首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine the effect of Escherichia coli lipopolysaccharide (LPS)‐induced acute phase response (APR) on the pharmaco‐kinetics and biotransformation of florfenicol (FFC) in rabbits. Six rabbits (3.0 ± 0.08 kg body weight (bw)) were distributed through a crossover design with 4 weeks of washout period. Pairs of rabbits similar in bw and sex were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS at intervals of 6 h, and Group 2 (control) was treated with an equivalent volume of saline solution (SS) at the same intervals and frequency of Group 1. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples were collected from the auricular vein before drug administration and at different times between 0.05 and 24.0 h after treatment. FFC and florfenicol‐amine (FFC‐a) were extracted from the plasma, and their concentrations were determined by high‐performance liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using the paired Student t‐test. The mean values of AUC0–∞ in the endotoxaemic rabbits (26.3 ± 2.7 μg·h/mL) were significantly higher (< 0.05) than values observed in healthy rabbits (17.2 ± 0.97 μg·h/mL). The total mean plasma clearance (CLT) decreased from 1228 ± 107.5 mL·h/kg in the control group to 806.4 ± 91.4 mL·h/kg in the LPS‐treated rabbits. A significant increase (< 0.05) in the half‐life of elimination was observed in the endotoxaemic rabbits (5.59 ± 1.14 h) compared to the values observed in healthy animals (3.44 ± 0.57 h). In conclusion, the administration of repeated doses of 1 μg/kg E. coli LPS induced an APR in rabbits, producing significant modifications in plasma concentrations of FFC leading to increases in the AUC, terminal half‐life and mean residence time (MRT), but a significant decrease in CLT of the drug. As a consequence of the APR induced by LPS, there was a reduction in the metabolic conversion of FFC to their metabolite FFC‐a in the liver, suggesting that the mediators released during the APR induced significant inhibitory effects on the hepatic drug‐metabolizing enzymes.  相似文献   

2.
To reduce florfenicol (FFC) administration frequency in veterinary use, the drug was currently developed into in situ forming gel. Twelve pigs were randomly divided into two groups (six pigs per group). A single i.m. dose of 40 mg/kg body weight (b.w.) was given to pigs, group one was given FFC in situ forming gel, and group two was given FFC conventional injection. High‐performance liquid chromatography (HPLC) was used to determine FFC plasma concentrations. There were significant differences (P < 0.01) between FFC in situ forming gel and conventional injection, in pharmacokinetic parameters MRT (mean retention time) (57.79 ± 2.88) h versus (15.94 ± 1.29) h, AUC (area under the concentration–time curve) (421.54 ± 8.97) μg·h/mL versus (168.16 ± 4.59) μg·h/mL, tmax (time of occurrence of cmax) (9.00 ± 2.68) h versus (4.33 ± 0.82) h, cmax (maximum plasma concentration) (6.87 ± 0.66) μg/mL versus (12.01 ± 0.66) μg/mL, t1/2λz (terminal elimination half‐life) (38.04 ± 2.20) h versus (9.15 ± 2.71) h. The results demonstrated that the in situ forming gel system could shorten dosing interval of FFC and thus achieved less frequent administration during long‐term treatment.  相似文献   

