首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pythium and Phytophthora species were isolated from kalanchoe plants with root and stem rots. Phytophthora isolates were identified as Phytophthora nicotianae on the basis of morphological characteristics and restriction fragment length polymorphism (RFLP) analysis of the rDNA-internal transcribed spacer regions. Similarly, the Pythium isolates were identified as Pythium myriotylum and Pythium helicoides. In pathogenicity tests, isolates of the three species caused root and stem rots. Disease severity caused by the Pythium spp. and Ph. nicotianae was the greatest at 35°–40°C and 30°–40°C, respectively. Ph. nicotianae induced stem rot at two different relative humidities (60% and >95%) at 30°C. P. myriotylum and P. helicoides caused root and stem rots at high humidity (>95%), but only root rot at low humidity (60%).  相似文献   

2.
The high-temperature-tolerant Pythium species P. aphanidermatum, P. helicoides, and P. myriotylum cause serious diseases in many crops under hydroponic culture systems in Japan. Control of the diseases is difficult because these zoosporic pathogens spread quickly. In this study, a real-time PCR method was developed for monitoring the spread of zoospores of the three pathogens. Specific primers and TaqMan probes were established using the internal transcribed spacer regions of the rDNA. Specificity was confirmed using known isolates of each species and closely related non-target species. The sensitivity of DNA detection was 10 f. for each pathogen. 10 f. DNA corresponded to 4 P. aphanidermatum, 3 P. myriotylum, and 4 P. helicoides zoospores, respectively. Therefore, this real-time PCR method was used to evaluate and monitor zoospores in the nutrient solutions of ebb-and-flow irrigation systems for potted flower production and closed hydroponic culture systems for tomato production. The results indicated that the pathogens were present in the hydroponic culture systems throughout the year, and spread before disease occurrence.  相似文献   

3.
Pythium helicoides, P. aphanidermatum and P. myriotylum are important pathogens that cause root rot of several crops in hydroponic culture and in ebb-and-flow irrigation systems. These species belong to a group of Pythium species that can grow at temperatures higher than 40°C. We developed a method for baiting these high-temperature Pythium species and evaluated its practicality to monitor their presence in nutrient solutions. Seeds of cucumber, tomato, radish, hemp, perilla and millet and leaves of bent grass and rose were tested as baits in hydroponic systems. Hemp, perilla and radish seeds and bent grass and rose leaves were more effective than the other baits for Pythium zoospores, and bent grass leaves were the most effective. In a sensitivity test, bent grass leaf traps (BLTs) detected three Pythium species after only a 1 day exposure to suspensions of 40 zoospores per liter of water, and the frequency of detection increased with zoospore density and with baiting period. A temperature of 38°C was optimum for the selective reisolation of the high-temperature Pythium species from the BLTs. The BLT was also tested with inoculated and noninoculated miniature roses that shared a recirculating nutrient solution. The pathogen was detected in the nutrient solution 23 days before the disease spread to the noninoculated roses. In addition, P. helicoides was detected 30 days before the disease was evident in a commercial greenhouse. The baiting method described here will be useful for monitoring high-temperature Pythium species in recirculating hydroponic culture systems.  相似文献   

4.
The objective of this study was to develop a multiplex PCR detection method for the high-temperature-growing pathogens Pythium aphanidermatum, P. helicoides and P. myriotylum. Species-specific primer pairs were designed that targeted the rDNA ITS regions. The multiplex PCR was constructed with a universal primer pair for eukaryotes directed at the 18S rDNA as a positive control, in addition to the three species-specific primer pairs. When the multiplex PCR was applied to naturally infested soils, the expected species were reliably identified, suggesting that the method is suitable for the detection of the three Pythium pathogens in environmental samples.  相似文献   

5.
Pythium species were isolated from seedlings of strawberry with root and crown rot. The isolates were identified as P. helicoides on the basis of morphological characteristics and sequences of the ribosomal DNA internal transcribed spacer regions. In pathogenicity tests, the isolates caused root and crown rot similar to the original disease symptoms. Multiplex PCR was used to survey pathogen occurrence in strawberry production areas of Japan. Pythium helicoides was detected in 11 of 82 fields. The pathogen is distributed over six prefectures.  相似文献   

