首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The pharmacokinetics and urinary excretion of gatifloxacin were investigated after a single intravenous injection of 4 mg/kg body weight in buffalo calves. The therapeutic plasma drug concentration was maintained for up to 12 h. Gatifloxacin rapidly distributed from blood to tissue compartments, which was evident from the high values of the distribution rate constant, α1 (11.1 ± 1.06 h−1) and the rate constant of transfer of drug from central to peripheral compartment, k 12 (6.29 ± 0.46 h−1). The area under the plasma drug concentration–time curve and apparent volume of distribution were 17.1 ± 0.63 (μg.h)/ml and 3.56 ± 0.95 L/kg, respectively. The elimination half-life (t 1/2 β), total body clearance (ClB) and the ratio of drug present in tissues and plasma (T/P) were 10.4 ± 2.47 h, 235.1 ± 8.47 ml/(kg.h) and 10.1 ± 2.25, respectively. About 19.7% of the administered drug was excreted in urine within 24 h. A satisfactory intravenous dosage regimen for gatifloxacin in buffalo calves would be 5.3 mg/kg at 24 h intervals. Abbreviations for pharmacokinetic parameters are given in the footnote of Table I  相似文献   

2.
The pharmacokinetic behavior of cefepime was studied in healthy and febrile cross-bred calves after single intravenous administration (10 mg/kg). The fever was induced with E. coli lipopolysaccharide (1 μg/kg, IV). The drug concentration in plasma was detected by microbiological assay method using E. coli (MTCC 739) test organism. Pharmacokinetic analysis of disposition data indicated that intravenous administration data were best described by 2 compartment open model. At 1 min the concentration of cefepime in healthy and febrile animals were 55.3 ± 0.54 μg/ml and 50.0 ± 0.48 μg/ml, respectively and drug was detected up to 12 h. The elimination half-life of cefepime was increased from 1.26 ± 0.01 h in healthy animals to 1.62 ± 0.09 h in febrile animals. Drug distribution was altered by fever as febrile animals showed volume of distribution (0.27 ± 0.02 L/kg) higher than normal animal (0.19 ± 0.01 L/kg). Total body clearances in healthy and febrile animals were 104.4 ± 2.70 and 114.2 ± 1.20 ml/kg/h, respectively. To maintain minimum therapeutic concentration of 1 μg/ml, a satisfactory dosage regimen of cefepime in healthy and febrile cross-bred calves would be 15.5 mg/kg and 8.2 mg/kg body weight, respectively, to be repeated at 8 h intervals. The T>MIC values (8 h) of cefepime suggested that this agent is clinically effective in the treatment of various infections.  相似文献   

3.
Disposition following single intravenous injection (2 mg/kg) and pharmacodynamics of cefquinome were investigated in buffalo calves 6–8 months of age. Drug levels in plasma were estimated by high-performance liquid chromatography. The plasma concentration–time profile following intravenous administration was best described by a two-compartment open model. Rapid distribution of cefquinome was evident from the short distribution half-life (t ½α ?=?0.36?±?0.01 h), and small apparent volume of distribution (Vdarea?=?0.31?±?0.008 L/kg) indicated limited drug distribution in buffalo calves. The values of area under plasma concentration–time curve, elimination half-life (t ½β ), total body clearance (ClB), and mean residence time were 32.9?±?0.56 μg·h/mL, 3.56?±?0.05 h, 60.9?±?1.09 mL/h/kg, and 4.24?±?0.09 h, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration of cefquinome were 0.035–0.07 and 0.05–0.09 μg/mL, respectively. A single intravenous injection of 2 mg/kg may be effective to maintain the MIC up to 12 h in buffalo calves against the pathogens for which cefquinome is indicated.  相似文献   

