首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To correlate serum fructosamine concentrations with established measures of glycemic control and to compare serum fructosamine and blood glycosylated hemoglobin (GHb) concentrations as a means for assessing glycemic control in diabetic cats. DESIGN: Longitudinal cohort study. ANIMALS: 26 healthy cats, 5 cats with stress-induced hyperglycemia, 15 untreated diabetic cats, and 36 treated diabetic cats. PROCEDURE: Control of glycemia was classified and monitored and serum fructosamine and blood GHb concentrations were measured for 12 poorly controlled diabetic cats before and after improving glycemic control, 8 well-controlled treated diabetic cats before and after glycemic control deteriorated, and 5 cats with diabetes mellitus before and after onset of stress-induced hyperglycemia. RESULTS: Mean serum fructosamine and blood GHb concentrations were significantly higher in untreated diabetic cats, compared with healthy cats, and in 24 poorly controlled diabetic cats, compared with 12 well-controlled diabetic cats. Mean serum fructosamine and blood GHb concentrations decreased significantly in 12 poorly controlled diabetic cats after improving glycemic control and increased significantly in 8 well-controlled diabetic cats after glycemic control deteriorated. A significant stress-induced increase in mean blood glucose concentration was evident 12 hours after insulin administration, but not in 5 docile diabetic cats that became fractious. CLINICAL IMPLICATIONS: Serum fructosamine and blood GHb concentrations are clinically useful tools for monitoring control of glycemia in cats with diabetes mellitus.  相似文献   

2.
Blood glycosylated hemoglobin (GHb) concentration was quantified in 84 healthy cats, 9 cats with stress-induced hyperglycemia, 37 cats with newly diagnosed diabetes mellitus, and 122 diabetic cats treated with insulin or glipizide. Diabetic control was classified as good or poor in insulin-treated or glipizide-treated cats based on review of history, physical examination findings, changes in body weight, and measurement of blood glucose concentrations. Blood GHb concentration was determined using an affinity chromatography assay. Mean blood GHb concentration was similar for healthy normoglycemic cats and cats with transient, stress-induced hyperglycemia, but was significantly (P < .001) higher in untreated diabetic cats when compared with healthy normoglycemic cats. Mean blood GHb concentration was significantly (P < .001) higher in 84 cats with poorly controlled diabetes mellitus when compared with 38 cats in which the disease was well controlled. Mean blood GHb concentration decreased significantly (P < .01) in 6 cats with untreated diabetes mellitus after insulin and dietary treatment. A similar significant (P < .01) decrease in mean blood GHb concentration occurred in 7 cats with poorly controlled diabetes mellitus after diabetic control was improved by an increase in insulin dosage from 1.1 ± 0.9 to 1.4 ± 0.6 U/kg/ 24 h and by feeding a diet containing increased fiber content and in 6 cats with transient diabetes mellitus 8.2 ± 0.6 weeks after discontinuing insulin treatment. There was a significant (P< .01) stress-induced increase in mean fasting blood glucose concentration and mean blood glucose concentration for 12 hours after administration of insulin or glipizide but no change in mean blood GHb concentration in 5 docile diabetic cats 12.2 ± 0.4 weeks after the cats became fractious as a result of frequent hospitalizations and blood samplings. Results of this study suggest that evaluation of blood GHb concentration may be a clinically useful tool for monitoring glycemic control of diabetes in cats.  相似文献   

3.
Glycosylated albumin and glycosylated protein in serum were measured in 4 well-controlled diabetic dogs, 4 poorly controlled diabetic dogs, and 21 nondiabetic dogs. Concentrations of both glycosylated components in the well-controlled dogs were similar to those in nondiabetic dogs. Serum concentrations of glycosylated albumin and protein in the poorly controlled diabetic dogs were higher (P less than 0.001) than those of the nondiabetic and well-controlled diabetic dogs. Because of the essentially irreversible nature of the glycosylation reaction and the relatively short turnover time of albumin and other serum proteins, measurements of glycosylated serum components may provide an index of glycemia during the preceding days or weeks.  相似文献   