3.
In pregnant sheep at 120–130 days of gestational age, a study was undertaken in order to characterize the pharmacokinetics and transplacental exchange of Ivermectin after maternal or fetal intravenous administration. Eight pregnant Suffolk Down sheep of 73.2 ± 3.7 kg body weight (bw) were surgically prepared in order to insert polyvinyl catheters in the fetal femoral artery and vein and amniotic sac. Following 48 h of recovery, the ewes were randomly assigned to two experimental groups. In group 1, (maternal injection) five ewes were treated with an intravenous bolus of 0.2 mg ivermectin/kg bw. In group 2, (fetal injection) three ewes were injected with an intravenous bolus of 1 mg of ivermectin to the fetus through a fetal femoral vein catheter. Maternal and fetal blood and amniotic fluid samples were taken before and after ivermectin administration for a period of 144 h post‐treatment. Samples were analyzed by liquid chromatography (HPLC). A computerized non‐compartmental pharmacokinetic analysis was performed and the results were compared by means of the Student t‐test. The main pharmacokinetic changes observed in the maternal compartment were increases in the volume of distribution and in the half‐life of elimination (t½β). A limited maternal‐fetal transfer of ivermectin was evidenced by a low fetal Cmax (1.72 ± 0.6 ng/mL) and AUC (89.1 ± 11.4 ng·h/mL). While the fetal administration of ivermectin resulted in higher values of clearance (554.1 ± 177.9 mL/kg) and lower values of t½β (8.0 ± 1.4 h) and mean residence time (8.0 ± 2.9 h) indicating that fetal‐placental unit is highly efficient in eliminating the drug as well as limiting the transfer of ivermectin from the maternal to fetal compartment.  相似文献   

4.
The comparative pharmacokinetics of ivermectin (IVM), between healthy and in Escherichia coli lipopolysaccharides (LPS) injected sheep, was investigated after an intravenous (IV) administration of a single dose of 0.2 mg/kg. Ten Suffolk Down sheep, 55 ± 3.3 kg, were distributed in two experimental groups: Group 1 (LPS): treated with three doses of 1 μg LPS/kg bw at ?24, ?16, and ?0.75 hr before IVM; group 2 (Control): treated with saline solution (SS). An IV dose of 0.2 mg IVM/kg was administered 45 min after the last injection of LPS or SS. Plasma concentrations of IVM were determined by liquid chromatography. Pharmacokinetic parameters were calculated based on non‐compartmental modeling. In healthy sheep, the values of the pharmacokinetic parameters were as follows: elimination half‐life (2.85 days), mean residence time (MRT) (2.27 days), area under the plasma concentration curve over time (AUC, 117.4 ng day?1 ml?1), volume of distribution (875.6 ml/kg), and clearance (187.1 ml/day). No statistically significant differences were observed when compared with the results obtained from the group of sheep treated with LPS. It is concluded that the acute inflammatory response (AIR) induced by the intravenous administration of E. coli LPS in adult sheep produced no changes in plasma concentrations or in the pharmacokinetic behavior of IVM, when it is administered intravenously at therapeutic doses.  相似文献   

5.
The plasma kinetic profile of moxidectin (MXD) in ewes during the last third of pregnancy was studied after the subcutaneous dose of 0.2 mg/kg of body weight (bw). Two groups of sheep (n = 7) that were equally balanced in body weight were used. Group I (control) was maintained unmated, while Group II (pregnant) was estrous‐synchronized and mated with fertile rams. Both groups were maintained under similar conditions regarding management and feeding. When the ewes from Group II fulfilled 120 days of pregnancy, both groups were treated with a subcutaneous injection of 0.2 mg of MXD/kg bw. Blood samples were collected at different set times between 1 h and 40 days post‐treatment. After plasma extraction and derivatization, the samples were analyzed using high‐performance liquid chromatography with fluorescence detection. A noncompartmental pharmacokinetic analysis was performed, and the data were compared using Student's t‐test. The mean pharmacokinetic parameters, including Cmax, Tmax, and the area under the concentration–time curve (AUC), were similar for both groups of sheep. The average of elimination half‐life was significantly lower (P = 0.0023) in the pregnant (11.49 ± 2.2 days) vs. the control (17.89 ± 4.84 days) sheep. Similarly, the mean residence time (MRT) for the pregnant group (20.6 ± 3.8 days) was lower (P = 0.037) than that observed in the control group (27.4 ± 9.1 days). It is concluded that pregnancy produces a significant decrease in mean values of half‐life of elimination of MXD, indicating that pregnancy can increase the rate of elimination of the drug reducing their permanence in the body.  相似文献   

