +/- 2.12 microg/mL for trimethoprim (TMP) and 158.3 +/- 189.3 microg/mL for sulfamethoxazole (SMX). Elimination half-lives were 0.74 +/- 0.1 h for TMP and 2.2 +/- 0.6 h for SMX. The mean residence times were 1.45 +/- 0.72 h for TMP and 2.8 +/- 0.6 h for SMX. The areas under the respective concentration vs. time curves (AUC) were 2.49 +/- 1.62 microg h/mL for TMP and 124 +/- 60 microg h/mL for SMX. Total clearance (Clt) for TMP was 21.63 +/- 9.85 and 1.90 +/- 0.77 mL/min kg for SMX. The volume of distribution at steady state was 2.32 +/- 1.15 L/kg for TMP and 0.35 +/- 0.09 L/kg for SMX. After intragastric administration of 15, 30 and 60 mg/kg the peak concentration (Cmax) of SMX were 1.9 +/- 0.8, 2.6 +/- 0.4 and 2.8 +/- 0.7 microg/mL, respectively. The AUC was 9.1 +/- 5, 25.9 +/- 3.3 and 39.1 +/- 4.1 microg h/mL, respectively. Based upon these AUC values and correcting for dose, the respective bioavailabilities were 7.7, 10.5 and 7.94%. Trimethoprim was not detected in plasma after intragastric administration. These data demonstrate that therapeutic concentrations of TMP-SMX are not achieved after p.o. administration to alpacas.  相似文献   

8.
Enrofloxacin was administered i.v. to five adult mares at a dose of 5 mg/kg. After administration, blood and endometrial biopsy samples were collected at regular intervals for 24 h. The plasma and tissue samples were analyzed for enrofloxacin and the metabolite ciprofloxacin by high-pressure liquid chromatography. In plasma, enrofloxacin had a terminal half-life (t(1/2)), volume of distribution (area method), and systemic clearance of 6.7 +/- 2.9 h, 1.9 +/- 0.4 L/kg, and 3.7 +/- 1.4 mL/kg/min, respectively. Ciprofloxacin had a maximum plasma concentration (Cmax) of 0.28 +/- 0.09 microg/mL. In endometrial tissue, the enrofloxacin Cmax was 1.7 +/- 0.5 microg/g, and the t(1/2) was 7.8 +/- 3.7 h. Ciprofloxacin Cmax in tissues was 0.15 +/- 0.04 microg/g and the t(1/2) was 5.2 +/- 2.0 h. The tissue:plasma enrofloxacin concentration ratios (w/w:w/v) were 0.175 +/- 0.08 and 0.47 +/- 0.06 for Cmax and AUC, respectively. For ciprofloxacin, these values were 0.55 +/- 0.13 and 0.58 +/- 0.31, respectively. We concluded that plasma concentrations achieved after 5 mg/kg i.v. are high enough to meet surrogate markers for antibacterial activity (Cmax:MIC ratio, and AUC:MIC ratio) considered effective for most susceptible gram-negative bacteria. Endometrial tissue concentrations taken from the mares after dosing showed that enrofloxacin and ciprofloxacin both penetrate this tissue adequately after systemic administration and would attain concentrations high enough in the tissue fluids to treat infections of the endometrium caused by susceptible bacteria.  相似文献   

9.
Enrofloxacin was given to broiler chickens, 3 groups of 6 birds each, at a dose of 5 mg/kg. Routes of administration were intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) and blood samples were collected from the jugular vein for determination of serum drug levels over a 54-hour period after administration. Drug levels were determined using Bacillus subtilis spore suspension on Meuller-Hinton antibiotic medium. Intravenous administration produced drug levels which followed a bi-exponential decay according to the model C = 101e(-1.84(t)) + 1.30e(-0.06(t)). After i.m. administration, the mean Cmax observed (2.01 microg/mL) occurred at 1 h and levels were detected for up to 48 h. The mean time to maximum concentration (Tmax) for the birds occurred at 0.79 h. The model describing serum concentrations after i.m. administration was C = 1.35e(-0.48(t)) + 1.27e(-0.07(t)) - 2.06e(-2.1(t)). Serum concentrations after oral administration were lower and the mean +/- standard error of mean, of the maximum concentrations (Cmax) was 0.99 microg/mL at 2 h after administration. The mean residence times after the 3 routes of administration were not significantly different and ranged from 12.5-13.7 h. Bioavailability by the oral route was 80.1%. Dialysis of chicken plasma vs saline indicated that the protein binding was 22.7%.  相似文献   

