首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
本研究以水稻秸秆为原料制备生物炭(BC300),通过使用腐植酸和3-巯丙基三甲氧基硅烷(3-MPTS)丰富其表面官能团,得到腐植酸改性生物炭(HBC300)和巯基改性生物炭(SBC300)两种改性生物炭,分析改性生物炭对Cd2+的吸附能力,借助FT-IR、XPS和Boehm滴定等表征手段和密度泛函理论(DFT)计算探究改性生物炭的理化性质及官能团对吸附Cd2+的作用。结果表明:改性过程改变了生物炭的理化性质,HBC300表面增加了COOH和OH官能团,而SBC300表面COC、CO和SH官能团增多。通过丰富其生物炭表面官能团提升了生物炭对Cd2+吸附反应速率和吸附性能,表现出改性生物炭在水中去除Cd2+的潜力。其中,SBC300对Cd2+吸附效果最佳,其最大平衡吸附容量为49.5 mg·g-1,但吸附反应速率小于HBC300,符合准二级动力学方程和Langmuir等温吸附模型,此吸附过程为单分子层吸附并受化学吸附控制。表征数据及DFT计算拟合数据结果表明,生物炭表面修饰官能团加快了对Cd2+吸附反应速率,但COC和CO官能团限制了SBC300对Cd2+的吸附反应速率。  相似文献   

2.
为改善稻壳炭对Cd2+的吸附能力,分别选用壳聚糖、硝酸铁与高锰酸钾对稻壳生物炭进行改性,成功制备了壳聚糖改性稻壳炭(C-BC)和铁锰改性稻壳炭(FM-BC),表征了各稻壳炭的基础理化性质,包括比表面积分析(BET)、傅里叶变换红外光谱(FTIR)、X射线衍射表征(XRD),进行了动力学吸附实验和等温吸附实验,并在不同pH和投加量条件下,研究了改性生物炭对Cd2+的吸附量和去除率。结果表明:两种改性方式均减小了稻壳炭的比表面积和总孔隙体积; FM-BC含有Mn-O、Fe-O的特征官能团,此外改性前后稻壳炭的官能团类型基本不变;两种改性方式均使稻壳炭产生了对应的晶体结构变化。两种改性炭对Cd2+动力学吸附特征均符合准二级动力学模型,颗粒内扩散模型均分为3个阶段,对Cd2+等温吸附特征均符合Langmuir模型; C-BC和FM-BC的最大吸附量分别为25.51 mg·g-1和16.25 mg·g-1,是BC (14.97 mg·g-1)的1.7倍和1.08倍。随着溶液pH增加,C-BC和FMBC的吸附量和去除率逐渐增加,且始终高于BC;随着投加量的增加,C-BC和FM-BC的Cd2+去除率逐渐增加,而吸附量逐渐降低。两种改性方式均能够在一定程度上提高稻壳炭对Cd2+的吸附能力,均以单分子层化学吸附占主导,C-BC的最大吸附量明显高于FM-BC,适度调整溶液pH和投加量可改善改性稻壳炭的Cd2+吸附效果。  相似文献   

3.
以花生壳为原料、KOH为改性剂,考察碱改性工艺流程中的参数(热解温度、碱炭比和碱处理方式)对改性生物炭吸附盐酸四环素(TCH)的影响。通过吸附实验,以原状生物炭(BC600)为对照,探讨改性工艺参数的变化对吸附性能的影响。对生物炭进行扫描电镜(SEM)、能谱(EDS)、比表面积与孔径分析、傅里叶红外光谱(FTIR)、pHPZC等表征,探究生物炭对TCH的吸附机理。结果表明:碳化温度600℃、碱炭比2∶ 1、使用碱后处理-熔融法制备的改性生物炭(Post-MBC)对TCH去除能力最强。在25℃、pH=4的环境下,0.1 g的Post-MBC对40 mL 0.06 mg·mL-1的TCH去除率可达99.07%,Post-MBC对TCH的理论最大吸附量可达240.94mg·g-1(45℃)。Post-MBC的比表面积和微孔体积可达863.56 m2·g-1和0.26 cm3·g-1,KOH改性使生物炭的亲水性降低、表面带有负电荷,提高了对疏水性污染物和带正电荷污染物的吸附能力。生物炭的动力学模型更符合McKay方程,三种等温吸附模型的相关系数均较高。改性后的生物炭对TCH的吸附以化学吸附为主导,吸附过程吸热且自发进行。吸附机理包括孔隙填充作用、π-π相互作用、氢键作用、静电相互作用和疏水相互作用。  相似文献   