6.
A pharmacokinetic and tissue residue study of sulfadiazine combined with trimethoprim (SDZ/TMP = 5/1) was conducted in Siniperca chuatsi after single‐ (120 mg/kg) or multiple‐dose (an initial dose of 120 mg/kg followed by a 5‐day consecutive dose of 60 mg/kg) oral administrations at 28 °C. The absorption half‐life (t1/2α), elimination half‐life (t1/2β), volume of distribution (Vd/F), and the total body clearance (ClB/F) for SDZ and TMP were 4.3 ± 1.7 to 6.3 ± 1.8 h and 2.4 ± 1.0 to 3.9 ± 0.9 h, 25.9 ± 4.5 to 53.0 ± 5.6 h and 11.8 ± 3.5 to 17.1 ± 3.4 h, 2.34 ± 0.78 to 3.67 ± 0.99 L/kg and 0.39 ± 0.01 to 1.33 ± 0.57 L/kg, and 0.03 ± 0.01 to 0.06 ± 0.01 L/kg·h and 0.02 ± 0.01 to 0.05 ± 0.01 L/kg·h, respectively, after the single dose. The elimination half‐life (t1/2β) and mean residue time (MRT) for SDZ and TMP were 68.8 ± 7.8 to 139.8 ± 12.3 h and 34.0 ± 5.5 to 56.1 ± 6.8 h, and 99.3 ± 6.1 to 201.7 ± 11.5 h and 49.1 ± 3.5 to 81.0 ± 5.1 h, respectively, after the multiple‐dose administration. The daily oral SDZ/TMP administration might cause a high tissue concentration and long t1/2β, thereby affecting antibacterial activity. The withdrawal time for this oral SDZ/TMP formulation (according to the accepted guidelines in Europe for maximum residue limits, <0.1 mg/kg of tissues for sulfonamides, and <0.05 mg/kg for TMP) should not be <36 days for fish.  相似文献   

7.
The pharmacokinetics and residue elimination of florfenicol (FFC) and its metabolite florfenicol amine (FFA) were studied in healthy blunt‐snout bream (Megalobrama amblycephala, 50 ± 10 g). The study was conducted with a single‐dose (25 mg/kg) oral administration at a water temperature of 18 or 28°C, while in the residue elimination study, fish were administered at 25 mg/kg daily for three consecutive days by oral gavage to determine the withdrawal period (WDT) at 28°C. The FFC and FFA levels in plasma and tissues (liver, kidneys and muscle) were analysed using high‐performance liquid chromatography (HPLC). A no‐compartment model was used to analyse the concentration versus time data of M. amblycephala. In the two groups at 18 and 28°C, the maximum plasma concentration (Cmax) of FFC was 5.89 and 6.21 μg/ml, while the time to reach Cmax (Tmax) was 5.97 and 2.84 hr, respectively. These suggested that higher temperature absorbed more drug and more quickly at M. amblycephala. And the elimination half‐life (T1/2) of FFC was calculated as 26.75 and 16.14 hr, while the total body clearance (CL) was 0.09 and 0.15 L kg?1 hr?1, and the areas under the concentration–time curves (AUCs) were 265.87 and 163.31 μg hr/ml, respectively. The difference demonstrated that the elimination rate of FFC in M. amblycephala at 28°C was more quickly than that at 18°C. The results of FFA showed the same trend in tissues of M. amblycephala. After multiple oral doses (25 mg/kg daily for 3 days), the k (eliminate rate constant) of FFA in M. amblycephala muscle was 0.017, the C0 (initial concentration) was 3.07 mg/kg, and the WDT was 10 days (water temperature 28°C).  相似文献   