4.
Serum glucose and plasma C-peptide response to IV glucagon administration was evaluated in 24 healthy dogs, 12 dogs with untreated diabetes mellitus, 30 dogs with insulin-treated diabetes mellitus, and 8 dogs with naturally acquired hyperadrenocorticism. Serum insulin response also was evaluated in all dogs, except 20 insulin-treated diabetic dogs. Blood samples for serum glucose, serum insulin, and plasma C-peptide determinations were collected immediately before and 5,10,20,30, and (for healthy dogs) 60 minutes after IV administration of 1 mg glucagon per dog. In healthy dogs, the patterns of glucagon-stimulated changes in plasma C-peptide and serum insulin concentrations were identical, with single peaks in plasma C-peptide and serum insulin concentrations observed approximately 15 minutes after IV glucagon administration. Mean plasma C-peptide and serum insulin concentrations in untreated diabetic dogs, and mean plasma C-peptide concentration in insulin-treated diabetic dogs did not increase significantly after IV glucagon administration. The validity of serum insulin concentration results was questionable in 10 insulin-treated diabetic dogs, possibly because of anti-insulin antibody interference with the insulin radioimmunoassay. Plasma C-peptide and serum insulin concentrations were significantly increased (P < .001) at all blood sarnplkg times after glucagon administration in dogs with hyperadrenocorticism, compared with healthy dogs, and untreated and insulin-treated diabetic dogs. Five-minute C-peptide increment, C-peptide peak response, total C-peptide secretion, and, for untreated diabetic dogs, insulin peak response and total insulin secretion were significantly lower (P < .001) in diabetic dogs, compared with healthy dogs, whereas these same parameters were significantly increased (P < .011 in dogs with hyperadrenocorticism, compared with healthy dogs, and untreated and insulin-treated diabetic dogs. Although not statistically significant, there was a trend for higher plasma C-peptide concentrations in untreated diabetic dogs compared with insulin-treated diabetic dogs during the glucagon stimulation test. Baseline C-peptide concentrations also were significantly higher (P < .05) in diabetic dogs treated with insulin for less than 6 months, compared with diabetic dogs treated for longer than 1 year. Finally, 7 of 42 diabetic dogs had baseline plasma C-peptide concentrations greater than 2 SD (ie, >0.29 pmol/mL) above the normal mean plasma C-peptide concentration; values that were significantly higher, compared with results in healthy dogs (P < .001) and with the other 35 diabetic dogs (P < .001). In summary, measurement of plasma C-peptide concentration during glucagon stimulation testing allowed differentiation among healthy dogs, dogs with impaired β-cell function (ie, diabetes mellitusl, and dogs with increased β-cell responsiveness to glucagon (ie, insulin resistance). Plasma C-peptide concentrations during glucagon stimulation testing were variable in diabetic dogs and may represent dogs with type-1 and type-2 diabetes or, more likely, differences in severity of β-cell loss in dogs with type-1 diabetes. J Vet Intern Med 1996;10:116–122. Copyright © 1996 by the American College of Veterinary Internal Medicine.  相似文献   