4.
氧化老化玉米秸秆生物炭吸附镉机理研究   总被引:1,自引:1,他引:0  
为研究玉米秸秆生物炭在经过模拟自然界老化后对Cd2+的吸附响应,本文利用H2O2对玉米秸秆生物炭进行氧化老化1、2、3次,利用元素分析仪、扫描电镜、红外光谱及碳谱等分析方法,分析老化前后生物炭对Cd2+的吸附及响应机理。结果表明:玉米秸秆生物炭氧化老化过程中形成硅酸盐沉淀;经过H2O2老化后H/C、O/C和(O+N)/C的原子比逐渐升高,使得生物炭含氧官能团上升、芳香性减弱、极性增强;老化1次(OYM1)、2次(OYM2)、3次(OYM3)后玉米秸秆生物炭碱性元素逐步被释放,碱性元素较未氧化玉米秸秆生物炭(YM)分别降低了48.23%、95.04%、95.74%;不同处理生物炭对Cd2+的最大吸附量表现为: YM(12.42 mg·g-1) >OYM1(5.98 mg·g-1) >OYM3(3.88 mg·g-1) >OYM2(3.61 mg·g-1),说明老化作用抑制了其对Cd2+的吸附。在玉米秸秆生物炭长期利用过程中,生物炭的老化促进无机组分发挥作用,吸附性能减弱,在进行土壤及水污染修复时应合理使用。  相似文献   

5.
为探讨生物炭/凹凸棒石复合材料对废水中重金属的吸附效果与作用机理,以水稻、小麦秸秆与凹凸棒石为原料,在缺氧条件下热解制备生物炭/凹凸棒石复合材料。通过批量吸附实验研究时间、浓度及pH等因素对复合材料吸附溶液中Cd2+和Pb2+的影响,利用SEM、BET、XRD、FTIR等方法对吸附前后的复合材料进行表征分析,从定性和定量的角度分析其作用机理,明确主导吸附机制。结果表明:准二级动力学和Langmuir等温模型更符合复合材料对Cd2+和Pb2+的吸附过程。与原始生物炭和凹凸棒石相比,水稻秸秆与凹凸棒石比例为5∶1时制备的复合材料RABC5-1和小麦秸秆与凹凸棒石比例为3∶1时制备的复合材料WABC3-1具有更好的吸附效果,对Cd2+的最大吸附量分别为132.97 mg·g-1与132.39 mg·g-1,对Pb2+的最大吸附量分别为222.60mg·g-1与220.55 mg·g-1。机理分析表明,复合材料对Cd2+和Pb2+的吸附机理主要包括沉淀作用、官能团络合作用、离子交换作用和阳离子-π作用。定量分析进一步证明,沉淀作用在RABC5-1、WABC3-1吸附Cd2+的过程中所占比例分别为84.6%、77.3%,在吸附Pb2+的过程中所占比例分别为82.0%、78.3%,是复合材料吸附重金属的主要机理,其次为阳离子交换作用,官能团络合作用和阳离子-π作用对吸附的整体贡献率较小。研究表明,复合材料RABC5-1与WABC3-1具有良好的吸附Cd2+和Pb2+的性能,是一种极具潜力的吸附材料,且沉淀作用是复合材料吸附重金属的主导机制。  相似文献   