10.
OBJECTIVE: To evaluate disposition of butorphanol after i.v. and i.m. administration, effects on physiologic variables, and analgesic efficacy after i.m. administration in llamas. DESIGN: Nonrandomized crossover study. ANIMALS: 6 healthy adult male llamas. PROCEDURE: Butorphanol (0.1 mg/kg [0.045 mg/lb] of body weight) was administered i.m. first and i.v. 1 month later. Blood samples were collected intermittently for 24 hours after administration. Plasma butorphanol versus time curves were subjected to pharmacokinetic analysis. Two months later, butorphanol (0.1 mg/kg) was administered i.m., and physiologic variables and analgesia were assessed. RESULTS: Extrapolated peak plasma concentrations after i.v. and i.m. administration were 94.8 +/- 53.1 and 34.3 +/- 11.6 ng/ml, respectively. Volume of distribution at steady state after i.v. administration was 0.822 +/- 0.329 L/kg per minute and systemic clearance was 0.050 +/- 0.014 L/kg per minute. Slope of the elimination phase was significantly different, and elimination half-life was significantly shorter after i.v. (15.9 +/- 9.1 minutes) versus i.m. (66.8 +/- 13.5 minutes) administration. Bioavailability was 110 +/- 49% after i.m. administration. Heart rate decreased and rectal temperature increased. Somatic analgesia was increased for various periods. Two llamas became transiently sedated, and 2 became transiently excited after butorphanol administration. CONCLUSIONS AND CLINICAL RELEVANCE: Although i.v. administration of butorphanol results in a short half-life that may limit its analgesic usefulness, the elimination half-life of butorphanol administered i.m. is likely to be clinically useful. The relationship among plasma butorphanol concentration, time, and analgesia differed with the somatic analgesia model; clinically useful analgesia may occur at lower plasma concentrations than those reported here.  相似文献   

11.
The aim of this investigation was to examine the pharmacokinetics and mammary excretion of erythromycin administered to lactating ewes (n = 6) by the intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) routes at a dosage of 10 mg/kg. Blood and milk samples were collected at pre-determined times, and a microbiological assay method was used to measure erythromycin concentrations in serum and milk. The concentration-time data were analysed by compartmental and non-compartmental kinetic methods. The serum concentration-time data of erythromycin were fit to a two-compartment model after i.v. administration and a one-compartment model with first-order absorption after i.m. and s.c. administration. The elimination half-life (t(1/2beta)) was 4.502 +/- 1.487 h after i.v. administration, 4.874 +/- 0.296 h after i.m. administration and 6.536 +/- 0.151 h after s.c. administration. The clearance value (Cl tot) after i.v. dosing was 1.292 +/- 0.121 l/h/kg. After i.m. and s.c. administration, observed peak erthyromycin concentrations (Cmax) of 0.918 +/- 0.092 microg/ml and 0.787 +/- 0.010 microg/ml were achieved at 0.75 and 1.0 h (Tmax) respectively. The bioavailability obtained after i.m. and s.c. administration was 91.178 +/- 10.232% and 104.573 +/- 9.028% respectively. Erythromycin penetration from blood to milk was quick for all the routes of administration, and the high AUC milk/AUC serum (1.186, 1.057 and 1.108) and Cmax-milk/Cmax-serum ratios reached following i.v., i.m. and s.c. administration, respectively, indicated an extensive penetration of erythromycin into the milk.  相似文献   

12.
This study investigated the pharmacokinetic behaviour of difloxacin following a single intravenous (i.v.) bolus and intramuscular (i.m.) administration of 5 mg/kg body weight (bw) to rabbits (n = 6). Plasma concentrations were determined in triplicate by agar plate diffusion using E. coli (ATCC 25922) as the test organism. Difloxacin was assayed in plasma to determine its concentrations, kinetic behaviour and systemic availability. Plasma concentration-time data generated in the present study were analysed by non-compartmental methods based on statistical moment theory. Difloxacin was rapidly distributed to the tissues with a steady-state volume of distribution (Vdss) of 1.51 L/kg and the total body clearance (Cltot) was 0.59 L/kg/h. The elimination half-lives after i.v. and i.m. administration were 3.25 h and 3.82 h, respectively. After i.m. administration, difloxacin was rapidly absorbed, with mean peak plasma concentration (Cmax of 3.85 microg/ml achieved at 1.61 h (Tmax) post administration. The extent of plasma protein binding of difloxacin in rabbits was 21.45% and the systemic bioavailability was 95.29%.  相似文献   