8.
The study objective was to compare butorphanol pharmacokinetics and physiologic effects following intravenous and subcutaneous administration in horses. Ten adult horses received 0.1 mg/kg butorphanol by either intravenous or subcutaneous injections, in a randomized crossover design. Plasma concentrations of butorphanol were measured at predetermined time points using highly sensitive liquid chromatography–tandem mass spectrometry assay (LC‐MS/MS). Demeanor and physiologic variables were recorded. Data were analyzed with multivariate mixed‐effect model on ranks (≤ 0.05). For subcutaneous injection, absorption half‐life and peak plasma concentration of butorphanol were 0.10 ± 0.07 h and 88 ± 37.4 ng/mL (mean ± SD), respectively. Bioavailability was 87%. After intravenous injection, mean ± SD butorphanol steady‐state volume of distribution and clearance was 1.2 ± 0.96 L/kg and 0.65 ± 0.20 L/kg/h, respectively. Terminal half‐lives for butorphanol were 2.31 ± 1.74 h and 5.29 ± 1.72 h after intravenous and subcutaneous administrations. Subcutaneous butorphanol reached and maintained target plasma concentrations >10 ng/mL for 2 ± 0.87 h (Mean ± SD), with less marked physiologic and behavioral effects compared to intravenous injection. Subcutaneous butorphanol administration is an acceptable alternative to the intravenous route in adult horses.  相似文献   

9.
Albarellos, G. A., Montoya, L., Denamiel, G. A. A., Velo, M. C., Landoni, M. F. Pharmacokinetics and bone tissue concentrations of lincomycin following intravenous and intramuscular administrations to cats. J. vet. Pharmacol. Therap.  35 , 534–540. The pharmacokinetic properties and bone concentrations of lincomycin in cats after single intravenous and intramuscular administrations at a dosage rate of 10 mg/kg were investigated. Lincomycin minimum inhibitory concentration (MIC) for some gram‐positive strains isolated from clinical cases was determined. Serum lincomycin disposition was best‐fitted to a bicompartmental and a monocompartmental open models with first‐order elimination after intravenous and intramuscular dosing, respectively. After intravenous administration, distribution was rapid (T1/2(d) = 0.22 ± 0.09 h) and wide as reflected by the volume of distribution (V(d(ss))) of 1.24 ± 0.08 L/kg. Plasma clearance was 0.28 ± 0.09 L/h·kg and elimination half‐life (T1/2) 3.56 ± 0.62 h. Peak serum concentration (Cmax), Tmax, and bioavailability for the intramuscular administration were 7.97 ± 2.31 μg/mL, 0.12 ± 0.05 h, and 82.55 ± 23.64%, respectively. Thirty to 45 min after intravenous administration, lincomycin bone concentrations were 9.31 ± 1.75 μg/mL. At the same time after intramuscular administration, bone concentrations were 3.53 ± 0.28 μg/mL. The corresponding bone/serum ratios were 0.77 ± 0.04 (intravenous) and 0.69 ± 0.18 (intramuscular). Lincomycin MIC for Staphylococcus spp. ranged from 0.25 to 16 μg/mL and for Streptococcus spp. from 0.25 to 8 μg/mL.  相似文献   

10.
Cefuroxime pharmacokinetic profile was investigated in 6 Beagle dogs after single intravenous, intramuscular, and subcutaneous administration at a dosage of 20 mg/kg. Blood samples were withdrawn at predetermined times over a 12‐h period. Cefuroxime plasma concentrations were determined by HPLC. Data were analyzed by compartmental analysis. Peak plasma concentration (Cmax), time‐to‐peak plasma concentration (Tmax), and bioavailability for the intramuscular and subcutaneous administration were (mean ± SD) 22.99 ± 7.87 μg/mL, 0.43 ± 0.20 h, and 79.70 ± 14.43% and 15.37 ± 3.07 μg/mL, 0.99 ± 0.10 h, and 77.22 ± 21.41%, respectively. Elimination half‐lives and mean residence time for the intravenous, intramuscular, and subcutaneous administration were 1.12 ± 0.19 h and 1.49 ± 0.21 h; 1.13 ± 0.13 and 1.79 ± 0.24 h; and 1.04 ± 0.23 h and 2.21 ± 0.23 h, respectively. Significant differences were found between routes for Ka, MAT, Cmax, Tmax, t½(a), and MRT. T > MIC = 50%, considering a MIC of 1 μg/mL, was 11 h for intravenous and intramuscular administration and 12 h for the subcutaneous route. When a MIC of 4 μg/mL is considered, T > MIC = 50% for intramuscular and subcutaneous administration was estimated in 8 h.  相似文献   