6.
以甘蔗渣为原材料,在限氧条件下经600℃碳化制备生物炭RC,经800℃碳化制备生物炭HC,分别研究两者对Cr (Ⅵ)的吸附-还原反应。采用扫描电子显微镜-能谱(SEM-EDS)、比表面积和孔隙分析(BET)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)和拉曼光谱(RS)等对甘蔗渣生物炭表面性质进行表征,从吸附等温线、吸附动力学等角度探讨甘蔗渣生物炭对Cr (Ⅵ)的吸附-还原反应特征及其机理。结果表明:甘蔗渣生物炭具有丰富的孔隙结构和表面活性基团,且随着碳化温度升高,甘蔗渣生物炭表面孔隙度和芳香化程度增加,而含氧官能团OH、C O等相对含量则降低。HC对Cr (Ⅵ)的吸附-还原去除效果最好,总去除量高达117.28 mg·g-1,较RC增加了82.42 mg·g-1,其中吸附反应的去除量为76.00 mg·g-1,比RC增加了67.99 mg·g-1。随着碳化温度升高,生物炭缺陷程度降低,电子传递能力增强。HC对Cr (Ⅵ)的还原量为87.40 mg·g-1,较RC增加了57.03 mg·g-1。吸附等温线和吸附动力学拟合结果显示,甘蔗渣生物炭对Cr(Ⅵ)的吸附更符合拟二级动力学模型。Langmuir模型适用于HC对Cr(Ⅵ)的吸附,Freundlich模型适用于RC对Cr (Ⅵ)的吸附。XPS和FTIR分析结果显示,甘蔗渣生物炭对Cr (Ⅵ)的去除机理为静电吸附、还原和络合作用,其中RC、HC吸附作用的相对贡献率分别为22.98%、64.80%,还原反应的相对贡献率分别为87.12%、74.52%,表明甘蔗渣生物炭对Cr (Ⅵ)的去除过程以还原为主。  相似文献   

7.
本文研究了不同热解温度条件下牛骨生物炭理化性质及对 Cd2+的吸附特性,采用限氧控温慢速热裂解的方式,在 300、350、400、500、700 ℃和900 ℃条件下制备牛骨生物炭。分别采用热重分析仪、傅里叶变换红外光谱以及扫描电镜能谱仪等设备对牛骨生物炭进行表征,并通过批量吸附实验分析其对Cd2+的吸附特性。结果表明:牛骨生物炭pH值、灰分含量随热解温度提高而增加,芳构度逐渐增强,孔径与比表面积增大,而挥发分、有机碳含量与全氮含量减少;准二级动力学模型可以准确拟合5种牛骨生物炭对Cd2+的吸附动力学过程(R2>0.999),在接近吸附平衡时,吸附速率由颗粒内扩散主导;牛骨生物炭对Cd2+等温吸附过程更符合Langmuir模型,700 ℃条件下制备的牛骨生物炭对Cd2+的吸附效果最好,最大平衡吸附量为44.32 mg·g-1;随着热解温度增加,牛骨生物炭对Cd2+吸附机制中官能团络合作用减弱,表面吸附、阳离子交换以及π电子配位作用增大。在实际规模化制备牛骨生物炭过程中应充分考虑能耗成本以及尾气收集问题。  相似文献   