4.
Pharmacokinetics and milk levels of ceftriaxone were studied in healthy and endometritic cows following single intravenous administration. The drug was detected up to 8 h of dosing in plasma of healthy and endometritic cows and the drug disposition followed three-compartment open model. The values of Vdarea, AUC, t1/2β, ClB, MRT and P/C ratio were 0.50 ± 0.19 L.kg−1, 62.2 ± 23.3 μg.ml−1.h, 1.02 ± 0.07 h, 0.30 ± 0.09 L.kg−1.h−1, 1.55 ± 0.25 h and 0.52 ± 0.27, respectively, in healthy and 1.55 ± 0.52 L.kg−1, 37.0 ± 17.1 μg.ml−1.h, 1.56 ± 0.25 h, 0.56 ± 0.14 L.kg−1.h−1, 2.14 ± 0.34 h and 1.44 ± 0.60, respectively, in endometritic cows. The drug was detected in milk for 36 h after administration. For MIC90 of 0.5 μg.ml−1 the most appropriate dosage for ceftriaxone, would be 9.0 mg.kg−1 repeated at 6 h intervals for the treatment of endometritis in cows.  相似文献   

5.
The study investigated the performance response of different dietary protein and energy levels of Nili-Ravi buffalo calves. Sixty buffalo calves of 12–15 months of age and similar body weight (140 ± 14 kg) were divided in to 12 groups, five animals in each group, according to 4 × 3 factorial arrangements. Twelve rations were formulated containing four levels of crude protein (CP; 10.5%, 12.20%, 13.80%, and 15.55%) each with three levels (1.72, 2.11, and 2.5 Mcal/Kg) of metabolizable energy (ME). Experiment lasted for 100 days; first 10 days were given for dietary adaptation. Daily feed consumption in calves fed all experimental diets were statistically significant (p < 0.05) across all treatments. Higher feed intake was observed in buffalo calves fed diets containing 12.20% and 13.85% CP with 2.11 Mcal/kg ME. Results of dry matter (DM) digestion were significantly different (p < 0.05) across all treatments. There was a quadratic (p < 0.05) response of DM digestibility for levels of dietary protein while, curvilinear (p < 0.05) trend with respect to dietary energy levels. Daily weight gain of buffalo calves did not show any treatment effect. The outcome of the present study indicate that 12–15-month-old buffalo calves perform adequately well when fed on diets containing 12.2% CP and 2.10 ME Mcal/Kg.  相似文献   

6.
The disposition kinetics, urinary excretion and a dosage regimen for ciprofloxacin after a single intravenous administration of 5 mg/kg was investigated in 5 healthy buffalo calves. The disposition kinetics were best fitted to a three-compartment open model. After 1 min, the concentration of ciprofloxacin in plasma was 8.50±0.39 g/ml and the minimum therapeutic concentration was maintained for 10 h. The elimination half-life and volume of distribution were 3.88 and 0.08 h and 3.97±0.22 L/kg, respectively. The total body clearance and T/P ratio were 0.709±0.025 L/kg per h and 6.13±0.54, respectively. Approximately 28.3% of the total administered dose of ciprofloxacin was recovered in urine within 24 h of administration. To maintain a minimum therapeutic plasma concentration of 0.10 g/ml, a satisfactory intravenous dosage regimen of ciprofloxacin, computed on the basis of disposition kinetic data obtained in healthy buffalo calves, would be 3 mg/kg repeated at 12 h intervals.  相似文献   

7.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

8.
The pharmacokinetic–pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax), terminal half‐life (t1/2K10), apparent volume of distribution (Vd(area)/F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h/MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h / MIC values by modeling PK/PD data. The lipopolysaccharide‐induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves.  相似文献   

9.
The distribution half-life, elimination half-life, apparent volume of distribution and total body clearance of carbenicillin in healthy buffalo calves following a single intravenous administration (50 mg/kg) were 0.057±0.005 h, 1.688±0.11 h, 0.185±0.021 L kg-1 and 75.97±6.519 ml kg-1 h-1 respectively. A satisfactory dosage regimen for carbenicillin in buffalo calves was calculated to be 56 mg/kg followed by 52 mg/kg body weight repeated at 6 h intervals.  相似文献   