13.
OBJECTIVE: To determine the plasma pharmacokinetics of imipenem (5 mg/kg) after single-dose IV, IM, and SC administrations in dogs and assess the ability of plasma samples to inhibit the growth of Escherichia coli in vitro. ANIMALS: 6 adult dogs. PROCEDURE: A 3-way crossover design was used. Plasma concentrations of imipenem were measured after IV, IM, and SC administration by use of high-performance liquid chromatography. An agar well antimicrobial assay was performed with 3 E coli isolates that included a reference strain and 2 multidrug-resistant clinical isolates. RESULTS: Plasma concentrations of imipenem remained above the reported minimum inhibitory concentration for E coli (0.06 to 0.25 microg/mL) for a minimum of 4 hours after IV, IM, and SC injections. Harmonic mean and pseudo-standard deviation half-life of imipenem was 0.80 +/- 0.23, 0.92 +/- 0.33, and 1.54 +/- 1.02 hours after IV, IM, and SC administration, respectively. Maximum plasma concentrations (Cmax) of imipenem after IM and SC administration were 13.2 +/- 4.06 and 8.8 +/- 1.7 mg/L, respectively. Time elapsed from drug administration until Cmax was 0.50 +/- 0.16 hours after IM and 0.83 +/- 0.13 hours after SC injection. Growth of all 3 E coli isolates was inhibited in the agar well antimicrobial assay for 2 hours after imipenem administration by all routes. CONCLUSIONS AND CLINICAL RELEVANCE: Imipenem is rapidly and completely absorbed from intramuscular and subcutaneous tissues and effectively inhibits in vitro growth of certain multidrug-resistant clinical isolates of E coli.  相似文献   

14.
OBJECTIVES: To determine pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after a single i.v. and i.m. administration of enrofloxacin and tissue residues after serial daily i.m. administration of enrofloxacin in pigs. ANIMALS: 20 healthy male pigs. PROCEDURE: 8 pigs were used in a crossover design to investigate pharmacokinetics of enrofloxacin after a single i.v. and i.m. administration (2.5 mg/kg of body weight). Twelve pigs were used to study tissue residues; they were given daily doses of enrofloxacin (2.5 mg/kg, i.m. for 3 days). Plasma and tissue concentrations of enrofloxacin and ciprofloxacin were determined. Residues of enrofloxacin and ciprofloxacin were measured in fat, kidney, liver, and muscle. RESULTS: Mean (+/-SD) elimination half-life and mean residence time of enrofloxacin in plasma were 9.64+/-1.49 and 12.77+/-2.15 hours, respectively, after i.v. administration and 12.06+/-0.68 and 17.15+/-1.04 hours, respectively, after i.m. administration. Half-life at alpha phase of enrofloxacin was 0.23+/-0.05 and 1.94+/-0.70 hours for i.v. and i.m. administration, respectively. Maximal plasma concentration was 1.17 +/-0.23 microg/ml, and interval from injection until maximum concentration was 1.81+/-0.23 hours. Renal and hepatic concentrations of enrofloxacin (0.012 to 0.017 microg/g) persisted for 10 days; however, at that time, ciprofloxacin residues were not detected in other tissues. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered i.m. at a dosage of 2.5 mg/kg for 3 successive days, with a withdrawal time of 10 days, resulted in a sum of concentrations of enrofloxacin and ciprofloxacin that were less than the European Union maximal residue limit of 30 ng/g in edible tissues.  相似文献   