5.
OBJECTIVE: To evaluate effect of acarbose on control of glycemia in dogs with diabetes mellitus. DESIGN: Prospective randomized crossover controlled trial. ANIMALS: 5 dogs with naturally acquired diabetes mellitus. PROCEDURE: Dogs were treated with acarbose and placebo for 2 months each: in 1 of 2 randomly assigned treatment sequences. Dogs that weighed < or = 10 kg (22 lb; n = 3) or > 10 kg (2) were given 25 or 50 mg of acarbose, respectively, at each meal for 2 weeks, then 50 or 100 mg of acarbose, respectively, at each meal for 6 weeks, with a 1-month interval between treatments. Caloric intake, type of insulin, and frequency of insulin administration were kept constant, and insulin dosage was adjusted as needed to maintain control of glycemia. Serum glucose concentrations, blood glycosylated hemoglobin concentration, and serum fructosamine concentration were determined. RESULTS: Significant differences in mean body weight and daily insulin dosage among dogs treated with acarbose and placebo were not found. Mean preprandial serum glucose concentration, 8-hour mean serum glucose concentration, and blood glycosylated hemoglobin concentration were significantly lower in dogs treated with insulin and acarbose, compared with insulin and placebo. Semisoft to watery feces developed in 3 dogs treated with acarbose. CONCLUSIONS AND CLINICAL RELEVANCE: Acarbose may be useful as an adjunctive treatment in diabetic dogs in which cause for poor glycemic control cannot be identified, and insulin treatment alone is ineffective.  相似文献   

6.
OBJECTIVE: To evaluate effects of protamine zinc insulin (PZI) on control of glycemia in cats with newly diagnosed diabetes mellitus or poorly controlled diabetes. DESIGN: Clinical trial. ANIMALS: 67 diabetic cats. PROCEDURE: 34 cats with newly diagnosed diabetes and 33 cats with poorly controlled diabetes were treated with PZI twice daily for 45 days. Control of glycemia was assessed on days 7, 14, 30, and 45 by evaluation of clinical response, change in body weight, serum fructosamine concentration, blood glucose concentration measured 1, 3, 5, 7, and 9 hours after administration of PZI, lowest blood glucose concentration, and mean blood glucose concentration during the 9-hour period after administration. Adjustments in dosage of PZI were made as needed to attain control of glycemia. RESULTS: For all cats, a significant increase in mean dosage of PZI and significant decreases in 9-hour mean blood glucose concentration, lowest mean blood glucose concentration, and mean serum fructosamine concentration were detected. For cats with poorly controlled diabetes, 9-hour mean blood glucose concentration and mean serum fructosamine concentration were significantly decreased on day 45, compared with day 0. Ninety percent of owners reported improvement or resolution of clinical signs by day 45. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that PZI was effective for control of glycemia in cats with newly diagnosed or poorly controlled diabetes and may be used as an initial treatment or as an alternative treatment in cats that do not respond to treatment with other types of insulin.  相似文献   

7.
Changes in glycosylated hemoglobin (GHb) concentrations, K values (% disappearance of glucose/min after an intravenous injection of 1 g/kg dextrose), and blood glucose concentrations were examined in eight cats before and during the induction of diabetes, and in four of these cats after they were placed on insulin treatment. There was a statistically significant separation of GHb, K values, and fasting blood glucose concentrations between healthy and diabetic cats. Changes in GHb correlated best with the K value and single weekly fasting glucose concentrations averaged over eight periods for each cat while diabetes was induced (R = 0.80 and 0.78, respectively); however, fasting blood glucose concentrations obtained on the day of the GHb measurement were also highly correlated (R = 0.69; P < 0.001). The correlation between GHb and single weekly glucose concentrations obtained in insulin-treated cats at the time of insulin peak action and averaged over an 8-wk time period for each cat was less but still significant (R = 0.53; P < 0.001). It is concluded that GHb measurements are a simple and reliable way to monitor changes in glucose control in the diabetic cat over a prolonged period.  相似文献   

