首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
水稻籼粳交DH群体耐热性的QTLs定位   总被引:15,自引:1,他引:15  
耐热性是水稻(Oryza sativaL.)抗逆研究中最重要的性状之一.应用典型的籼(Oryza sativa L.spop.indica)、粳(Oryzasativa L.spp.japonica)交组合IR64×Azucena花药培养的DH群体及其已构建的分子连锁图谱,在田间及温室高温条件下对该DH群体的结实率性状进行考查.采用QTL mapper1.0软件检测控制结实率的加性和上位性效应的数量性状位点(QTL),在第1、3、4、8和11等5条染色体上,共检测到6个具有加性效应的QTLs.其中位于第1、3染色体的2个加性效应QTLs来自父本Azucena的等位基因,是耐热的QTL,能提高结实率9.50%和6.46%,其贡献率为19.15%和2.86%.位于其余3条染色体的4个加性效应的QTLs来自母本IR64的等位基因,能提高结实率4.33%~10.37%.在第1、2、3、4、5、7、8、11等8条染色体之间还检测到8对加性×加性上位性效应,其贡献率为2.27%~8.13%.讨论了应用分子标记辅助育种选育耐热性水稻的可能性.  相似文献   

2.
本文利用旱稻品种IRAT109和水稻品种越富的花培DH群体的116个株系为作图群体,采用混合线性模型QTL定位方法,在水、旱2个土壤水分环境下对粒长(GL)、粒宽(GB)、长宽比(LWR)和垩白率(C)4项外观品质性状和糙米率(BR)、精米率(MR)、整精米率(HR)3项碾磨品质性状进行QTL定位及QTL与环境互作分析。在水、旱2种条件下对DH群体差异显著性分析结果表明,糙米率、精米率和长宽比差异不显著,而整精米率、粒长、粒宽、垩白率差异极显著。外观品质性状在水、旱栽培条件下变化较大,即在旱种环境下稻米粒形变小(粒长、粒宽减小)、变细(长宽比增大)垩白率大幅度下降。碾磨品质性状在双亲间均有差异,其中整精米率差异较大;且在两种土壤水分环境条件下均有变化,即在旱栽条件下两亲本的糙米率和精米率均降低,IRAT109分别减少了5.8%和5.5%,越富分别减少了11.7%和11.5%。共检测到11个加性效应QTL与稻米外观和碾磨品质性状7项指标有关,分别位于第1、3、5、6、7、10、11染色体上,单个QTL对性状的贡献率在3.15~21.42%之间,位于第1、7 染色体上2个控制整精米率的QTL存在显著环境互作,单个QTL与环境互作效应的贡献率分别为9.59%和13.58%。在第1染色体RM295标记附近同时检测到5个QTL,Qgc1a 、Qgc1b 、Qlwr1、QMr1b和QHr1,分别控制粒长、长宽比、精米率和整精米率,且该QTLs簇在2个环境下能稳定地被检测到。同时,还检测到10对上位性QTLs,所有上位性QTL都发生在不同染色体之间,其中,控制整精米率的4对QTL与土壤水分环境显著互作,其环境互作贡献率分别为14.29%、12.28%、10.56%和13.47%。控制粒长、粒宽、长宽比的6个加性QTL(Qgc1a、Qgc1b、Qgc5、Qgw6、Qlwr1、Qlwr10)与环境之间互作较小,在品质育种中可利用分子标记对其进行辅助选择,提高育种效率;而对于基因型×环境互作效应大的整精米率、垩白率应在特定环境(如土壤缺水条件)下进行选择,在特定水分胁迫条件选择目标亲本,并将抗旱基因导入该亲本方可选到品质较优的抗旱品种。  相似文献   

3.
为挖掘多环境下稳定存在的水稻赖氨酸和总黄酮含量相关QTL,以粳稻东农425和长白10号及其衍生的180个株系的F_(6:7)重组自交系(RIL)作为供试群体,采用完备区间作图法(ICIM)和基于混合线性模型的复合区间作图法(MCIM),对2014年和2015年水稻的赖氨酸含量和总黄酮含量进行加性QTL定位及环境互作分析。结果检测到10个影响赖氨酸含量的加性效应QTL和12个影响黄酮含量的加性效应QTL,分布在除第9、第10和第12染色体以外的9条染色体上,其中在第5染色体的RM538~RM1271标记区间内连续2年检测到总黄酮含量QTL。检测到6个存在环境互作效应的赖氨酸含量QTL、4个存在环境互作效应的总黄酮含量QTL,互作贡献率为0.15%~6.73%;一对影响总黄酮含量的上位互作效应的QTL,贡献率为0.99%。本研究结果为水稻赖氨酸和总黄酮含量QTL分子标记辅助育种提供了一定的理论依据。  相似文献   