15.
The single-dose disposition kinetics of florfenicol was determined in healthy, non-lactating Egyptian goats, after its intravenous (i.v.) and intramuscular (i.m.) administration at 20 mg kg-1 b.wt. Drug concentrations in serum and urine were determined using microbiological assay method and data was subjected to a kinetic analysis. Florfenicol concentrations in serum decreased in a bi-exponential manner after intravenous administration with distribution (t1/2 alpha) and elimination (t1/2 beta) half-lives of 10.256 +/- 0.938 and 56.237 +/- 3.102 minute, respectively. The steady-state volume of distribution (Vdss) and total body clearance (Cltot) were 3.413 +/- 0.304 l kg-1 and 3.306 +/- 0.333 l kg h-1. After intramuscular administration, the peak serum concentration (Cmax) was 0.859 +/- 0.025 micrograms ml-1, achieved at (Tmax) 1.220 + 0.045 h. Florfenicol was detected in urine up to 24 and 96 hour after i.v. and i.m. administration, respectively. The extent of the protein binding and systemic bioavailability of florfenicol were 22.45 +/- 1.727% and 65.718 +/- 3.372%, respectively.  相似文献   

16.
Aditoprim (AP) is a new dihydrofolate reductase inhibitor, which is structurally related to trimethoprim (TMP). The pharmacokinetics of AP (10 mg/kg) and TMP (20 mg/kg) were assessed in healthy dwarf goats. Therapeutic efficacy against rickettsial infections was tested in tick-borne fever (TBF) infected goats. The animals were given TMP (n = 5) or AP (n = 5) by i.v. injection, and subsequently the drugs were administered orally (same groups, similar doses). Finally, both groups were infected with TBF and the i.v. experiment was repeated. Plasma concentration-time curves for both drugs followed first-order two-compartment decay. For TMP, mean t1/2 beta +/- SEM (h) was 0.84 +/- 0.06 (i.v. control) and 0.90 +/- 0.06 (i.v. infected), respectively, whereas for AP values of 8.00 +/- 0.31 (i.v. control) and 10.28 +/- 0.67 (i.v. infected) were obtained (P less than 0.05). Mean Vd beta +/- SEM values (l/kg) were 3.84 +/- 0.27 (i.v. control) and 4.07 +/- 0.85 (i.v. infected) for TMP (NS) and 7.02 +/- 0.63 vs 9.29 +/- 0.21 (P less than 0.05) for AP. After i.v. injection, rumen fluid concentrations of AP were significantly (P less than 0.05) higher and more persistent than those of TMP. For AP, the plasma and rumen fluid concentrations at 3 h were 1.20 +/- 0.06 micrograms/ml and 0.85 +/- 0.17 microgram/ml, respectively. After oral administration of TMP, Cmax in plasma was 0.12 +/- 0.01 microgram/ml and the maximum was reached after 1.2 +/- 0.16 h; systemic bioavailability (F) was 10.3% (relative to AUC i.v.). Oral treatment with AP resulted in a Cmax value of 0.21 +/- 0.02 microgram/ml with Tmax of 22.5 +/- 1.65 h and a F value of 71%. Based on WBC, serum ALP and rectal temperature responses, it was concluded that both TMP and AP were inactive against Ehrlichia phagocytophila.  相似文献   

17.
The bioavailability and pharmacokinetic disposition of florfenicol in broiler chickens were investigated after intravenous (i.v.), intramuscular (i.m.) and oral administrations of 15 and 30 mg/kg body weight (b.w.). Plasma concentrations of florfenicol were determined by a high performance liquid chromatographic method in which plasma samples were spiked with chloramphenicol as internal standard. Plasma concentration-time data after i.v. administration were best described by a two-compartment open model. The elimination half-lives were 168 +/- 43 and 181 +/- 71 min, total body clearance 1.02 +/- 0.17 and 1.02 +/- 0.16 L x kg/h, the volume of distribution at steady-state 4.99 +/- 1.11 and 3.50 +/- 1.01 L/kg after i.v. injections of 15 and 30 mg/kg b.w., respectively. Plasma concentration-time data after i.m. and oral administrations were adequately described by a one-compartment model. The i.m. bioavailability and the oral bioavailability of florfenicol were 95, 98 and 96, 94%, respectively, indicating that florfenicol was almost absorbed completely after i.m. and oral administrations of 15 and 30 mg/kg b.w.  相似文献   