8.
为研究环境中生物炭和微塑料之间的相互作用对有机污染物吸附产生的影响,选取两种粒径范围[0.85~2.00 mm(L)和0.11~0.18 mm(S)]的小麦秸秆生物炭(BC)和聚乙烯微塑料(PE),对其性质进行表征,并测定了吸附平衡溶液中溶解性有机碳的浓度和组成,研究了其单独和共存时吸附菲的行为。结果表明:同种颗粒物不同粒径间的差异主要体现在总比表面积、孔结构和表面官能团数量;SBC的总比表面积(216.32 m2·g-1)约是LBC(2.31 m2·g-1)的100倍,而LBC的平均孔径(8.92 nm)约是SBC(2.28 nm)的4倍;SPE的总比表面积(0.17 m2·g-1)是LPE(0.07 m2·g-1)的2倍多。SBC羟基振动峰(3 400 cm-1)的强度显著高于LBC;SPE亚甲基振动峰的强度高于LPE。吸附等温线结果显示,颗粒物对菲的吸附均符合Freundlich模型(R2>0.94);单一颗粒物吸附菲能力(lg Kf)的顺序为SBC>SPE>LPE>LBC;当生物炭与聚乙烯微塑料共存时吸附能力强于单一颗粒物,并且高于两相Freundlich模型预测值,说明菲在生物炭与聚乙烯微塑料混合颗粒物上的吸附不是独立的;同时,混合颗粒物吸附平衡溶液中溶解性有机碳的浓度和芳香度明显下降,并且溶解性有机碳浓度与颗粒物的lg Kf显著负相关,说明不同颗粒物对菲的吸附不仅受颗粒物表面性质的影响,还受溶解性有机碳的控制。  相似文献   

9.
为探讨纳米Fe3O4负载联合硝酸改性椰壳炭对Pb2+、Cd2+单一及复合溶液的吸附特性,通过静态吸附实验,针对吸附剂的表面特性、投加量、溶液初始pH、吸附时间、重金属初始浓度等影响因素进行了探讨,应用等温吸附模型及吸附动力学模型对吸附特性进行了研究。结果表明,纳米Fe3O4负载酸改性炭比表面积较未改性椰壳炭增加了221.03 m2·g-1,表面含氧官能团如O-H、C=O、C-O-C增加,芳香性增强,等电点提高至5.68。从经济效率角度考虑5 g·L-1为合理吸附剂用量,pH为5.0时,吸附效果最好,吸附在4 h达到平衡。准二级动力学模型对吸附的拟合度更高,吸附主要是化学吸附,吸附由快速外扩散和颗粒内扩散共同作用,Pb2+、Cd2+的吸附分别更符合Langmuir和Freundlich等温吸附模型。纳米Fe3O4负载酸改性椰壳炭对Pb2+、Cd2+的最大吸附量(Qm)分别达42.54 mg·g-1和25.79 mg·g-1,为未改性椰壳炭的1.87倍和2.23倍,复合溶液中Pb2+、Cd2+Qm分别为单一溶液的65.16%和54.21%,这揭示了离子共存条件下的吸附竞争现象。研究表明,纳米Fe3O4负载联合硝酸改性提高了椰壳炭对Pb2+、Cd2+的吸附能力,且Pb2+的吸附性能及吸附竞争性优于Cd2+。  相似文献   

10.
为研发原料来源广泛和吸附性能高的磷酸盐吸附剂,在400、500、600℃和700℃高温热解法制备羊粪生物炭基础上,采用浸载法进行La改性,得到高效脱磷的La改性新材料。结果表明,500℃热解温度的La改性羊粪生物炭吸附性能最佳,Langmuir方程拟合的最大吸附量为56.35 mg·g-1,达到或优于农林秸秆生物炭吸附水平。通过等温吸附方程和动力学方程推测吸附行为是单分子层的化学吸附。新材料在磷酸盐初始浓度小于100 mg·L-1时,随浓度增加吸附量快速增大。即便溶液pH值在3~11较大范围内变动,新材料对磷酸盐去除能力仍然很高。通过表征分析表明材料吸附磷酸盐的机理主要为配体交换。本研究为羊粪的资源化利用提供了一种新方法,该方法制备工艺简单,获得的材料吸附量高达58.33 mg·g-1,为同类生物炭材料的制备提供一定的参考。  相似文献   