4.
利用"Lemont"和"Dular"水稻杂交后代单粒传衍生的123个F12家系所组成的重组自交系(Recombinant inbred 1ines.RILs)群体及其含97个SSR标记的连锁图谱,以耐性指数(T)和敏感性指数(S)为测定指标,应用WinQTLcart 2.5定位软件,采用复合区间作图法对2个性状进行定位分析.结果表明,在RIL群体中,2个性状呈连续分布,受微效多基因控制,并且各性状均存在一定数量的超亲遗传类型.2个性状共检测到11个QTL,各QTL的LOD值为2.02~5.07,贡献率为6%~23%.其中在第1、2、3、6、8染色体上检测到控制耐性指标的7个QTLs,贡献率为6%~19%;在第1、3、5、8染色体上检测到控制敏感性指标的4个QTLs,贡献率分别为19%、23%、6%和7%;分别在第3、8染色体的相同区间内(RM85~RM468和RM408~RM250)检测到2个性状的QTLs,这很好地解释了2性状之间存在着极显著负相关性即存在一因多效现象(Pleiotrophic effect).  相似文献   

5.
抽穗期(headingdata,HD)和株高(plantheight,PH)是水稻(Oryza sativaL.)非常重要的农艺性状。本研究利用金23B(Jin23B)和青谷矮1号(QGA-1)构建的BC3F1群体及其衍生的BC3F2群体通过分子标记定位水稻抽穗期和株高的QTL(quantitativetraitlocus)。构建的遗传连锁图包含105对SSR标记和8对InDel标记,图谱较好地覆盖了水稻12条染色体。两年来共定位到了9个抽穗期相关QTLs,6个株高相关的QTLs,其中抽穗期和株高最大效应都来源于第7染色体。抽穗期QTLqHD7-3在2011年LOD为37.07,可以解释的表型贡献率为41.05%,加性效应为11.68;株高QTLqPH7-2在2011年LOD为43.73,可以解释的表型贡献率为54.17%,加性效应为21.60;2012年LOD为42.66,可以解释的表型贡献率为54.39%,加性效应为19.95。qHD7-3和qPH7-2位于同一区域RM214-RM5543之间,Ghd7也位于这一区间,该QTL可能是Ghd7的等位基因。抽穗期QTLqHD2定位于第2染色体上标记ZH282和RM71之间,在两年内都能检测到,其LOD值分别为4.56和4.99,可解释的表型贡献率分别为4.31%和7.99%。株高QTLqPH4定位于第4染色体上标记RM241和RM317之间,其两年内的LOD分别为2.89和2.67,解释的表型贡献率为9.42%和8.78%。抽穗期QTL qHD2和株高QTL qPH4所定位的区间没有相关的基因或QTL报道,这两个QTL可能含有控制抽穗期和株高的新基因。本研究通过遗传定位证明了株高和抽穗期是由主效QTL和微效QTL共同控制的,并发掘了新的抽穗期和株高的QTL,为育种家利用分子标记辅助选择培育新品种提供更多的选择。  相似文献   

