首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
Soil systematics and classification systems Part I: Fundamentals Soil‐ordering systems are primarily based and developed on one of two underlying principles: They are either categorized according to soil‐forming processes, or the formation of categories develops by chosen parameters. This perspective has already been established in the literature, though it is often confusing as many terms are defined and applied differently. In this contribution, the various definitions of systematics, classification, taxonomy, and identification will be clearly differentiated and summarized. The core of our work is to clearly define and contrast three terms: systematics, classification, and identification. Systematics is the fundamental scientific and deductive ordering of objects into systematic units. The purpose of this approach is to organize the entire spectrum of knowledge within a discipline into a transparent and manageable form. Classification, in direct contrast to systematics, is goal‐oriented and an inductive ordering of objects. Thus, the ordering scheme consists of classes which are clearly parameterized. Identification is the ordering of new objects into an already existing systematics or classification system. Close attention is paid to both the differences and the similarities between a systematics and a classification system, especially pertaining to their practical applications. The identification requires that the category‐forming characteristics can be measured (e.g., for soil systematics, these are the soil‐forming processes and factors). Currently, it is unfortunately not feasible to objectively quantify most soil‐forming processes. Thus, most attempts at categorizing soils by systematics are hypothetical and highly subjective in nature. The resulting identification derived from the soil systematics approach is open to questions and contestable, since a graded measuring system does not yet exist to verify these determinations. In contrast, a soil‐classification system does allow an objective soil‐profile identification, although such systems are conceived pragmatically and designed for a practical purpose (e.g., not scientifically based on process intensities). Unfortunately, such a classification system cannot be applied as a universal scientific categorization system due to this method of conception. Both categorization approaches are required in soil science in order to satisfy both the practical and the scientific aspects of the field. However, substantial research must be done to complete and verify systematics. The only viable short‐term solution is through the development of a graded classification system where the categories of the system are directly derived from the current systematics approach. In the long run both the exact investigation and the detailed modeling of the soil‐forming processes are inevitable.  相似文献   

2.
This paper is based on an extensive review of soil fertility in the literature of soil science, agronomy and ethnic studies. The spectrum of scientific opinions on soil fertility was visualized in mind‐maps, definition types were analyzed, and problems within the conceptual approach towards soil fertility were shown. Differently oriented concepts were divided between the terms of soil fertility and soil quality. Soil fertility is not applicable as a technical term in natural sciences as it describes a definite, but dispositional (concealed), soil feature; therefore, it is not fully operationalizable for the natural sciences. Soil quality denotes undefined and interchangeable sets of appreciated soil attributes and functionalities, which are assigned by value judgements. It is a tool that integrates different soil state variables and functions in order to evaluate the capacity of a soil to do what it is expected (i.e. function) or to assess the sustainability of current land‐use practices. The phenomenon of soil fertility appears to the consciousness as an autonomous counter‐instance with its own mental and material qualities, referred to in traditional cultic cultivation. The main features of cultic cultivation of soil fertility are the uniting of the four elements, the religio towards the spiritual side of nature, the sacrificial, and the eros. A reevaluation of the soil fertility phenomenon in modern terms would be an innovative and forward‐looking research program. Practical and scientific work on soil fertility should rediscover and revive the feeling for, and apperception of, the phenomenon of soil fertility in its mental and material aspects.  相似文献   

3.
Historical perspective of soil classification in Japan from Max Fesca's soil classification in 1882 to the “Unified Soil Classification System of Japan (2002)” was outlined, aiming at reviewing the progress in soil classification. The evolution can be divided into the following five aspects: 1) Max Fesca's soil texture survey and soil classification from the agro-geological point of view under the influence of the German school; 2) Introduction of the concept of pedology into the classification under the influence of the Russian school led by Dokchaev; 3) Brief history of the classification of Andosols which has exerted a considerable influence on soil classification worldwide; 4) Soil classifications developed through the implementation of national soil survey projects to independently evaluate land suitability for the cultivation of paddy rice, upland crops, and for forest establishment; 5) Attempts to develop a comprehensive soil classification system in order to unify soil classification systems for the above-mentioned land uses from 1963 to the present.  相似文献   

4.
During the 19th century, soil science in Germany developed from a combination of agriculture and both geology and forestry. Further research developments described in this review include pedology, soil classification and mapping, soil chemistry and mineralogy, soil physics, and ecosystem research. Beside this, the German Society of Soil Science and their relations to the International Society (Union) of Soil Science are shortly introduced.  相似文献   