11.
为提高生物质炭对重金属的吸附性能,以棕榈树纤维为原材料制备了棕榈树纤维生物质炭(NPB)、KOH活化正交优化生物质炭(PB)及负载改性纳米二氧化硅生物质炭(PBS)。分别采用红外光谱、扫描电镜等对制备的生物质炭进行表征,比较了其碘吸附值大小及对水中Pb~(2+)的吸附效果,并分析了吸附动力学和等温吸附特性。结果表明:PB、PBS较NPB增加了表面吸附位点,比表面积、总孔体积及最大吸附容量显著增加,PB吸附Pb~(2+)的过程符合准二级动力学模型,PBS吸附Pb~(2+)的过程符合准一级动力学模型,PB、PBS对Pb~(2+)的最大吸附容量分别为110.89、151.63 mg·g~(-1);通过比较Langmuir和Freundlich模型拟合方程相关参数可知,PB、PBS对Pb~(2+)的吸附过程为匀质、单双层同时进行,更加符合Langmuir方程。研究表明,PBS对Pb~(2+)的吸附性能最好(较PB吸附性能提升了1.37倍),负载改性效果显著,具有良好的应用潜力。  相似文献   

12.
纳米羟基磷灰石改性生物炭对铜的吸附性能研究   总被引:1,自引:1,他引:0  
为了提高生物炭对重金属铜的吸附能力,选取小麦秸秆作为原料,将不同比例纳米羟基磷灰石与秸秆混合均匀,在600℃高温限氧条件下制备了羟基磷灰石改性生物炭材料,比较了生物炭和生物炭改性材料对铜的吸附特性,同时分析了两者间的表面特征等。结果表明:热重分析显示,生物炭表面附着纳米羟基磷灰石可以提高生物炭的热稳定性;扫描电子显微镜分析显示,纳米羟基磷灰石可以较为均匀地附着在生物炭表面,但同时会伴随不同程度的聚集现象;接触角测试结果显示,生物炭表面附着纳米羟基磷灰石可降低其疏水性;生物炭和生物炭改性材料对铜的吸附符合伪二级动力学模型,生物炭改性材料可使铜的吸附速率提高7.69%~130.77%;生物炭和生物炭改性材料对不同浓度的铜吸附符合Langmuir等温吸附模型,对铜的最大吸附量分别为32.65 mg·g~(-1)和57.01 mg·g~(-1)。  相似文献   

13.
猕猴桃木生物质炭对溶液中Cd2+、Pb2+的吸附及应用研究   总被引:2,自引:1,他引:1  
为探讨生物质炭对废水中重金属的吸附性能,以猕猴桃修剪枝为原料制备生物质炭,通过静态吸附法研究了其对复合溶液中Cd2+、Pb2+的吸附,探究了溶液初始浓度、吸附时间、pH值及生物质炭投加量对溶液中Cd2+、Pb2+吸附效果的影响,同时采用扫描电镜(SEM)和傅里叶红外光谱(FTIR)对吸附前后的生物质炭结构进行了表征,并讨论了其对养殖废水和垃圾渗滤液中Cd2+和Pb2+的吸附能力。结果表明:猕猴桃木生物质炭具有多孔结构和多种表面官能团。Cd2+、Pb2+的最优吸附条件是pH为4~6,120 min吸附达到平衡,最佳投加量分别为4.0、3.0 g·L-1,最大吸附量分别为9.35、65.9 mg·g-1。生物质炭对Cd2+、Pb2+的吸附过程用准二级动力学方程能较好地描述;在25℃条件下,生物质炭对Cd2+的吸附用Langmuir方程能更好地描述,其理论最大吸附量达13.1 mg·g-1,而生物质炭对Pb2+的吸附过程用Freundlich方程能更好地描述。猕猴桃木生物质炭可作为处理轻度重金属复合污染废水的吸附剂。  相似文献   