6.
【目的】选育氮高效的小麦品种,可有效提高氮素利用效率和生产效率,对环境安全至关重要。本文分析了小麦氮代谢相关性状的遗传效应,为小麦氮高效品种选育提供理论依据。【方法】选用7个小麦品种及其组配的12个杂交组合,进行田间盆栽试验。设置3个氮水平,利用基因型与环境互作的加性-显性遗传模型,对氮代谢相关的10个性状进行遗传与相关性分析。【结果】株高、开花期和成熟期单茎干物重、开花期氮素积累量、籽粒氮素积累量和氮素吸收总量主要受加性效应控制,花后氮素同化量受显性×环境互作效应影响较大,氮素利用效率、氮素生理效率以加性×环境互作效应为主。10个性状狭义遗传力总体不高(平均值为0.56),广义遗传力总体较高(平均值为0.881)。互作广义遗传力均达到1%显著水平,表明不同的氮水平对遗传表达有较大影响。氮素利用效率、氮素生理效率和开花期氮素积累量的互作狭义遗传力较大,表明不同氮水平对这些性状的选择效果不同。通过加性效应预测值得出,亲本DK138和JN10的氮素利用效率和氮素生理效率的加性效应为显著正效应。大多数组合的显性主效应与不同氮水平下的显性×环境互作效应在方向上不尽一致,表明小麦氮高效杂交后代的选择宜考虑特定的氮水平条件。显性效应预测值表明,组合JN10×W9903的氮素生理效率显性效应值最大且达到显著水平,是氮素生理效率较高的组合。相关分析表明,两两性状间以加性遗传相关为主。氮素生理效率与株高呈加性正相关关系,达到10%显著水平。除株高和谷氨酰胺合成酶活性外,氮素利用效率与其他性状间以显性环境互作相关为主。氮素利用效率与氮素生理效率之间的显性×环境互作相关系数达到10%显著水平。氮素利用率与氮素生理效率的表现型和基因型相关系数为正值且达1%显著水平。【结论】通过性状分析表明,株高在一定程度上可以作为氮素生理效率的间接选择性状,氮素利用效率与氮素生理效率这两个性状进行协同改良。品种DK138和JN10可作为亲本以提高后代的氮素利用效率和氮素生理效率。杂交组合LM14×W9903表现出良好的后代选育利用潜力。  相似文献   

7.
小麦株高发育动态QTL定位及其与水分环境互作遗传分析   总被引:2,自引:0,他引:2  
株高是影响小麦产量的重要农艺性状,对生境水分极为敏感。为探讨小麦不同发育时期株高数量性状遗传与水分环境互作,本研究利用抗旱性强的冬小麦(Triticum aestivum L.)品种陇鉴19与水地高产品种Q9086杂交,重组近交系(RIL)群体120个株系为供试材料,测定两试验环境(甘肃镇远和兰州)雨养(干旱胁迫,DS)和灌溉条件下不同发育时期株高,采用条件复合区间作图法进行株高发育动态数量遗传位点(quantitative trait loci,QTL)分析。共检测到26个条件加性QTL(A-QTL)和56对上位性QTL(AA-QTL)。在A-QTL中,Qph.acs-1A-1、Qph.acs-4B-2、Qph.acs-5A-1、Qph.acs-5D-1、Qph.acs-6B-2和Qph.acs-7D-1在开花期前能重复表达,且有相对较高的贡献率(H2(A))(7.39%~31.04%)。AA-QTL主要由非显著加性效应的位点间互作形成,贡献率(H2(AA))在1.38~24.27%之间,这些AA-QTL效应对后期株高有显著影响。有61.54%的A-QTL和58.93%的AA-QTL分别参与了水分环境互作,在雨养条件下普遍具有降低株高的效应。条件A-QTL的加性效应在拔节期最大,随后逐渐降低,更多的体现出上位性效应。说明控制小麦株高发育的数量性状基因易与水分环境发生互作,且在小麦不同发育阶段有不同的时空表达模式。本研究结果可为小麦抗旱遗传研究与分子改良提供基础资料。  相似文献   

8.
用世代均数法分析了玉米10个数量性状的基因效应。以 P_1、P_2、F_1、B_1、B_2和 F_26个世代作材料,用 Mathef 和 Jinks(1977)提出的估计参数模式进行统计分析,结果表明,玉米棒四叶叶面积、双穗间距、果穗重、籽粒重、出籽率等数量性状显性效应贡献最大,而抽雄期、抽丝期、抽丝间隔、穗轴重的加性效应贡献最大;上述9个性状都存在着显著或极显著的上位性效应,其作用太小因性状而异。双穗率无显著的上位性效应,适合加性—显性模式,它可能主要受加性效应的影响。  相似文献   