8.
Background: This study describes the efficacy of a new protamine zinc recombinant human insulin (PZIR) preparation for treating diabetic cats. Objective: To evaluate effects of PZIR on control of glycemia in cats with newly diagnosed or poorly controlled diabetes mellitus. Animals: One hundred and thirty‐three diabetic cats 120 newly diagnosed and 13 previously treated. Methods: Prospective, uncontrolled clinical trial. Cats were treated with PZIR twice daily for 45 days. Control of glycemia was assessed on days 7, 14, 30, and 45 by evaluation of change in water consumption, frequency of urination, appetite, and body weight, serum fructosamine concentration, and blood glucose concentrations determined 1, 3, 5, 7, and 9 hours after administration of PZIR. Adjustments in dosage of PZIR were made as needed to control glycemia. Results: PZIR administration resulted in a significant decrease in 9‐hour mean blood glucose (199 ± 114 versus 417 ± 83 mg/dL, X± SD, P < .001) and serum fructosamine (375 ± 117 versus 505 ± 96 μmol/L, P < .001) concentration and a significant increase in mean body weight (5.9 ± 1.4 versus 5.4 ± 1.5 kg, P= .017) in 133 diabetic cats at day 45 compared with day 0, respectively. By day 45, polyuria and polydipsia had improved in 79% (105 of 133), 89% (118 of 133) had a good body condition, and 9‐hour mean blood glucose concentration, serum fructosamine concentration, or both had improved in 84% (112 of 133) of the cats compared with day 0. Hypoglycemia (<80 mg/dL) was identified in 151 of 678, 9‐hour serial blood glucose determinations and in 85 of 133 diabetic cats. Hypoglycemia causing clinical signs was confirmed in 2 diabetic cats. Conclusions and Clinical Relevance: PZIR is effective for controlling glycemia in diabetic cats and can be used as an initial treatment or as an alternative treatment in diabetic cats that do not respond to treatment with other insulin preparations.  相似文献   

9.
Chromium is an essential dietary trace mineral involved in carbohydrate and lipid metabolism. Chromium is required for cellular uptake of glucose, and chromium deficiency causes insulin resistance. Chromium supplementation may improve insulin sensitivity and has been used as adjunct treatment of diabetes mellitus in humans. In this study, 13 dogs with naturally acquired diabetes mellitus were treated with insulin for 3 months, then with insulin and chromium picolinate for 3 months. Dogs weighing <15 kg (33 lb: n = 9) were administered 200 microg of chromium picolinate PO once daily for I month, then 200 microg of chromium picolinate twice daily for 2 months. Dogs weighing >15 kg (n = 4) received 200 microg of chromium picolinate once daily for 2 weeks, then 200 microg twice daily for 2 weeks, then 400 microg twice daily for 2 months. Type of insulin, frequency of insulin administration, and diet were kept constant, and insulin dosage was adjusted, as needed, to maintain optimal control of glycemia. Mean body weight, daily insulin dosage, daily caloric intake, 10-hour mean blood glucose concentration, blood glycated hemoglobin concentration, and serum fructosamine concentration were not markedly different when dogs were treated with insulin and chromium picolinate, compared with insulin alone. Adverse effects were not identified with chromium picolinate administration. Results of this study suggest that, at a dosage range of 20-60 microg/kg/d, chromium picolinate caused no beneficial or harmful effects in insulin-treated diabetic dogs.  相似文献   

10.
Fructosamine   总被引:3,自引:0,他引:3  
Fructosamines are glycated serum proteins that, depending on their life span, reflect glycemic control over the previous 2 to 3 weeks. The nitroblue tetrazolium reduction method adapted to autoanalysis appeared to be a practical means to assay fructosamine quickly, economically, and accurately. The upper limit of the reference range is 374 μmol/L in dogs (95% percentile) and 340 μmol/L in cats (95% percentile). Newly diagnosed diabetic dogs and cats that had not undergone previous insulin therapy had significantly higher fructosamine concentrations than nondiabetic animals. In diabetic dogs that were receiving insulin therapy, the fructosamine test reflected the glycemic state far more accurately than did individual blood glucose measurements. Animals with satisfactory metabolic control revealed fructosamine concentrations within the reference range, whereas fructosamine concentrations above 400 μmol/L indicated insufficient metabolic control. On the basis of fructosamine concentrations, cats with a transitory hyperglycemia and cats with diabetes mellitus were differentiated. The fructosamine test is a valuable parameter for the diagnosis and metabolic control of diabetes mellitus in dogs and cats.  相似文献   