14.
生物质炭对黑土吸附-解吸硝态氮性能的影响   总被引:12,自引:4,他引:8  
为了探讨生物质炭对黑土吸附-解吸硝态氮性能的影响,减少黑土中硝态氮的淋失、提高氮肥利用率以及为农业废弃物资源化利用提供理论依据,采用培养试验,应用Langmuir方程和Freundlich方程,研究了添加不同来源(玉米秸秆、稻壳、松木)和不同添加比例(0.6%、1.2%、3.6%、6%)生物质炭对黑土中硝态氮(NO_3~--N)的吸附和解吸特征。结果表明,施用生物质炭可增加黑土对NO_3~--N的吸附量,且三种生物质炭的添加比例为3.6%时,土壤对NO_3~--N的吸附量最大;施用玉米秸秆生物质炭的黑土对NO_3~--N的吸附量最大(实际最大吸附量为0.929 mg·g~(-1)),施用松木生物质炭的黑土对NO_3~--N的吸附量最小(实际最大吸附量为0.578 mg·g~(-1))。施用生物质炭可降低黑土对NO_3~--N的解吸率,且三种生物质炭的添加比例为3.6%时,土壤对NO_3~--N的解吸率最低;添加玉米秸秆生物质炭的黑土对NO_3~--N的解吸率最低,添加松木生物质炭的黑土对NO_3~--N的解吸率最高。不同生物质炭对NO_3~--N的吸附能力表现为玉米秸秆稻壳松木;对其解吸能力表现为玉米秸秆稻壳松木。生物质炭及添加生物质炭的黑土对NO_3~--N的吸附过程符合Langmuir方程。  相似文献   

15.
Biochar(BC) derived from waste products is a cost-effective sorbent for remediation of metal-contaminated soils.We studied the kinetics and adsorption mechanisms for removal of metal ions,such as lead(Pb~(2+)) and cadmium(Cd~(2+)) with biochar.The adsorption capacities of BC for Pb~(2+) and Cd~(2+) increased after alkaline treatment.The highest sorption capacities were 175.53 and 68.08 mg g~(–1),for Pb and Cd,respectively.The Langmuir adsorption isotherm and pseudo second kinetic equation could well fit the adsorption processes,revealing that the sorption mechanisms of Pb~(2+) and Cd~(2+) by BC are complex and predominantly controlled by chemisorption.BC has a higher affinity for Pb than Cd,due to easy hydrolysis of Pb at low pH.Furthermore,precipitation as carbonate minerals(2PbCO_3·Pb(OH)_2 and CdCO_3) and complexation with functional groups(carboxyl and hydroxyl) were also important for adsorption of Pb and Cd by BC.  相似文献   

16.
固定化改性生物质炭模拟吸附水体硝态氮潜力研究   总被引:7,自引:3,他引:4  
为了有效去除水体硝态氮污染,对两种生物质炭(花生壳炭、小麦秸秆炭)进行铁改性处理,研究其对硝态氮吸附特性,考察吸附时间、硝态氮初始浓度、p H、生物质炭添加量和共存离子对改性生物质炭吸附效果的影响。在此基础上,为解决粉末态生物质炭易随水流失的问题,对改性生物质炭进行固定化处理,探索固定化改性生物质炭对硝态氮吸附潜力。研究结果表明,改性生物质炭对硝态氮的吸附主要发生在前6 h,并在24 h左右达到吸附平衡,其吸附量随着水溶液中硝态氮浓度的上升而升高,改性花生壳炭和小麦秸秆炭对硝态氮最大吸附潜力分别为2674、1285 mg N·kg-1,且酸性至中性条件有利于改性生物质炭对硝态氮的吸附。在20 mg·L-1的硝态氮溶液中,改性花生壳炭和小麦秸秆炭的适宜固液比分别为10、28 g·L-1,其去除率达到80%。当包埋载体海藻酸钠浓度为2%、改性生物质炭含量为0.1 g·m L-1时,固定化改性生物质炭微球成形完整,对硝态氮具有较强的吸附能力,固定化并未显著降低改性生物质炭的吸附性能。因此,固定化改性生物质炭能有效吸附水体硝态氮,为污水处理厂尾水等低污染水硝态氮去除提供有效的技术方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号