6.
Pythium species, isolated from seedlings of Glycyrrhiza uralensis with blight, were identified as P. myriotylum, P. aphanidermatum, and P. spinosum on the basis of morphological characteristics and sequences of the internal transcribed spacer regions of rDNA. In pathogenicity tests, the isolates of the three Pythium species caused blight, producing the original disease symptoms. The primary inoculum source was determined using a multiplex PCR to detect the pathogen. All the Pythium species were detected in the soils of fields with the diseased plants and in soils of adjacent field soils.  相似文献   

7.
Severe rot was found at the base of leaves and stems of chingensai (Brassica campestris L. chinensis group) in Okayama Prefecture in 2000. The causal fungi were morphologically identified as Pythium ultimum Trow var. ultimum and P. aphanidermatum (Edson) Fitzpatrick. This is the first report of rot caused by Pythium species on chingensai. We named this disease Pythium rot of chingensai.  相似文献   

8.
A loop-mediated isothermal amplification (LAMP) reaction with a primer set designed from the rDNA ITS sequence of P. aphanidermatum was developed. Results of a specificity test using 57 strains of Pythium spp. indicated that the LAMP assay gave no cross reactions in other 39 Pythium species, 11 strains of Phytophthora spp. and eight other soil borne pathogens. The detection limit was 10 fg of genomic DNA, which was ten times the sensitivity of the polymerase chain reaction. The LAMP assay was applied to hydroponic solution samples from tomato fields, and the results were compared to those of the conventional plating method. LAMP was observed to be effective for the specific detection of P. aphanidermatum. Furthermore, P. aphanidermatum was detected directly in tomato roots infected with P. aphanidermatum without DNA extraction. The LAMP method established in this study is a simple, sensitive and rapid tool for the detection of P. aphanidermatum.  相似文献   

9.
Root and stem rot with wilt of above ground parts of cultivated chrysanthemums was first found in Ibaraki, Toyama and Kagawa prefectures, Japan in 2002 and 2003. Pythium species were isolated from the diseased tissues and identified as P. dissotocum, P. oedochilum, P. sylvaticum, P. ultimum var. ultimum and asexual strains of P. helicoides based on their morphologies and sequences of rDNA-ITS region. All the Pythium species were strongly pathogenic to chrysanthemums in pot conditions and were reisolated from the inoculated plants. Because Pythium root and stem rot of chrysanthemum has never been reported in Japan, we propose that this is a new disease that can be caused by the five Pythium species.  相似文献   

10.
Alfalfa, maize, sorghum and sugarbeet plants were inoculated with zoospores ofPhytophthora andPythium species in order to assess the effects of inoculum density, plant age and temperature on disease severity. Seedlings were grown axenically in test tubes and inoculated with zoospore suspensions. Disease severity was assessed by measuring the root growth and discoloration of treated and control seedlings. The incremental root length of all plants decreased and root discoloration increased as inoculum concentration of the pathogen increased. Changes were more intensive among low levels of zoospore concentrations and no significant differences in disease severity were found for inoculum densities higher than 104 zoospores ml-1. Disease severity was negatively related to plant age. Disease development on sugarbeet seedlings infected withPythium andPhytophthora species was affected by temperature, but the pattern of response was determined by the pathogen’s temperature preferences. The incremental root length decreased as temperature increased up to 25°C. The effect ofPythium dissimile andPhytophthora cactorum on root length was significantly lower at 35°C than at 25°C, whereasPythium aphanidermatum andPhytophthora nicotianae caused significant damage to roots even at 35°C. http://www.phytoparasitica.org posting Dec. 3, 2001.  相似文献   