11.
Objective: To determine endogenous serum insulin concentration in dogs with diabetic ketoacidosis (DKA), and to compare it to endogenous serum insulin concentration in diabetic dogs with ketonuria but no acidosis (KDM), diabetic dogs with uncomplicated diabetes mellitus (DM) that did not have ketonuria or acidosis, and dogs with non‐pancreatic disease (NP). Design: Prospective study. Setting: Veterinary Hospital of the University of Pennsylvania. Animals: Forty‐four client‐owned dogs; 20 dogs with newly diagnosed diabetes mellitus (7 dogs with DKA, 6 dogs with KDM, and 7 dogs with DM) and 24 dogs with non‐pancreatic disease. Interventions: Blood and urine samples were obtained at the time of admission to the hospital. Measurements and main results: Signalment, clinical signs, physical examination findings, and concurrent disease were recorded for all dogs. Blood glucose concentration, venous blood pH, venous blood HCO3? concentration, urinalysis, and endogenous serum insulin concentration were determined in all dogs. Dogs with DKA have significantly decreased endogenous serum insulin concentrations compared to dogs with DM (P = 0.03) and dogs with non‐pancreatic disease (P = 0.0002), but not compared to dogs with KDM (P = 0.2). Five of 7 dogs with DKA had detectable endogenous serum insulin concentrations, and 2 of these dogs had endogenous serum insulin concentration within the normal range. Conclusions: Diabetic dogs with ketoacidosis have significantly decreased endogenous serum insulin concentration compared to dogs with uncomplicated diabetes mellitus. However, most dogs with DKA have detectable endogenous serum insulin concentrations, and some dogs with DKA have endogenous serum insulin concentrations within the normal range.  相似文献   

12.
Neutrophil adherence, random movement, and chemotaxis were quantitated in healthy nondiabetic dogs and in dogs with experimentally induced diabetes mellitus. On the basis of glycosylated serum protein values, the diabetic dogs were subdivided into well-controlled and poorly controlled groups. Neutrophil adherence was decreased significantly in poorly controlled diabetic dogs, but significant differences in neutrophil adherences were not found between nondiabetic and well-controlled diabetic dogs. Significant differences in neutrophil random or chemotactic movements were not found between non-diabetic and diabetic dogs. The decreased neutrophil adherence observed in poorly controlled diabetic dogs may predispose these animals to bacterial infection. Therefore, stringent regulation of blood glucose concentrations may decrease the frequency of secondary bacterial infections in spontaneous diabetes mellitus in dogs.  相似文献   

13.
The relation of the glycated serum protein, fructosamine, to serum protein, albumin, and glucose concentrations was examined in healthy dogs, dogs with hypo- or hyperproteinemia, and diabetic dogs. Fructosamine was determined by use of an adaptation of an automated kit method. The reference range for fructosamine in a composite group of control dogs was found to be 1.7 to 3.38 mmol/L (mean +/- SD, 2.54 +/- 0.42 mmol/L). Fructosamine was not correlated to serum total protein, but was highly correlated to albumin in dogs with hypoalbuminemia. To normalize the data with respect to albumin, it is suggested that the lower limit of the reference range for albumin concentration (2.5 g/dl) be used for adjustment of fructosamine concentration and only in hypoalbuminemic dogs. In 6 hyperglycemic diabetic dogs, fructosamine concentration was well above the reference range. It is concluded that although fructosamine may be a potentially useful guide to assess the average blood glucose concentration over the preceding few days in dogs, further study is required to establish its value as a guide to glucose control in diabetic dogs.  相似文献   