11.
The objective of this study was to evaluate the pharmacokinetic characteristics of enrofloxacin (ENR) injectable in situ gel we developed in dogs following a single intramuscular (i.m.) administration. Twelve healthy dogs were randomly divided into two groups (six dogs per group), then administrated a single 20 mg/kg body weight (b.w.) ENR injectable in situ gel and a single 5 mg/kg b.w. ENR conventional injection, respectively. High‐performance liquid chromatography (HPLC) was used to determine ENR plasma concentrations. The pharmacokinetic parameters of ENR injectable in situ gel and conventional injection in dogs are as follows: MRT (mean residence time) (45.59 ± 14.05) h verse (11.40 ± 1.64) h, AUC (area under the blood concentration vs. time curve) (28.66 ± 15.41) μg·h/mL verse (11.06 ± 3.90) μg·h/mL, cmax (maximal concentration) (1.59 ± 0.35) μg/mL verse (1.46 ± 0.07) μg/mL, tmax (time needed to reach cmax) (1.25 ± 1.37) h verse (1.40 ± 0.55) h, t1/2λz (terminal elimination half‐life) (40.27 ± 17.79) h verse (10.32 ± 0.97) h. The results demonstrated that the in situ forming gel system could increase dosing interval of ENR and thus reduced dosing frequency during long‐term treatment. Therefore, the ENR injectable in situ gel seems to be worth popularizing in veterinary clinical application.  相似文献   

12.
Meloxicam is a nonsteroidal anti‐inflammatory drug commonly used in avian species. In this study, the pharmacokinetic parameters for meloxicam were determined following single intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) administrations of the drug (1 mg/kg·b.w.) in adult African grey parrots (Psittacus erithacus; n = 6). Serial plasma samples were collected and meloxicam concentrations were determined using a validated high‐performance liquid chromatography assay. A noncompartmental pharmacokinetic analysis was performed. No undesirable side effects were observed during the study. After i.v. administration, the volume of distribution, clearance and elimination half‐life were 90.6 ± 4.1 mL/kg, 2.18 ± 0.25 mL/h/kg and 31.4 ± 4.6 h, respectively. The peak mean ± SD plasma concentration was 8.32 ± 0.95 μg/mL at 30 min after i.m. administration. Oral administration resulted in a slower absorption (tmax = 13.2 ± 3.5 h; Cmax = 4.69 ± 0.75 μg/mL) and a lower bioavailability (38.1 ± 3.6%) than for i.m. (78.4 ± 5.5%) route. At 24 h, concentrations were 5.90 ± 0.28 μg/mL for i.v., 4.59 ± 0.36 μg/mL for i.m. and 3.21 ± 0.34 μg/mL for p.o. administrations and were higher than those published for Hispaniolan Amazon parrots at 12 h with predicted analgesic effects.  相似文献   