11.
A detached leaf assay was developed to determine the pathogenicity of Pythium isolates to cut‐flower chrysanthemum roots. Leaves from young plants were excised and inoculated by insertion of a plug of mycelium into a slit cut in the excised petiole. After incubation leaves were assessed for presence and extent of necrosis. Necrosis indicated pathogenicity and was consistently confirmed by comparisons with whole plant inoculations. The rate of necrosis spread also gave some indication of virulence. Isolates of Pythium sylvaticum, P. ultimum and HS group were the most virulent, with a mean rate of spread of 14·6 mm per day, significantly (P < 0·05) faster than the mean rate of spread, 1·6 mm per day, of less virulent isolates. Less virulent isolates included P. irregulare, P. oligandrum and P. aphanidermatum. The latter was unexpected, as P. aphanidermatum is an important species in pythium root rot epidemics in chrysanthemums elsewhere. The value of the detached leaf assay for screening large numbers of isolates was demonstrated in a survey of isolates from clinic samples from chrysanthemum nurseries and in a series of dilution‐plating experiments looking at numbers of Pythium propagules in commercial chrysanthemum beds showing root rot. In the survey, the predominant pathogenic species was identified as P. sylvaticum and the most likely source of infection was contaminated soil as opposed to blocking media or irrigation water, whilst in soil colonization studies the use of detached leaf assays demonstrated a relationship between pathogenic inoculum concentration in soil and the expression of root rot symptoms.  相似文献   

12.
Pythium spp. that cause damping-off of seedlings also can cause root rot of older plants and lead to yield reductions. This can be especially severe in soilless cultures where the fungus can spread easily with the nutrient solution. 39Pythium isolates obtained from discolored roots were assayed for their ability to cause damping-off on cucumber seedlings in sand-peat and for their pathogenicity in soilless culture of cucumber in rockwool or hydroponic solution. Isolates ofPythium aphanidermatum, P. irregulare, P. sylvaticum andP. ultimum were highly pathogenic in sand-peat, but onlyP. aphanidermatum strains were pathogenic in soilless conditions and led to root decay, plant death in rockwool culture and growth reduction in hydroponic culture. One strain ofP. aphanidermatum significantly reduced the yield of cucumber grown in rockwool under conditions similar to those of commercial cultures.  相似文献   

13.
Arbuscular mycorrhizal (AM) fungi known to cause plant growth depressions in tomato were examined for their biocontrol effects against root rot caused by Pythium aphanidermatum. The main hypothesis was that plant growth suppressive AM fungi would elicit a defence response in the host plant reducing Pythium root rot development. To test this hypothesis a fully factorial experiment was performed with AM fungi (Glomus intraradices, G. mosseae, G. claroideum or nonmycorrhizal), Pythium (± P. aphanidermatum) and harvest (7 and 14 days after pathogen inoculation (dapi)) as the main factors. Two weeks after AM fungi inoculation, roots were challenged with P. aphanidermatum. Variables evaluated at each harvest were root colonization levels of the interacting fungi, plant growth responses, and expression of a plant pathogenesis related protein gene (PR-1). All of the tested AM fungi caused marked growth suppressions, but did not affect PR-1 gene expression or the phosphorous concentration in the host plant. Plants singly inoculated with P. aphanidermatum had an increased PR-1 expression and phosphorous concentration. Among the AM fungi included in the study only G. intraradices reduced the pathogen root infection level, measured both in terms of Pythium ELISA and by recovery on selective media and only at the first harvest. Likewise, P. aphanidermatum root infection reduced colonization levels of G. intraradices, but not that of the two other AM fungi. In conclusion, plant growth suppressive AM fungi may offer plant beneficial traits in terms of biocontrol of root cortical pathogens.  相似文献   

14.
Low temperatures enhance winter wilt of pepper plants caused by Pythium sp.   总被引:1,自引:0,他引:1  
Pepper is the main vegetable crop grown in the Arava region of southern Israel. It is grown in the winter in nethouses and greenhouses. Low temperature wilt of mature pepper plants has been known for years in this region. The incidence of plant wilting was usually low when the soil was pretreated with methyl bromide. In recent years methyl bromide usage has been banned and disease incidence has increased. The causal agent of this phenomenon was unknown until the current study. Pythium sp. was the most common microorganism genus isolated from wilted plant roots. Young pepper plants were artificially inoculated with Pythium isolated from wilted plants and maintained at temperatures of 20°, 14°, 10.5° and 8.6°C. Significant wilting was observed in plants grown at 8.6°C, with symptoms starting 2?weeks after inoculation. At 10.5°C wilting developed more slowly and inoculated plants maintained at 14° and 20°C did not exhibit any wilting symptoms. The unique variation in sporangium morphology and the sequence of the ribosomal internal transcribed spacer (ITS) suggest that a new species of Pythium is involved. The fungicide metalaxyl-M was found effective in controlling the disease in pot experiments. The relationship between low temperatures and high disease incidence can explain the high disease incidence in the Arava Valley of Israel during the cold winters of 1999?C2000, 2004?C2005 and 2006?C2007.  相似文献   