14.
Measurements of serum fructosamine, glycated hemoglobin, and glycated albumin (GA) complement serum glucose concentration for better management of diabetes mellitus (DM). Especially, the serum fructosamine test has long been used for diagnosing and monitoring the effect of treatment of DM in dogs. However, fructosamine tests are currently not performed in veterinary medicine in Japan. GA and fructoasmine levels have been shown to strongly correlate. However, the clinical implications of using GA remain to be elucidated. Therefore, the purpose of the current study was threefold: 1) Determine whether GA% is altered by acute hyperglycemia in normal dogs, simulating stress induced hyperglycemia; 2) Demonstrate that GA% does not dynamically change with diurnal variation of blood glucose concentration in diabetic dogs; and 3) Investigate whether GA% is capable of providing an index of glycemic control for 1–3 weeks in diabetic dogs as is the case with diabetic human patients. Our study demonstrated that serum GA% remains very stable and unaltered under acute hyperglycemic conditions (intravenous glucose injection) and in spite of diurnal variation of blood glucose concentration. Furthermore, serum GA% can reflect long-term changes (almost 1–3 weeks) in blood glucose concentration and the effect of injected insulin in diabetic dogs.  相似文献   

15.
Fructosamines are glycated serum proteins that reflect long-term serum glucose concentrations in humans and several animal species. In the present study, blood samples were drawn from three populations of diabetic cats: untreated diabetic cats with clinical symptoms prevailing only a few days (n = 1), untreated diabetic cats with symptoms lasting more than two weeks (n = 6) and clinically well stabilised diabetic cats receiving insulin twice daily which showed no signs of disease (n = 4). All untreated diabetic cats showed elevated fructosamine measurements. Based on fructosamine measurements, clinically well stabilised diabetic cats could be subdivided further according to the degree of glycaemic control. Diabetic cats with satisfactory glycaemic control revealed fructosamine concentrations within or close to the reference range (146 to 271 umol/litre), whereas fructosamine concentrations above 400 umol/litre indicated insufficient glycaemic control. This study suggests that the fructosamine assay reflects persistently elevated serum glucose concentrations in cats and is a useful parameter for diagnosing and monitoring diabetes mellitus in cats.  相似文献   

16.
Objective To describe a case of diabetes mellitus in a koala (Phascolarctos cinereus).
Design A case report with controls.
Procedures We describe clinical and laboratory findings in a 6-year-old, free-living, female koala presented with traumatic injury and subsequently found to have polydipsia, hyperglycaemia and glucosuria. Over a 5 week period, serum biochemical analyses, haematological examinations, urinal-yses, measurement of serum insulin and fructosamine concentrations, necropsy, histopathological examination of a range of tissues and immunohistochemical examination of the pancreas for insulin-containing cells were done. For reference purposes, serum insulin and fructosamine concentrations were determined in four and two healthy koalas, respectively, and three healthy koalas pancreases were examined histo-logically and immunohistochemically.
Results The koala had persistent hyperglycaemia, hyperlipidaemia, hyponatraemia, hypochloraemia and glucosuria. Serum insulin concentration of the diabetic koala was only marginally smaller than that of healthy koalas, but all concentrations were smaller than reference concentrations in dogs and people. Fructosamine concentration did not allow the diabetic koala to be distinguished from healthy koalas and concentrations of all koala analytes were greater than expected for healthy dogs and people. Histopathological examination revealed extensive degeneration of pancreatic islet cells and fatty infiltration of hepatocytes. Immunoperoxidase staining revealed decreased or absent insulin in the b cells of the affected koala.
Conclusion Clinical signs, clinicopathological results and histopathological changes were consistent with diabetes mellitus. The pathogenesis of the condition could not be determined but may have been related to the administration of a parenteral corticosteroid preparation, the stress of capture or tissue damage and inflammation.  相似文献   