18.
This study examined the disposition kinetics and bioavailability of florfenicol after intravenous (i.v.), intramuscular (i.m.) and oral administration to rabbits at a dose of 30 mg/kg BW. Serial blood samples were collected through an indwelling catheter intermittently for 24 h for various routes. Plasma antibacterial concentrations were determined using a microbiological assay method with Bacillus subtilis ATCC 6633 as a reference organism. Plasma concentration-time data generated in the present study were analysed by non-compartmental methods based on statistical moment theory. Following i.v. administration, the overall elimination half-life (t1/2beta) was 1.54 h, mean residence time (MRT) was 1.69 h, mean volume of distribution at steady-state (Vdss) was 0.57 L/kg, and total body clearance (Cltot) was 0.34 L/kg/h. After i.m. and oral dosing, the terminal part of the curve should correspond to the absorption phase, instead of to the elimination phase, with terminal half-lives of 3.01 and 2.57 h, respectively. The mean absorption time (MAT) was 2.65 h for i.m. and 2.01 h for oral administration. Elimination rate constants differed with i.v., i.m. and oral administrations, suggesting a flip-flop situation. The observed mean peak plasma concentrations (Cmax obs) were 21.65 and 15.14 microg/ml achieved at a post-injection time (Tmax obs) of 0.5 h following i.m. and oral dosing, respectively. The absolute systemic availabilities were 88.25% and 50.79%, respectively, and the extent of plasma protein binding percent was 11.65%.  相似文献   

19.
REASONS FOR PERFORMING STUDY: Danofloxacin is a fluoroquinolone developed for veterinary medicine showing an excellent activity. However, danofloxacin pharmacokinetics profile have not been studied in horses previously. OBJECTIVE: To study the pharmacokinetics following i.v., i.m. and intragastric (i.g.) administration of 1.25 mg/kg bwt danofloxacin to 6 healthy horses. METHODS: A cross-over design was used in 3 phases (2 x 2 x 2), with 2 washout periods of 15 days (n = 6). Danofloxacin (18%) was administered by i.v. and i.m. routes at single doses of 1.25 mg/kg bwt. For i.g. administration an oral solution was prepared and administered via nasogastric tube. Danofloxacin concentrations were determined by HPLC assay with fluorescence detection. Tolerability at the the site of i.m. injection was monitored by creatine kinase (CK) activity. RESULTS: Danofloxacin plasma concentration vs. time data after i.v. and i.g. administration could best be described by a 2-compartment open model. The disposition of i.m. administered danofloxacin was best described by a one-compartment model. The terminal half-lives for i.v., i.m. and i.g. routes were 6.31, 5.36 and 4.74 h, respectively. Clearance value after i.v. dosing was 0.34 l/kg bwt/h. After i.m. administration, absolute bioavailability was mean +/- s.d. 88.48 +/- 11.10% and Cmax was 0.35 +/- 0.05 mg/l. After i.g. administration, absolute bioavailability was 22.36 +/- 6.84% and Cmax 0.21 +/- 0.07 mg/l. CK activity following i.m. dosing increased 3-fold over pre-injection levels 12 h after dosing and subsequently approached (but did not reach) normal values at 72 h post dose. CONCLUSIONS: Systemic danofloxacin exposure achieved in horses following i.m. administration was consistent with the predicted blood levels needed for a positive therapeutic outcome for many equine infections. Conversely, danofloxacin utility by the i.g. route was limited by low bioavailability. Tolerability associated with i.m. administration was high. POTENTIAL RELEVANCE: Pharmacokinetics, blood levels and good tolerability of i.v. and i.m. administration of danofloxacin in horses indicates that it is likely to be effective for treating sensitive bacterial infections.  相似文献   

20.
Piroxicam (PIRO) is a nonsteroidal anti-inflammatory drug (NSAID) recognized for its value as a chemopreventative and anti-tumor agent. Eight cats were included in this study. PIRO was administered in a single oral (p.o.) and intravenous (i.v.) dose of 0.3 mg/kg. The study was designed as a randomized complete crossover with a 2-week washout period. Serial blood samples were collected after each dose and plasma was analyzed for PIRO. Pharmacokinetic parameters of PIRO were determined using noncompartmental analysis. PIRO is well absorbed in the cat with a median bioavailability (F) of 80% (range 64-124%). The median i.v. t1/2 was 12 h (range 8.6-14 h). The median Cmax was 519 ng/mL with a corresponding Tmax of 3 h. PIRO appears to be rapidly absorbed following p.o. administration in cats with a higher Cmax and AUC than in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号