9.
为给分子标记辅助选择和小麦品质育种提供依据,以小麦杂交组合99G44×京771重组自交系群体(RIL)为材料,利用SSR分子标记技术,采用复合区间作图法对小麦籽粒淀粉主要特性进行了QTL分析。结果表明,检测出1个与总淀粉含量有关的显著加性效应QTSA.-6B,位于6B染色体,位点总贡献率为10.91%;检测出1个与支链淀粉含量有关的显著加性效应QAmp.-1B,位于1B染色体,位点的总贡献率为9.54%;检测出1个与直链淀粉含量有关的显著加性效应QAms.-6B,位于6B染色体,位点总贡献率为7.29%;检测出1个与支/直比有关的显著加性效应QAmp./Ams.-6B,位于6B染色体,位点的总贡献率为12.69%;检测出1个与高峰粘度有关的显著加性效应QPV-1B,位于1B染色体,位点的总贡献率为5.91%;检测出2个与崩解值有关的显著加性效应QBD-1B和QBD-2D,位于1B、2D染色体,位点总贡献率为12.95%;检测出1个与回生值有关的显著加性效应QSB-1B,位于1B染色体,位点总贡献率为6.99%;检测出1个与低谷粘度有关的显著加性效应QTV-3B,位于3B染色体,位点的总贡献率为5.16%;检测出1个与膨胀势有关的显著加性效应QSP-1B,位于1B染色体,位点总贡献率为7.02%。本研究定位的淀粉品质性状的标记可作为小麦品质分子育种的工具。  相似文献   

10.
不结球白菜抽薹开花性状的主基因+多基因遗传分析   总被引:1,自引:0,他引:1  
为了研究不结球白菜抽薹开花性状的遗传规律,并对其耐抽薹品种进行鉴定筛选,以不结球白菜易抽薹纯系M10-1和耐抽薹纯系M10-2杂交获得的6世代(P1、P2、F1、B1、B2和F2)群体为材料,利用植物数量性状主基因+多基因多世代联合分析的方法对不结球白菜抽薹性状(现蕾期)和开花性状(开花期)进行遗传分析。结果表明,控制抽薹性状的为2对加性-显性-上位性主基因+加性-显性多基因,并存在明显的加性、显性和上位性效应。其中,2对主基因的加性效应值均为正,显性效应值hb大于ha,且以第2对主基因的正向显性效应为主;抽薹性状存在较大的主基因加性×加性和显性×显性互作效应,以呈负向的多基因的加性效应为主。B1、B2和F2的主基因遗传率分别为83.83%、87.82%和88.31%,多基因遗传率均为0,主基因+多基因遗传率平均为86.65%,环境变异占表型变异平均为13.35%,说明抽薹性状主要受主基因控制,在育种上可以应用抽薹性状(现蕾期)作为不结球白菜耐抽薹性的鉴定标准,并可在早期世代对其耐抽薹性进行选择,且要注意一定的环境因素。开花性状与抽薹性状遗传相似,均受到2对主基因控制,但主基因+多基因遗传率平均为9.57%,而环境变异平均为90.43%,对开花的影响显著,说明开花性状与环境的互作效应非常明显,不适宜作为耐抽薹性的鉴定指标。利用本研究获得的抽薹性状作为不结球白菜耐抽薹性的鉴定指标,并应用于育种实践,对选育不结球白菜耐抽薹新品种,提高产量具有重要意义。  相似文献   

11.
为探究不同氮磷钾水平对大豆幼苗期下胚轴性状的影响,发掘其基因资源,了解其遗传机制,本试验以栽培大豆晋豆23为母本,以山西农家品种灰布支黑豆为父本及其所衍生的447个重组自交系(RIL)为材料,设置3个处理:CK(模拟种植不施肥)、T1(模拟大田正常配施氮磷钾肥)和T2(模拟高肥田块,含量为大田常规配施氮磷钾肥的1.5倍),研究不同营养水平水培条件下幼苗期大豆QTL间的上位性和环境互作效应。结果表明,基于复合区间作图(CIM)共检测到20个影响下胚轴长和下胚轴重的QTL,分布于第2、第6、第7、第8、第9、第10、第13、第16、第20共9条染色体上,单个QTL的贡献率介于3.65%~18.13%之间。基于混合线性模型(MCIM)检测到3对下胚轴长上位互作QTL,2对下胚轴重上位互作QTL,5对QTL均发生在2个非主效QTL之间。第9和第10染色体分别在3种处理中同时检测到下胚轴长和下胚轴重QTL,表明加性效应、加性与环境互作效应和加性×加性上位性互作效应在下胚轴长和下胚轴重的形成和遗传中起重要作用。本研究为大豆幼苗期下胚轴性状的QTL定位、图位克隆和分子标记辅助选择以及为实际生产中苗期施肥时间的选择和氮磷钾高效利用提供了一定的理论参考。  相似文献   