17.
The goals of this study were to compare the efficacy of once-daily administered Glargine insulin to twice-daily administered Lente insulin in cats with diabetes mellitus and to describe the use of a high-protein, low-carbohydrate diet designed for the management of diabetes mellitus in cats. All cats with naturally occurring diabetes mellitus were eligible for inclusion. Baseline testing included a physical examination, serum biochemistry, urinalysis and urine culture, serum thyroxine concentration, and serum fructosamine concentration. All cats were fed the high-protein, low-carbohydrate diet exclusively. Cats were randomized to receive either 0.5 U/kg Lente insulin q12h or 0.5 U/kg Glargine insulin q24h. Re-evaluations were performed on all cats at weeks 1, 2, 4, 8, and 12, and included an assessment of clinical signs, physical examination, 16-hour blood glucose curve, and serum fructosamine concentrations. Thirteen cats completed the study (Lente, n = 7, Glargine, n = 6). There was significant improvement in serum fructosamine and glucose concentrations in all cats but there was no significant difference between the 2 insulin groups. Four of the 13 cats were in complete remission by the end of the study period (Lente, n = 3; Glargine, n = 1). The results of the study support the use of once-daily insulin Glargine or twice-daily Lente insulin in combination with a high-protein, low-carbohydrate diet for treatment of feline diabetes mellitus.  相似文献   

18.
Plasma metabolites and peripheral lymphocyte subsets were measured in ten diabetic and ten control dogs to investigate their significances as indicators to evaluate immune states in the diabetic dogs. Diabetic dogs were treated with insulin injections, however their plasma glucose and fructosamine concentrations were significantly higher than those of the controls. There were no significant differences in counts of total white blood cells (WBC) and lymphocyte CD8(+) cells (cytotoxic T cells) between the control and the diabetic dogs. In the diabetic dogs, the counts of CD3(+) (T cells), CD4(+) (Helper T cells) and CD21(+) (B cells) cells and the peripheral lymphocytes CD4/CD8 ratio were significantly lower than those in the control dogs. We confirmed abnormality of lymphocyte subsets in insulin treated diabetic dogs and it may relate to depression of immunocompetence and high susceptibility to common infectious diseases.  相似文献   

19.
Corneal sensitivity in dogs with diabetes mellitus   总被引:5,自引:0,他引:5  
OBJECTIVE: To compare aesthesiometer-determined corneal sensitivity between diabetic and nondiabetic dogs and to investigate the correlation between corneal sensitivity and duration of diabetes or status of glycemic control, as estimated by use of glycated blood protein concentrations. ANIMALS: 23 diabetic and 29 nondiabetic normoglycemic dogs. PROCEDURE: A Cochet-Bonnet aesthesiometer was used to measure corneal touch threshold (CTT) in 5 corneal regions of each dog. At the time of ocular examination, duration of diabetes mellitus was estimated from the history, and blood was drawn for assessment of blood glycosylated hemoglobin and serum fructosamine concentrations. RESULTS: Median CTT for central, nasal, dorsal, temporal, and ventral corneal regions in nondiabetic dogs (1.6, 2.3, 2.8, 2.8, and 5.1 g/mm2, respectively) was significantly lower than in diabetic dogs (2.8, 4.0, 5.1, 5.1, and 6.6 g/mm2, respectively). Median regional CTT in diabetic dogs was not significantly correlated with estimated duration of diabetes mellitus or blood glycated protein concentrations. No significant difference was found in regional CTT between eyes of normoglycemic dogs with unilateral cataracts. CONCLUSIONS AND CLINICAL RELEVANCE: Diabetic dogs have significantly reduced corneal sensitivity in all regions, compared with nondiabetic normoglycemic dogs. Regional variation in corneal sensitivity is similar in diabetic and normoglycemic dogs. Neither glycemic control nor duration of diabetes, as estimated, is significantly correlated with corneal hyposensitivity. Corneal nerve dysfunction may be associated with recurrent or nonhealing ulcers in diabetic dogs for which no other underlying cause can be found.  相似文献   

20.
This article describes the clinical presentation of diabetes mellitus in cats and dogs, including the types of diabetes, signalment, history, physical examination findings, and laboratory diagnosis. Newer diagnostic tests such as serum fructosamine concentrations and arginine response rate are also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号