10.
This study compared pharmacokinetic profiles in cattle dosed subcutaneously with two different formulations of enrofloxacin (5% and 10%) at a dose of 5 mg/kg. Plasma concentrations of enrofloxacin and its active metabolite, ciprofloxacin, were determined by a HPLC/u.v. method. The pharmacokinetic parameters of enrofloxacin and its metabolite were similar in both injectable formulations. Enrofloxacin peak plasma concentration (5%: 0.73 ± 0.32; 10%: 0.60 ± 0.14 μg/mL) was reached at 1.21 ± 0.52 and 1.38 ± 0.52 h to 5 and 10%, respectively. The terminal half-live and area under curve were 2.34 ± 0.46 and 2.59 ± 0.46 h, and 3.09 ± 0.81 and 2.93 ± 0.58 μg·h/mL, to 5 and 10%, respectively. The AUC/MIC90 and Cmax/MIC90 ratios for both formulations exceed the proposed threshold values for optimized efficacy and minimized resistance development whilst treating infections or septicaemia caused by P. multocida and E. coli.  相似文献   

11.
The effect of endotoxin-induced fever on the pharmacokinetics and dosage regimen of cefuroxime was investigated in buffalo calves following a single intravenous dose of 10 mg/kg body weight. The fever was induced by intravenous administration of E. coli endotoxin at a dose of 1 g/kg body weight. The distribution and elimination half-lives were 0.100 h and 1.82 h, respectively, in healthy and 0.109 h and 2.28 h, respectively, in febrile buffalo calves. About 91% of the administered dose was excreted in the urine within 24 h. There was no effect of fever on the plasma protein binding of cefuroxime. The dosage regimen for intravenous administration of cefuroxime may be reduced in febrile conditions but the probability of this was only 0.3.  相似文献   

12.
The pharmacokinetics and dosage regimen of ceftriaxone were investigated in buffalo calves (n = 6) following a single intravenous administration of ceftriaxone (10 mg/kg). The elimination rate constant was 0.18 +/- 0.01 h(-1) and the elimination half-life was 3.79 +/- 0.09 h. The apparent volume of distribution (Vd(area)) was 1.40 +/- 0.01 L/kg and the total plasma clearance was 0.26 +/- 0.01 L/(kg h). Approximately 43% of total administered dose of ceftriaxone was excreted in urine within 8 h. To maintain a minimum therapeutic concentration of 1 microg/ml, a satisfactory intravenous dosage regimen of ceftriaxone in buffalo calves is 13 mg/kg repeated at 12 h intervals.  相似文献   

13.
The objectives of this study were to investigate the pharmacokinetics of danofloxacin and its metabolite N‐desmethyldanofloxacin and to determine their concentrations in synovial fluid after administration by the intravenous, intramuscular or intragastric routes. Six adult mares received danofloxacin mesylate administered intravenously (i.v.) or intramuscularly (i.m.) at a dose of 5 mg/kg, or intragastrically (IG) at a dose of 7.5 mg/kg using a randomized Latin square design. Concentrations of danofloxacin and N‐desmethyldanofloxacin were measured by UPLC‐MS/MS. After i.v. administration, danofloxacin had an apparent volume of distribution (mean ± SD) of 3.57 ± 0.26 L/kg, a systemic clearance of 357.6 ± 61.0 mL/h/kg, and an elimination half‐life of 8.00 ± 0.48 h. Maximum plasma concentration (Cmax) of N‐desmethyldanofloxacin (0.151 ± 0.038 μg/mL) was achieved within 5 min of i.v. administration. Peak danofloxacin concentrations were significantly higher after i.m. (1.37 ± 0.13 μg/mL) than after IG administration (0.99 ± 0.1 μg/mL). Bioavailability was significantly higher after i.m. (100.0 ± 12.5%) than after IG (35.8 ± 8.5%) administration. Concentrations of danofloxacin in synovial fluid samples collected 1.5 h after administration were significantly higher after i.v. (1.02 ± 0.50 μg/mL) and i.m. (0.70 ± 0.35 μg/mL) than after IG (0.20 ± 0.12 μg/mL) administration. Monte Carlo simulations indicated that danofloxacin would be predicted to be effective against bacteria with a minimum inhibitory concentration (MIC) ≤0.25 μg/mL for i.v. and i.m. administration and 0.12 μg/mL for oral administration to maintain an area under the curve:MIC ratio ≥50.  相似文献   