12.
CAST基因型与营养水平互作对猪胴体性状的影响研究   总被引:1,自引:0,他引:1  
钙蛋白酶抑制蛋白CAST (Calpastatin)对肌内蛋白降解、肌细胞生长速度以及屠宰后钙蛋白酶的活性具有重要的影响,研究CAST基因多态性的遗传效应及其与营养水平的互作影响对猪胴体品质的控制具有重要的作用。本试验使用杜洛克和大围子2个纯种猪群,杜洛克×(长白×大白)和大白×大围子2个杂种猪群,利用HinfⅠ, MspⅠ和RsaⅠ3种内切酶研究了CAST基因的RFLP及其与营养水平互作对猪胴体性状的影响。结果表明,HinfⅠ、MspⅠ和RsaⅠ3种内切酶在4个猪群均获得RFLP,酶切位点分别存在一对等位基因A与B, C与D及E与F。AA型×高营养水平互作显著降低熟肉率和滴水损失,但与中水平互作却显著提高滴水损失(P<0.05)。AB型×高营养水平互作显著降低胴体长和眼肌面积,提高肌肉的滴水损失;但AB型×中营养水平互作则显著降低屠宰率、背膘厚和熟肉率,并提高腿臀比例和瘦肉率(P<0.05)。CD型×高水平互作对所有性状的互作效应显著,CC型×中营养水平组提高滴水损失(P<0.05)。EF型×高营养水平互作能对多个性状产生达到或超过群体均数的10%的效应(P<0.05),EE型×中营养水平互作显著增加背膘厚。  相似文献   

13.
水稻抗UV—B的QTL定位和环境互作分析   总被引:1,自引:0,他引:1  
以“Lemont”(美国)和“Dular”(印度)杂交建立的包含123个家系的水稻重组自交系(RIL)群体,构建了含有97对SSR分子标记的水稻遗传连锁图谱。以该遗传群体及其亲本为材料,分别在2005年晚季和2006年早季进行UV—B辐射增强处理,考察了株高性状,并转换成抑制率进行混合线性模型的复合区间作图定位,共检测到2个抗UV—B辐射增强的加性QTLs,分别位于第4和第6染色体上,解释了4.72%和2.69%的遗传变异,分析还发现控制该性状QTL存在环境互作效应,分别解释了8.36%和5.42%的遗传变异,大于加性QTLs。同时检测到7对上位性互作基因,解释了0.00~6.88%的遗传变异,也存在-9环境的互作效应,解释了1.94%~23.31%的遗传变异,暗示着基因上位性的重要作用。  相似文献   

14.
水稻汕优63重组自交系重要农艺性状的QTLs和互作分析   总被引:19,自引:1,他引:19  
利用水稻(Oryza sativaL.spp.indica)汕优63重组自交系群体241个株系,进行了株高,抽穗期,产量和产量构成因子等9个重要农艺性状分析,定位了这些数量性状的基因位点(QTLs)。结果表明,这些性状在重组自交系群体中均存在双向超亲分离,其分布接近正态分布,共检测到45个主效QTLs和47对互作QTL位点影响上述9个性状,贡献率为2.83%-28.46%,第7染色体C1023-R1440区间为最适跃区段,同时检测到5个性状的主效QTL与3个性状的互作有关,为典型的一因多效现象,为分析水稻杂种优势和分子标记辅助选择提供了理论基础。  相似文献   