13.
Seven sea otters received a single subcutaneous dose of cefovecin at 8 mg/kg body weight. Plasma samples were collected at predetermined time points and assayed for total cefovecin concentrations using ultra‐performance liquid chromatography and tandem mass spectrometry. The mean (±SD) noncompartmental pharmacokinetic indices were as follows: CMax (obs) 70.6 ± 14.6 μg/mL, TMax (obs) 2.9 ± 1.5 h, elimination rate constant (kel) 0.017 ± 0.002/h, elimination half‐life (t1/2kel) 41.6 ± 4.7 h, area under the plasma concentration‐vs.‐time curve to last sample (AUClast) 3438.7 ± 437.7 h·μg/mL and AUC extrapolated to infinity (AUC0→∞) 3447.8 ± 439.0 h·μg/mL. The minimum inhibitory concentrations (MIC) for select isolates were determined and used to suggest possible dosing intervals of 10 days, 5 days, and 2.5 days for gram‐positive, gram‐negative, and Vibrio parahaemolyticus bacterial species, respectively. This study found a single subcutaneous dose of cefovecin sodium in sea otters to be clinically safe and a viable option for long‐acting antimicrobial therapy.  相似文献   

14.
The purpose of this study was to determine the pharmacokinetics of cefquinome (CFQ) following single and repeated subcutaneous (SC) administrations in sheep. Six clinically healthy, 1.5 ± 0.2 years sheep were used for the study. In pharmacokinetic study, the crossover design in three periods was performed. The withdrawal interval between the study periods was 15 days. In first period, CFQ (Cobactan, 2.5%) was administered by an intravenous (IV) bolus (3 sheep) and SC (3 sheep) injections at 2.5 mg/kg dose. In second period, the treatment administration was repeated via the opposite administration route. In third period, CFQ was administrated subcutaneously to each sheep (n = 6) at a dose of 2.5 mg/kg q. 24 hr for 5 days. Plasma concentrations of CFQ were measured using the HPLC‐UV method. Pharmacokinetic parameters were calculated using non‐compartmental methods. The elimination half‐life and mean residence time of CFQ after the single SC administration were longer than IV administration (< 0.05). Bioavailability (F%) of CFQ following the single SC administration was 123.51 ± 11.54%. The area under the curve (AUC0‐∞) and peak concentration following repeated doses (last dose) were higher than those observed after the first dose (< 0.05). CFQ accumulated after repeated SC doses. CFQ can be given via SC at a dose of 2.5 mg/kg every 24 hr for the treatment of infections caused by susceptible pathogens, which minimum inhibitory concentration is ≤1.0 μg/ml in sheep.  相似文献   

15.
The pharmacokinetics and bioavailability of butafosfan in piglets were investigated following intravenous and intramuscular administration at a single dose of 10 mg/kg body weight. Plasma concentration–time data and relevant parameters were best described by noncompartmental analysis after intravenous and intramuscular injection. The data were analyzed through WinNolin 6.3 software. After intravenous administration, the mean pharmacokinetic parameters were determined as T1/2λz of 3.30 h, Cl of 0.16 L kg/h, AUC of 64.49 ± 15.07 μg h/mL, Vss of 0.81 ± 0.44/kg, and MRT of 1.51 ± 0.27 h. Following intramuscular administration, the Cmax (28.11 μg/mL) was achieved at Tmax (0.31 h) with an absolute availability of 74.69%. Other major parameters including AUC and MRT were 48.29 ± 21.67 μg h/mL and 1.74 ± 0.29 h, respectively.  相似文献   