14.
The plasma levels, disposition kinetics and a dosage regimen for pralidoxime (2-PAM) were investigated in male buffalo calves following single intramuscular administration (15 or 30 mg/kg). The effects of 2-PAM on various blood enzymes were also determined. The absorption half-life, elimination half-life, apparent volume of distribution and total body clearance of 2-PAM were 1.08±0.19 h, 3.14–3.19 h, 0.83–1.01 L/kg and 184.9–252.1 ml/(kg h), respectively. At doses of 15 and 30 mg/kg body weight, a plasma concentration 4 g/ml was maintained for up to 4 and 6 h, respectively. Pralidoxime significantly lowered the serum level of transferases, phosphatases and lactate dehydrogenase but did not influence the acetylcholinesterase and carboxylesterase enzymes. The most appropriate dosage regimen for 2-PAM in the treatment of organophosphate toxicity in buffaloes would be 25 mg/kg followed by 22 mg/kg at 8 h intervals.  相似文献   

15.
The pharmacokinetics and dosage regimen of cefotaxime following its single subcutaneous administration (10 mg/kg) were investigated in buffalo calves. Plasma and urine samples were collected over 10 and 24 h post administration, respectively. Cefotaxime in plasma and urine was estimated by microbiological assay technique using E. coli as test organism. The pharmacokinetic profiles fitted one-compartment open model. The peak plasma levels of cefotaxime were 6.48 ± 0.52 µg/ml at 30 min and the drug was detected upto 10 h. The absorption half-life and elimination half-life were 0.173 ± 0.033 h and 1.77 ± 0.02 h, respectively. The apparent volume of distribution and total body clearance were 1.17 ± 0.10 l/kg and 0.45 ± 0.03 l/kg/h, respectively. The urinary excretion of cefotaxime in 24 h, was 5.36 ± 1.19 percent of total administrated dose. A satisfactory subcutaneous dosage regimen for cefotaxime in buffalo calves would be 13 mg/kg repeated at 12 h intervals.  相似文献   

16.
The disposition kinetics and dosage regimen of enrofloxacin were investigated in breeding buffalo bulls following a single intramuscular administration of 5 mg/kg. The absorption half-life, half-life of the terminal phase, apparent volume of distribution and total body clearance were 0.262±0.099 h, 1.97±0.23 h, 0.61±0.13 L/kg and 210.2±18.6 ml/(kg.h), respectively. Therapeutic plasma levels (1 g/ml) were maintained for up to 6 h. A satisfactory intramuscular dosage regimen for enrofloxacin in buffalo bulls would be 8.5 mg/kg followed by 8.0 mg/kg at 8 h intervals.  相似文献   

17.
Forty bitches in anoestrus for more than six months from the last heat, with a serum progesterone level less than 1 ng/ml were subjected to oestrus induction trials using anti-prolactin drugs and levothyroxine, once daily orally for 20 consecutive days. The mean serum progesterone level among them was found to be 0.57 ± 0.03 ng/ml. Out of 10 animals treated in each group, five (50%) in Group I (bromocriptine @ 50 μg/kg body weight), nine (90%) in Group II (cabergoline @ 5 μg/kg body weight), eight (80%) in Group III (thyroxine @10 μg/kg body weight) and seven (70%) in Group IV (thyroxine @ 5 μg/kg body weight) responded by evincing proestrual bleeding. The mean (±SEM) time taken from initiation of treatment to onset of proestrual bleeding in Groups I, II, III and IV was 28 ± 3.39, 13.44 ± 3.12 (P < 0.05), 24.50 ± 3.18 and 33 ± 2.21 days respectively. The mean (±SEM) duration of proestrus and oestrus in the treatment groups was 9.80 ± 0.86, 10.11 ± 0.68, 11.25 ± 0.88 and 10.71 ± 0.68 days and 7.60 ± 0.24, 8 ± 0.29, 8.5 ± 0.63 and 7.85 ± 0.46 days respectively. The conception rate in relation to the number of animals responding to oestrus induction in the treatment groups was 80%, 78%, 63% and 57%, respectively. The mean (±SEM) gestation length calculated from the last breeding date and litter size in the treatment groups varied from 60.50 ± 1.55 to 64.00 ± 0.82 days and 5.14 ± 0.34 to 6.40 ± 0.40 respectively.  相似文献   