15.
盐胁迫下水稻苗高和分蘖数的发育动态QTL分析   总被引:1,自引:0,他引:1  
为了检测盐胁迫下水稻苗高和分蘖数的发育动态QTL,以粳稻品种东农425和长白10为亲本衍生的F2:3群体为试验材料,构建了包含123个SSR标记,全长为1 616.53 c M,平均图距为13.14 c M的遗传连锁图谱。以浓度为6 ds·m-1的Na Cl水溶液进行大田生育期灌溉,正常水灌溉为对照,对盐胁迫下水稻的苗高和分蘖数进行发育动态QTL分析。分别利用完备区间作图法和混合线性模型的QTL定位方法,联合盐胁迫与正常条件下6个发育时期苗高和分蘖数的表型数据,共检测到6个控制盐胁迫下水稻苗高和3个控制分蘖数的加性QTL、4个控制正常条件下苗高和5个控制分蘖数的加性QTL、盐胁迫和正常条件联合下的6个控制苗高和4个控制分蘖数的加性QTL,以及3对控制苗高和1对控制分蘖数的上位性QTL。加性QTL q SH1在t3、t4和t2/t1时期分别用非条件和条件方法检测到,加性QTL q TN8-2在t2、t3、t4和t5时期被连续用非条件方法检测到,在t3/t2时期用条件方法被检测到。分别检测到4个控制苗高和2个控制分蘖数的加性QTL与盐胁迫环境存在互作效应,控制苗高的3对上位性QTL和控制分蘖数的1对上位性QTL均与盐胁迫环境发生互作。本研究旨在检测不同发育时期控制盐胁迫下水稻苗高和分蘖数的QTL,并分析与盐环境的互作效应,为解析苗高和分蘖数在盐胁迫下的发育遗传特点和水稻耐盐QTL分子标记辅助育种提供理论依据。  相似文献   

16.
为探究干旱胁迫环境条件下水稻(Oryza sativa)碾米品质和外观品质相关性状的变化规律,挖掘干旱条件下稳定存在的控制稻米品质性状的QTL,同时分析QTL与环境的互作效应,本研究以陆稻小白粳子和水稻空育131杂交构建的207个重组自交系(recombinant inbred line,RIL)群体及2个亲本为实验材料,在干旱胁迫和正常灌溉2个环境条件下进行重复实验,对糙米率(brown rice rate,BRR)、精米率(milled rice rate,MRR)、整精米率(head rice rate,HMRR)及垩白粒率(chalky rice rate,CG)4个品质性状进行QTL定位.结果表明,在2个环境下BRR、MRR、HMRR三者之间均呈极显著正相关,MRR、HMRR与CG分别呈显著和极显著负相关.各性状在2个环境下均呈现出连续分布,表现为数量性状的遗传特点.4个性状两年共检测到24个加性QTL和9对上位性互作QTL,分布于除第10和第12染色体的其余10条染色体上.在所有检测结果当中,5个加性QTL(qBRR1a,qMRR11a,qHMRR6a,qCG6a和qCG6c)均在2年干旱胁迫环境下同时检测到,3个加性QTL和4对上位性互作QTL检测到显著的环境互作效应,但各性状均以加性遗传效应为主,受水分环境影响较小.对干旱胁迫具有特异性QTL的挖掘和发现,在一定程度上为干旱胁迫下稻米品质的遗传改良提供了基础资料.  相似文献   

17.
为检测玉米株高、穗位高杂种优势QTL,以121株intermated B73×Mo17(IBM)个体为基础群体,按照三重测交交配设计构建了三重测交群体,通过完备区间作图法对株高、穗位高杂种优势的主效QTL及互作位点进行了分析。在第9染色体上的2个紧密连锁的区段分别定位到了一个株高、穗位高杂种优势加性QTL位点,单个QTL的表型贡献率为14.3%和18.6%。该QTL可能同时对株高、穗位高杂种优势起作用。在第1、第3染色体上检测到2个株高杂种优势超显性QTL,可解释表型变异的9.0%~11.4%;在第1、第6、第8染色体上检测到5个穗位高杂种优势超显性QTL,可解释表型变异的6.6%~16.8%。进一步分析发现,2对加加上位性互作区段及2对显显上位性互作区段对穗位高杂种优势存在上位性贡献,加加互作效应及显显互作效应可共同解释表型变异的40.7%和26.8%。由此可知,加性、显性及两位点互作上位性共同对株高、穗位高杂种优势存在贡献。本研究检测到的主效QTL位点有助于株高、穗位高在杂种优势育种中的进一步应用。  相似文献   