16.
The objectives of this study were to examine the pharmacokinetics of tobramycin in the horse following intravenous (IV), intramuscular (IM), and intra‐articular (IA) administration. Six mares received 4 mg/kg tobramycin IV, IM, and IV with concurrent IA administration (IV+IA) in a randomized 3‐way crossover design. A washout period of at least 7 days was allotted between experiments. After IV administration, the volume of distribution, clearance, and half‐life were 0.18 ± 0.04 L/kg, 1.18 ± 0.32 mL·kg/min, and 4.61 ± 1.10 h, respectively. Concurrent IA administration could not be demonstrated to influence IV pharmacokinetics. The mean maximum plasma concentration (Cmax) after IM administration was 18.24 ± 9.23 μg/mL at 1.0 h (range 1.0–2.0 h), with a mean bioavailability of 81.22 ± 44.05%. Intramuscular administration was well tolerated, despite the high volume of drug administered (50 mL per 500 kg horse). Trough concentrations at 24 h were below 2 μg/mL in all horses after all routes of administration. Specifically, trough concentrations at 24 h were 0.04 ± 0.01 μg/mL for the IV route, 0.04 ± 0.02 μg/mL for the IV/IA route, and 0.02 ± 0.02 for the IM route. An additional six mares received IA administration of 240 mg tobramycin. Synovial fluid concentrations were 3056.47 ± 1310.89 μg/mL at 30 min after administration, and they persisted for up to 48 h with concentrations of 14.80 ± 7.47 μg/mL. Tobramycin IA resulted in a mild chemical synovitis as evidenced by an increase in synovial fluid cell count and total protein, but appeared to be safe for administration. Monte Carlo simulations suggest that tobramycin would be effective against bacteria with a minimum inhibitory concentration (MIC) of 2 μg/mL for IV administration and 1 μg/mL for IM administration based on Cmax:MIC of 10.  相似文献   

17.
Ketorolac (KET) is a nonsteroidal anti‐inflammatory drug approved for the use in humans that possesses a potent analgesic activity, comparable to morphine, and could represent a useful tool to control acute pain also in animals. The clinical efficacy and pharmacokinetic profile of intravenous (IV) ketorolac tromethamine (0.5 mg/kg) were studied in 15 dogs undergoing gonadectomy. Intra‐operative cardiorespiratory variables were monitored, and post‐operative pain was assessed using a subjective pain score (0–24) in all dogs, whereas the pharmacokinetic profile of the drug was determined in 10 animals. During surgery, mean minimal alveolar concentration of isoflurane was 1.69 ± 0.11%, and normocapnia and spontaneous ventilation were maintained in all animals. During pain assessment, no significant differences between males and females were found, and in no case rescue analgesia was necessary. No adverse effects were reported. Serum samples were purified by solid‐phase extraction and analysed by HPLC with UV‐Vis detection. A large variability was observed in serum concentrations. The kinetics of ketorolac was described by a noncompartmental analysis. The elimination half‐life (t½λz) and ClB were 10.95 ± 7.06 h and 92.66 ± 84.49 mL/h/kg, respectively, and Vdss and Vz were 1030.09 ± 620.50 mL/kg and 1512.25 ± 799.13 mL/kg, respectively. AUC(0→last) and MRT(0→last) were 6.08 ± 3.28 h × μg/mL and 5.59 ± 2.12 h, respectively. The results indicate that ketorolac possess good post‐operative analgesic effects until about 6 h after administration in dogs undergoing moderately painful surgery.  相似文献   

18.
Neonatal foals have unique pharmacokinetics, which may lead to accumulation of certain drugs when adult horse dosage regimens are used. Given its lipophilic nature and requirement for hepatic metabolism, metronidazole may be one of these drugs. The purpose of this study was to determine the pharmacokinetic profiles of metronidazole in twelve healthy foals at 1–2.5 days of age when administered as a single intravenous (IV) and intragastric (IG) dose of 15 mg/kg. Foals in the intravenous group were studied a second time at 10–12 days of age to evaluate the influence of age on pharmacokinetics within the neonatal period. Blood samples were collected at serial time points after metronidazole administration. Metronidazole concentration in plasma was measured using LC‐MS. Pharmacokinetic parameters were determined using noncompartmental analysis and compared between age groups. At 1–2.5 days of age, the mean peak plasma concentration after IV infusion was 18.79 ± 1.46 μg/mL, elimination half‐life was 11.8 ± 1.77 h, clearance was 0.84 ± 0.13 mL/min/kg and the volume of distribution (steady‐state) was 0.87 ± 0.07 L/kg. At 10–12 days of age, the mean peak plasma concentration after IV infusion was 18.17 ± 1.42 μg/mL, elimination half‐life was 9.07 ± 2.84 h, clearance was 1.14 ± 0.21 mL/min/kg and the volume of distribution (steady‐state) was 0.88 ± 0.06 L/kg. Oral approximated bioavailability was 100%. Cmax and Tmax after oral dosing were 14.85 ± 0.54 μg/mL and 1.75 (1–4) h, respectively. The elimination half‐life was longer and clearance was reduced in neonatal foals at 1–2.5 days as compared to 10–12 days of age (P = 0.006, P = 0.001, respectively). This study warrants consideration for altered dosing recommendations in foals, especially a longer interval (12 h).  相似文献   