5.
For the development of sustainable land‐management systems in the highlands of N Thailand, detailed knowledge about soil distribution and soil properties is a prerequisite. Yet to date, there are hardly any detailed soil maps available on a watershed scale. In this study, soil maps on watershed level were evaluated with regard to their suitability for agricultural land‐use planning. In addition to common scientific methods (as underlying the WRB classification), participatory methods were used to exploit local knowledge about soils and to document it in a “Local Soil Map”. Where the WRB classification identified eight soil units, the farmers distinguished only five on the basis of soil color and “hardness”. The “Local Soil Map” shows little resemblance with the detailed, patchy pattern of the WRB‐based soil map. On the contrary, the “Local Soil Map” is fairly similar to the petrographic map suggesting that soil color is directly related to parent material. The farmers' perception about soil fertility and soil suitability for cropping could be confirmed by analytical data. We conclude that integrating local soil knowledge, petrographic information, and knowledge of local cropping practices allows for a rapid compilation of information for land‐evaluation purposes at watershed level. It is the most efficient way to build a base for regional land‐use planning.  相似文献   

6.
In contrast to modern soil‐profile characterization, alternative soil classifications, such as the German soil‐quality assessment (Bodenschätzung), bear a lower degree of scientific quality. However, despite originally created to determine the tax value of arable land and grassland, its high spatial resolution and complete areal coverage makes soil‐quality assessment a valuable tool. To assess its performance in a mountainous setting soil‐layer data of 60 soil pits, recorded in Bavaria (SE Germany) in the course of the soil‐quality assessment, were translated into German soil‐science terminology using the translation program NIBIS®. With regard to soil type and texture the translation was checked using pinpoint field validation based on soil‐science terminology. 57% of soil types and 61% of texture were correctly translated by NIBIS®. To obtain information about probable parameters that can explain the different results readily available parameters such as elapsed time between soil‐quality assessment and validation, altitude, slope, aspect, horizon thickness, lower edge of horizon, as well as weathering surface and silicate‐weathering rate derived from geological maps were used. Differences in topsoil texture were somewhat related to petrographic parameters, those of the lower subsoil showed a weak dependence to topographic parameters. The NIBIS® translation overrated the silt content to the expense of sand. Clay was the best‐matched texture class. The shift towards silty texture classes was the dominant factor for the differences of texture‐related values of the available water capacity and hydraulic conductivity. Both parameters as derived from the NIBIS® translation on the one and from field validation on the other hand were used to evaluate the water‐retention capacity of individual soil profiles. Despite differing input data the soils' water‐retention capacity was rated identical. Thus, a certain degree of disagreement between the texture data obtained from NIBIS® translation and from field validation is tolerable, if the eventual soil‐function evaluation is based on wide classes of texture or of secondary parameters derived from texture.  相似文献   

7.
Seventeen Sustainable Development Goals (SDGs) were adopted by 193 Governments at the General Assembly of the United Nations in 2015 for achievement by 2030. These SDGs present a roadmap to a sustainable future and a challenge to the science community. To guide activities and check progress, targets and indicators have been and are still being defined. The soil science community has published documents that describe the primary importance of soil for SDGs addressing hunger, water quality, climate mitigation and biodiversity preservation, and secondary relevance of soil for addressing several other SDGs. Soil scientists only marginally participated in the SDG discussions and are currently only peripherally engaged in discussions on targets or indicators. Agreement on several soil‐related indicators has still not been achieved. Involvement of soil scientists in SDG‐based studies is desirable for both developing solutions and increasing the visibility of the soil profession. Inputs into policy decisions should be improved as SDG committee members are appointed by Governments. Possible contributions of soil science in defining indicators for the SDGs are explored in this paper. We advocate the pragmatic use of soil–water–atmosphere–plant simulation models and available soil surveys and soil databases where “representative” soil profiles for mapping units (genetically defined genoforms) are functionally expressed in terms of several phenoforms reflecting effects of different types of soil use and management that strongly affect functionality.  相似文献   

8.
9.
According to the German Soil Taxonomy, the formation of cemented horizons in Podzols is restricted to the precipitation of iron oxides. However, in iron‐poor sandy substrates, also illuviation of only organic compounds can form cemented horizons with penetration resistances of up to 14 kg cm−2. We present a reproducible field test for classifying pedogenic cementation in Podzols and suggest considering cemented horizons (Bmh and Bhm) in the upcoming edition of the Guidelines for Soil Mapping.  相似文献   