15.
The capacity of several strains of root-colonizing bacteria to suppressPythium aphanidermatum, Pythium dissotocum and root rot was investigated in chrysanthemums grown in single-plant hydroponic units containing an aerated nutrient solution. The strains were applied in the nutrient solution at a final density of 104 CFU ml−1 and 14 days later the root systems were inoculated withPythium by immersion in suspensions of 104 zoospores ml−1 solution. Controls received no bacteria, noPythium, or one of thePythium spp. but no bacteria. Strain effectiveness was estimated based on percent roots colonized byPythium and area under disease progress curves (AUDPC). In plants treated respectively withPseudomonas (Ps.)chlororaphis 63-28 andBacillus cereus HY06 and inoculated withP. aphanidermatum, root colonization by the pathogen was 83% and 72% lower than in the pathogen control, and AUDPC values were reduced by 61% and 65%. ForP. dissotocum, the respective strains reduced root colonization by 87% and 91%, and AUDPC values by 70% and 90%. In plants treated respectively withPs. chlororaphis Tx-1 andComamonas acidovorans C-4-7-28, root colonization byP. aphanidermatum was 84% and 80% lower than in the controls and AUDPC values were reduced by 66% and 57%; these strains did not suppressP. dissotocum. Burkholderia gladioli C-2-74 andC. acidovorans OCR-7-8-38, respectively, suppressed colonization of roots byP. dissotocum by 74% and 86%, and reduced AUDPC values by 60% and 70%, but were ineffective againstP. aphanidermatum. C. acidovorans OCR-7-8-39 reduced colonization and AUDPC values ofP. aphanidermatum by 57% and 42%, respectively.Pseudomonas corrugata 13,Ps. fluorescens 15 and JZ12, and three additional strains ofC. acidovorans were weakly or nonsuppressive againstP. aphanidermatum. Strains that reduced AUDPC values forP. aphanidermatum orP. dissotocum when applied at 104 CFU ml−1 were 11%–39% less effective at 103 CFU ml−1. Four tested strains (Ps. chlororaphis 63-28,Ps. chlororaphis Tx-1,B. cereus HY06, andB. gladioli C-7-24) in most instances suppressed root colonization and lowered AUDPC values ofP. aphanidermatum when applied at 14, 7 or 0 days before inoculation, but reduction of the respective variables was generally greater when the strains were applied at 14 days (63%–87% and 75%–78%) or 7 days (44%–47% and 31%–88%) than at 0 days (14%–31% and 23%–62%) before inoculation.Ps. chlororaphis Tx-1,Ps. chlororaphis 63-28 andB. cereus HY06 significantly suppressedP. aphanidermatum whether the temperature of the nutrient solution was high (32°C) or moderate (24°C). Taken together, the observations suggest thatPs. chlororaphis 63-28,B. cereus HY06,Ps. chlororaphis Tx-1,B. gladioli C-2-74 andC. acidovorans OCR-7-8-38 have the potential for controlling Pythium root rot in hydroponic chrysanthemums. http://www.phytoparasitica.org posting Jan. 24, 2007.  相似文献   