19.
The pharmacokinetics of doxycycline was studied in plasma after a single dose (20 mg/kg) of intravenous or oral administration to tilapia (Oreochromis aureus × Oreochromis niloticus) reared in fresh water at 24 °C. Plasma samples were collected from six fish per sampling point. Doxycycline concentrations were determined by high‐performance liquid chromatography with a 0.005 μg/mL limit of detection, then were subjected to noncompartmental analysis. Following oral administration, the double‐peak phenomenon was observed, and the first (Cmax1) and second (Cmax2) peaks were 1.99 ± 0.43 μg/mL at 2.0 h and 2.27 ± 0.38 μg/mL at 24.0 h, respectively. After the intravenous injection, a Cmax2 (12.12 ± 1.97 μg/mL) was also observed, and initial concentration of 45.76 μg/mL, apparent elimination rate constant (λz) of 0.018 per h, apparent elimination half‐life (t1/2λz) of 39.0 h, systemic total body clearance (Cl) of 41.28 mL/h/kg, volume of distribution (Vz) of 2323.21 mL/kg, and volume of distribution at steady‐state (Vss) of 1356.69 mL/kg were determined, respectively. While after oral administration, the λz, t1/2λz, and bioavailability of doxycycline were 0.009 per h, 77.2 h, and 23.41%, respectively. It was shown that doxycycline was relatively slowly and incompletely absorbed, extensively distributed, and slowly eliminated in tilapia, in addition, doxycycline might undergo enterohepatic recycling in tilapia.  相似文献   

20.
Eighteen Holstein dairy cows ranging in body weight from 500–700 kg and with an average milk yield of 37 ± 6 kg/day were used to investigate the depletion of florfenicol (FFL) in milk and plasma of dairy cows. Three groups of six were administered FFL: Group A, intramammary (IMM) infusion of ~2.5 mg FFL/kg BW at three consecutive milking intervals (total amount of ~7.5 mg/kg BW); Group B, one IMM infusion (20 mg/kg BW) into one quarter and Group C, one subcutaneous (SC) treatment (40 mg/kg BW). IMM infusions were into the right front quarter. Cows were milked daily at 06:00 and 18:00 h. The highest concentrations (Cmax) and time to Cmax (Tmax) were: 1.6 ± 2.2 μg·FFL/mL milk at 22 h (Group A), 5.5 ± 3.6 μg·FFL/mL milk at 12 h (Group B), and 1.7 ± 0.4 μg·FFL/mL milk at 12 h (Group C). The half‐lives (t1/2) were ~19, 5.5, and 60 h, for Groups A, B, and C, respectively. FFL was below the limit of detection (LOD) by 60 h in three Group B cows, but above the LOD at 72, 84, and 120 h in three cows. FFL was above the LOD in milk from Group C's cows for 432–588 h. Plasma values followed the same trends as milk. The results demonstrate that IMM‐infused FFL is bioavailable and below the LOD within 72–120 h. The concentration of FFL was detectable in both plasma and milk over the course of 2–3 weeks after SC administration. The absence of residue depletion data presents problems in determining safe levels of FFL residues in milk and edible tissues. The data presented here must not be construed as approval for extra‐label use in food animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号