10.
Soil is a precious and non-renewable resource that is under increasing pressure and the development of indicators to monitor its state is pivotal. Soil organic carbon (SOC) is important for key physical, chemical and biological soil properties and thus a central indicator of soil quality and soil health. The content of SOC is driven by many abiotic factors, such as texture and climate, and is therefore strongly site-specific, which complicates, for example, the search for appropriate threshold values to differentiate healthy from less healthy soils. The SOC:clay ratio has been introduced as a normalized SOC level metric to indicate soils' structural condition, with classes ranging from degraded (<1:13) to very good (>1:8). This study applied the ratio to 2958 topsoils (0–30 cm) in the German Agricultural Soil Inventory and showed that it is not a suitable SOC level metric since strongly biased, misleading and partly insensitive to SOC changes. The proportion of soils with SOC levels classified as degraded increased exponentially with clay content, indicating the indicator's overly strong clay dependence. Thus, 94% of all Chernozems, which are known to have elevated SOC contents and a favourable soil structure, were found to have either degraded (61%) or moderate (33%) normalized SOC levels. The ratio between actual and expected SOC (SOC:SOCexp) is proposed as an easy-to-use alternative where expected SOC is derived from a regression between SOC and clay content. This ratio allows a simple but unbiased estimate of the clay-normalized SOC level. The quartiles of this ratio were used to derive threshold values to divide the dataset into the classes degraded, moderate, good and very good. These classes were clearly linked to bulk volume (inverse of bulk density) as an important structural parameter, which was not the case for classes based on the SOC:clay ratio. Therefore, SOC:SOCexp and its temporal dynamic are proposed for limited areas such as regions, states or pedoclimatic zones, for example, in a soil health monitoring context; further testing is, however, recommended.  相似文献   

11.
This article discusses research in which the authors applied the Revised Universal Soil Loss Equation (RUSLE), remote sensing, and geographical information system (GIS) to the maping of soil erosion risk in Brazilian Amazonia. Soil map and soil survey data were used to develop the soil erodibility factor (K), and a digital elevation model image was used to generate the topographic factor (LS). The cover‐management factor (C) was developed based on vegetation, shade, and soil fraction images derived from spectral mixture analysis of a Landsat Enhanced Thematic Mapper Plus image. Assuming the same climatic conditions and no support practice in the study area, the rainfall–runoff erosivity (R) and the support practice (P) factors were not used. The majority of the study area has K values of less than 0·2, LS values of less than 2·5, and C values of less than 0·25. A soil erosion risk map with five classes (very low, low, medium, medium‐high, and high) was produced based on the simplified RUSLE within the GIS environment, and was linked to land use and land cover (LULC) image to explore relationships between soil erosion risk and LULC distribution. The results indicate that most successional and mature forests are in very low and low erosion risk areas, while agroforestry and pasture are usually associated with medium to high risk areas. This research implies that remote sensing and GIS provide promising tools for evaluating and mapping soil erosion risk in Amazonia. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Soil associations of different geomorpholocical units of a younger‐moraine area in Schleswig‐Holstein (NW Germany) considering matter fluxes As result of a detailed mapping work, the soil association of different geomorpholocical units of a younger‐moraine area (“Stormarner Jungmoränengebiet”) in Schleswig‐Holstein (NW Germany) is analyzed taking into account soil development in vertical and horizontal direction. The consequences for classification of soil types and soil associations are discussed. We distinguished between different patterns of matter fluxes (unilateral coupling, mutual coupling, no coupling of soils). By morphometric analysis of the relief, five geomorpholocical units were distinguished: till‐plains with dead‐ice kettles (I), tongue‐like basin with moraine slopes (II), terminal‐push moraine (III), moraine slopes with gutter valley (IV), und terminal‐push moraine valley with steep slopes (V). In the examination area with its intense agricultural land use, the regular sequence of erosion and accumulation of soils is a typical consequence of unilateral water‐flow direction. Thus, the truncated Stagnic Luvisols/Anthrosols association is dominating. We suggest to classify the truncated Luvisol with a Bt horizon exposed directly to the surface at the level of soil subtypes in the German soil‐classification system. Additionally soils in depressions such as Calcic Gleysols, Histosols and “subhydric soils”, which are influenced by solute and solid‐matter input, are frequently encountered. Within the till‐plains, a compensation of the relief by (historical) soil erosion took place, recognizable by the high percentage of Anthrosols (20 %). Therefore, no recent lateral transport of solid material can be found. The steep moraine slopes partly already show Regosols, thus indicating a high erosion potential (erosion rate for geomorphical unit IV: 13 t ha–1 y–1). In the depressions intersected with small streams, the afflux caused by mills led to an additional peat development.  相似文献   