18.
Colibacillosis is a systemic disease responsible for important economic losses in poultry breeding; fluoroquinolones, including danofloxacin, are used to treat diseased animals. The purpose of the present study was to estimate pharmacokinetic–pharmacodynamic (PK-PD) surrogates for bacteriostasis, bactericidal activity and bacterial elimination against Escherichia coli O78/K80, using a PK-PD approach, for danofloxacin in turkeys after oral administration. Eight healthy turkeys, breed BUT 9, were included in a two-way crossover study. The drug was administered intravenously (i.v.) and orally at a dose rate of 6 mg/kg bw. The values of the elimination half-life and the total body clearance after i.v. administration were 8.64 ± 2.35 h and 586.76 ± 136.67 ml kg-1h-1, respectively. After oral administration, the values of the absolute bioavailability and the elimination half-life were 78.37± 17.35% and 9.74± 2.93 h, respectively. The minimum inhibitory concentration against the investigated strain in turkey serum was 0.25 μg/ml, four times higher than in broth. The lowest effective ex vivo AUC24/MIC ratios required for bacteriostasis, bactericidal activity, and total killing of E. coliO78/K80 were 0.416 h, 1.9 h and 6.73 h, respectively. The oral dose of 6 mg/kg used in the present study could be interpreted as being sufficient to eliminate E. coli with an MIC 0.25 μ g/ml. However, considering the demand that antimicrobial resistance should be avoided by complete bacterial elimination, PK-PD considerations suggest that an even higher dose of 32 mg/kg per day or 0.7 mg/kcal per day should be evaluated in clinical trials.  相似文献   

19.
The objective of the study was to determine the efficiency of ovsynch (OV) versus presynch-ovsynch (P-OV) protocol for synchronization of ovulation and timed artificial insemination (TAI) in female buffaloes. The OV group (n = 40) received gonadotrophin-releasing hormone (GnRH) on day 0 (random day of the estrous cycle), prostaglandin ( PGF2a ) \left( {{\hbox{PG}}{{\hbox{F}}_{2\alpha }}} \right) on day 7 and a second GnRH administration on day 9 followed by a single artificial insemination (AI) 16-20 h later. The P-OV group (n = 40) received two PGF2a {\hbox{PG}}{{\hbox{F}}_{2\alpha }} injections 14 days apart, with the second injection administered 14 days before starting the OV protocol. Progesterone (P4) was measured at the time of PGF2a {\hbox{PG}}{{\hbox{F}}_{2\alpha }} administration (within the OV protocol) and AI. Neither ovulation rate ((24 h after TAI) OV 90%-36/40 vs. P-OV 85%-34/40) nor pregnancy rates ((day 60 after TAI) OV 35%-14/40 vs. P-OV 45%-18/40) differed between the two protocols. Pregnant buffaloes had lower concentrations of P4 at AI compared with non-pregnant animals in the OV group (0.7 ± 0.1 vs. 1.1 ± 0.1 ng/ml); but in the P-OV group, differences did not reach statistical significance (0.8 ± 0.1 vs. 1.0 ± 0.1 ng/ml). This apparent trend reached statistical significance when the analysis was carried out in animals from both protocols (0.7 ± 0.1 (pregnant) vs. 1.1 ± 0.1 (non-pregnant) ng/ml). In conclusion, both protocols synchronize ovulation effectively with no significant differences in conception rates. High concentrations of P4 at AI seem to be detrimental for the establishment of pregnancy in lactating buffalo cows.  相似文献   

20.
In order to understand the changes in copper and selenium status in camel dam and calf around the calving period, blood samples were collected in 26 she-camel before delivery and after as well as their calves after birth. The mean values for the mother and their newborn were respectively 70.3 ± 19.8 and 58.6 ± 13.9 μg/100 ml for copper, 5.3 ± 3.7 and 4.6 ± 1.7 μg/100 ml for selenium. No change was observed for copper, but selenium increased after parturition in 81% of the case. The selenium status of camel calf was correlated with those of its mother, but not the copper. As the whole the correlation between selenium and copper was significantly positive. The selenium status was improved in camel receiving diet enriched with barley. The maternal transfer to milk has to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号