16.
Pythium and Phytopythium spp. cause seed decay, damping off, and root rot in soybean, wheat, and many other crops. However, their diversity and importance as pathogens, particularly in different crop rotation systems, are largely unknown. A survey was conducted in the Huang-Huai region, one of the main areas of soybean–wheat rotation farming in China. In 2016–2018, we collected 300 soybean seedlings and 150 field soil samples from several representative locations, and identified 26 Pythium and 6 Phytopythium spp. from 212 isolates, based on internal transcribed spacer 2 (ITS2) and cytochrome oxidase subunit 1 sequences. The pathogenicity of these isolates was evaluated by growing soybean and wheat seeds in dishes and pots containing oomycete cultures. We found that 12 Pythium spp. (but no Phytopythium spp.) showed high pathogenicity on soybean and/or wheat, and nine of them (75%) were highly pathogenic on both crops. Among the nine species, Pythium spinosumPythium ultimum, Pythium species 1 (tentatively designated as ‘Candidatus Pythium huanghuaiense’), Pythium aphanidermatum, and Pythium myriotylum were highly abundant among all isolates (15%, 10%, 9%, 8%, and 5%, respectively). Nine species were selected for testing of sensitivity to the fungicides metalaxyl and mefenoxam. The EC50 values were all less than 10 μg/ml, indicating little resistance. Minimum inhibitory concentration values indicated isolates were about twice as sensitive to mefenoxam as to metalaxyl. These results provide a systematic understanding of Pythium and Phytopythium species associated with soybean in the Huang-Huai region, which is important for disease management and breeding programmes.  相似文献   

17.
Pink root rot of squash (Cucurbita moschata) caused by Setophoma terrestris was found in Maebashi, Gunma Prefecture, Japan in July 2007. Cucumber grafted on the squash first developed wilt and finally blight. These symptoms followed a severe pink root rot of the squash rootstock. The fungal isolates from diseased roots were identified as S. terrestris based on morphological characteristics and nucleotide sequences. One isolate induced a similar pink root rot but not entire wilting of the cucumber vine. We propose the name “pink root rot” (koshoku-negusare-byo in Japanese) of squash for the new disease.  相似文献   

18.
BACKGROUND: Tolerance to the oomycete‐specific carboxylic acid amide (CAA) fungicides is a poorly understood mechanism in Pythium species. The root‐rot and damping‐off causative agent Pythium aphanidermatum and the CAA fungicide mandipropamid (MPD) were used to investigate the molecular basis of CAA tolerance. RESULTS: Five genes putatively involved in carbohydrate synthesis were identified and characterised: one chitin synthase gene, PaChs, and four cellulose synthase genes PaCesA1 to PaCesA4, of which PaCesA3 encodes the MPD target enzyme. These genes were differentially expressed throughout the life cycle of P. aphanidermatum. Mycelium treated with MPD concentrations slightly affecting mycelial growth did not cause a change in PaCesA3 expression nor a strong upregulation of PaCesA homologues. The high tolerance level of P. aphanidermatum and the lack of PaCesA upregulation imply that MPD tolerance is the result of a specific amino acid configuration in the cellulose synthase 3 (CesA3) target enzyme. Indeed, P. aphanidermatum displays the amino acid L1109 which is also associated with MPD resistance in artificial mutants of Phytophthora species. CONCLUSION: It is concluded that MPD tolerance in P. aphanidermatum is not caused by compensatory mechanisms but most likely by an inherent target‐site configuration in PaCesA3 that hinders MPD binding to the enzyme pocket. Copyright © 2012 Society of Chemical Industry  相似文献   

19.
A severe rot was found on the stems and roots of scarlet runner bean (Phaseolus coccineus) in Ibaraki Prefecture (Japan) in August 2004. The causal fungus was identified as Pythium myriotylum. We propose the name of stem and root rot of scarlet runner bean (“Kuki-negusare-byo” in Japanese) for this new disease.  相似文献   

20.
Severe rot was found at the base of leaves and stems of Chinese cabbage (Brassica rapa L. subsp. pekinensis) in Ibaraki Prefecture every year in early September from 2002 through 2004. The causal fungus was identified as Pythium aphanidermatum (Edson) Fitzpatrick. This is the first report of P. aphanidermatum on Chinese cabbage. A similar disease of Chinese cabbage caused by P. ultimum Trow var. ultimum is known as Pythium rot. We propose adding P. aphanidermatum as a new pathogen of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号