13.
德国土壤科学的研究进展   总被引:1,自引:0,他引:1  
张学雷  陈杰 《土壤通报》2003,34(6):558-561
本文通过访问德国前土壤学会主席以及有关文献的查对、研究,介绍了德国土壤科学的主要研究进展,包括德国土壤科学的起源、国家与国际合作、土壤发生学研究、土壤制图与分类、土壤化学与矿物学、土壤物理和生态系统研究等方面的代表性人物与主要研究进展,希望能对我国同行有些启发和借鉴作用。  相似文献   

14.
为了解和评价和田地区管花肉苁蓉寄主柽柳林地土壤肥力状况,指导土壤培肥,以该地区管花肉苁蓉分布最广、产量最高的于田县和民丰县为研究区域,采集该地区不同种植年限和灌溉方式下的土壤样本,对其主要物化性质进行调查研究。结果表明:接种管花肉苁蓉的柽柳林地土壤全氮和有机质含量均值分别为0.31 g/kg和2.42 g/kg,处于缺乏和很缺乏水平;土壤速效钾和全磷含量均值分别为155 mg/kg和0.55 g/kg,处于适宜及以上水平;土壤有效磷含量在0.4~8.0 mg/kg,处于适宜和缺乏水平的分别占调查面积的41.2%和58.8%。土壤pH为中性或微碱性,种植年限达10 a以上的土壤呈微酸性且已发生次生盐渍化。相同种植年限下,传统的漫灌转为滴灌可使土壤EC值、全氮和硝态氮含量分别降低60.6%、48.8%和34.7%。  相似文献   

15.
Classiology can be defined as a science studying the principles and rules of classification of objects of any nature. The development of the theory of classification and the particular methods for classifying objects are the main challenges of classiology; to a certain extent, they are close to the challenges of pattern recognition. The methodology of classiology integrates a wide range of methods and approaches: from expert judgment to formal logic, multivariate statistics, and informatics. Soil classification assumes generalization of available data and practical experience, formalization of our notions about soils, and their representation in the form of an information system. As an information system, soil classification is designed to predict the maximum number of a soil’s properties from the position of this soil in the classification space. The existing soil classification systems do not completely satisfy the principles of classiology. The violation of logical basis, poor structuring, low integrity, and inadequate level of formalization make these systems verbal schemes rather than classification systems sensu stricto. The concept of classification as listing (enumeration) of objects makes it possible to introduce the notion of the information base of classification. For soil objects, this is the database of soil indices (properties) that might be applied for generating target-oriented soil classification system. Mathematical methods enlarge the prognostic capacity of classification systems; they can be applied to assess the quality of these systems and to recognize new soil objects to be included in the existing systems. The application of particular principles and rules of classiology for soil classification purposes is discussed in this paper.  相似文献   

16.
Soil air permeability is an important parameter which governs the aeration in soils that significantly promotes the root growth of field and grassland species and leads, in turn, to higher levels of evapotranspiration. The German Landfill Directive (2009) requires a rigid or a minimal shrinking capping system that ensures a high evapotranspiration rate to decrease the infiltration rate through the underlying waste body and therefore the leachate generation. This research is focussed on the questions if compacted glacial till can ensure the required rigidity and if and how air permeability is affected by soil compaction. The objective was to compare air‐filled porosity and the direction‐dependency of air permeability of a capping soil when assuming rigid and non‐rigid conditions considering a shrinkage factor. Intact soil cores were sampled in vertical and horizontal direction in 0.05, 0.2, 0.5, and 0.8 m depths at two profiles of a mineral landfill capping system at the Rastorf landfill in Northern Germany. Desiccation experiments were carried out on differently‐compacted soils and soil shrinkage was measured with a 3D laser triangulation device, while the air permeability was estimated with an air flow meter. The results indicate that the “engineered” soil structure which was predominately platy due to a layered installation, led to a more anisotropic behaviour and therefore to higher air permeability in horizontal than in vertical direction. The compacted installation of the capping system seems to be effective and observes the statutory required more‐or‐less rigid system, otherwise, soil shrinkage would lead to vertical cracks and a more pronounced isotropic behaviour.  相似文献   

17.
Digital soil mapping as a tool to generate spatial soil information provides solutions for the growing demand for high‐resolution soil maps worldwide. Even in highly developed countries like Germany, digital soil mapping becomes essential due to the decreasing, time‐consuming, and expensive field surveys which are no longer affordable by the soil surveys of the individual federal states. This article summarizes the present state of soil survey in Germany in terms of digitally available soil data, applied digital soil mapping, and research in the broader field of pedometrics and discusses future perspectives. Based on the geomorphologic conditions in Germany, relief is a major driving force in soil genesis. This is expressed by the digital–soil mapping research which highlights the great importance of digital terrain attributes in combination with information on parent material in soil prediction. An example of digital soil mapping using classification trees in Thuringia is given as an introduction in digital soil‐class mapping based on correlations to environmental covariates within the scope of the German classification system.  相似文献   

18.
Gamma‐ray spectrometry is an established method in geo‐sciences. This article gives an overview on fundamentals of gamma‐ray spectrometry that are relevant to soil science including basic technical aspects, and discusses influencing factors, inconsistencies, limitations, and open questions related to the method. Gamma‐ray spectrometry relies on counting gamma quanta during radionuclide decay of 40K, 238U, and 232Th, but secular equilibrium for the decay series of U and Th must be given as decays of their respective daughter radionuclides are used for determination. Secular equilibrium for U and Th decay series, however, is not always given leading to, e.g., anomalies in U concentration measurements. For soil science, gamma‐ray spectrometry is of specific value since it does not only detect a signal from the landscape surface, but integrates information over a certain volume. Besides, different spatial scales can be covered using either ground‐based or airborne sensing techniques. Together with other remote sensing methods, gamma signatures can provide completive information for understanding land forming processes and soil properties distributions. At first, signals depend on bedrock composition. The signals are in second order altered by weathering processes leading to more interpretation opportunities and challenges. Due to their physico‐chemical properties, radionuclides behave differently in soils and their properties can be distinguished via the resulting signatures. Hence, gamma signatures of soils are specific for local environments. Processes like soil erosion can superimpose gamma signals from in situ weathering. Soil mappings, available K and texture determination, or peat and soil erosion mapping are possible applications being discussed in this review.  相似文献   

19.
Soils of Mound Hedges in Schleswig-Holstein I. Classification and Genesis In typical landscapes of Schleswig-Holstein soils of mound hedges were investigated (FAO (1989): Cumulic Anthrosol). New soils have been developed from the deposit of the mound hedge in less than 250 years. A classification with regard to the German classification of natural soils is suggested. The soil genesis from sandy deposits has reached the step of Dystric Regosols, groundwater has induced gleyic features. Soil genesis could be described chronologically, if time of deposition of these mound hedges is known. Some of the natural soils are conserved below the deposit. Pedogenesis in an area, changed by man, could be reconstructed. This is why systematic, scientific soil investigations of mound hedges may be very interesting.  相似文献   

20.
Temporal changes in soil CO2‐efflux rate was measured by a canopy‐gap method in a Populus euphratica forest located at the both sides of Tarim River banks (W China). Soil CO2‐efflux rates in situ were correlated with key soil biotic (e.g., fungal, bacterial, and actinomycetes populations) and abiotic (e.g., soil moisture, temperature, pH, organic C) variables. Two kinds of measurement plots were selected: one under the crown of a living Populus euphratica tree and the other under a dead standing Populus euphratica tree. Diurnal variations in soil respiration in these plots were measured both before and after the occurrence of the first frost. Soil respiration of the dead standing Populus euphratica (Rd) was assumed to be a measure of heterotrophic respiration rate (Rh), and root respiration rate (Rr) was estimated as the difference between soil respiration under living (Rl) minus soil respiration under dead standing Populus euphratica. Daily variation of Rr contribution to the total soil respiration in Populus euphratica forests were analyzed before and after the frost. The contribution of root respiration to total soil respiration before and after frost varied from 22% to 45% (mean 30%) and from 38% to 50% (mean 45%), respectively. In addition, Rh was significantly correlated with soil temperature both before and after frost. In contrast, Rr was not significantly correlated with soil temperature. Change in Q10 of Rr was different from that of Rh from before the frost to after the frost. Variation of Q10 of Rr from before the frost to after the frost was larger than that of Q10 of Rh. Thus, the results indicate that different soil respiration models are needed for Rr and Rh because different factors control the two components of soil respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号