18.
为挖掘和利用超级稻沈农265(SN265)中的优异耐冷基因,找到不同遗传背景下均能稳定表达且贡献率较大的苗期耐冷数量性状基因(QTL),以SN265分别与2个籼稻品种七山占、IR30杂交衍生的2套重组自交系(RIL)群体(S1和S2)为试验材料,以低温处理下幼苗死苗率作为苗期耐冷性评价指标,同时构建2套群体的遗传连锁图谱,采用完备区间作图法进行耐冷性QTL检测及其遗传效应分析。结果表明,在2套RIL群体中共检测到4个苗期耐冷主效QTL,且苗期耐冷加性效应均来自SN265。S1群体定位到2个QTL位点,位于第5号染色体的qCTS-5.1和第6号染色体的qCTS-6,贡献率分别为47.59%、22.47%,LOD值分别为6.54、4.88;S2群体定位到2个QTL位点,分别位于第5号染色体的qCTS-5.2和第7号染色体的qCTS-7,贡献率分别为22.62%、38.48%,LOD值分别为10.00、9.81。2套群体定位的qCTS-5.1和qCTS-5.2区间基本重合,证明其可在不同的遗传背景中稳定表达。本研究结果为进一步精细定位并克隆水稻苗期耐冷主效QTL奠定了一定的理论基础。  相似文献   

19.
为了探讨玉米苗期性状及其杂种优势形成的遗传学基础,以强优势玉米(Zea maysL.)杂交种组合豫玉22及其重组近交系为基础材料,采用三重测交(triple testcross,TTC)遗传交配设计,组配了包含312个测交后代的TTC群体,通过复合区间作图法检测到了30个控制发芽后第4天的最长根长、苗高、初生根数、根干重及叶干重的QTLs,并且在第2、3和7染色体上存在4个同时控制不同苗期性状的QTL区域。分析发现,在利用Z1和Z2数据定位出的22个QTLs中,以超显性位点最多(11个),加性(5个)和部分显性较少(5个),而显性最少(1个)。另外,还检测到8个QTLs与遗传背景之间的互作和16对不同标记间的互作。据此,我们提出超显性和上位性是玉米苗期性状及其杂种优势形成的主要遗传学基础。关键词玉米,苗期性状,三重测交,杂种优势,QTL定位  相似文献   

20.
对于不同品种和不同种植环境中的稻米品质进行数量性状位点(quantitative trait locus,QTL)检测分析,可为分子遗传育种提供实验数据。本研究以粳稻(Oryza sativa ssp.japonica)春江06(CJ06)和籼稻(Oryza sativa ssp.indica)台中本地1号(TN1)杂交衍生的加倍单倍体群体(double haploid,DH)为试材,在西南地区种植并检测与稻米品质相关的特征值,进行QTL定位与分析,以期了解该生态环境对稻米品质的影响,为水稻品质的分子改良育种提供理论依据。经检测分析,共获得13个与稻米粒型、直链淀粉含量以及淀粉RVA(rapid viscosity analysis)谱特征值相关的QTLs,其中5个与粒型相关、7个与RVA谱相关、1个与直链淀粉相关。上述QTLs分别分布在第1、2、3、6、7、8、10染色体,即q HPV-6、q CPV-6、q BDV-6、q CSV-6、q SBV-1、q SBV-6、q SBV-7、q RL-2、q RLW-2、q RLW-3、q RLW-8-1、q RLW-10、q AC-6;分别调控热浆黏度、冷胶黏度、崩解值、回复值、消减值、稻米粒长、稻米长宽比和直链淀粉含量。其中7个与RVA相关的QTLs,似然函数比值对数值(logarithm of odds,LOD)在2.55~13.18之间,单个QTL贡献率在7.03%~49.05%之间,除q SBV-1和q SBV-7贡献率较低,其余单个QTL位点的贡献率均在25%以上,属于主效QTLs。此外,与RVA相关的5个QTLs—q HPV-6、q CPV-6、q BDV-6、q CSV-6及q SBV-6均定位于6号染色体同一区间,在该区间内还检测到1个与直链淀粉含量相关的主效QTL(q AC-6),其贡献率达到45.21%;生物信息学分析发现,该区间包含已被克隆的直链淀粉合成相关的Waxy(Wx)基因。粒型方面共检测到5个具有加性效应的QTL位点,LOD值在3.16~8.47之间,单个QTL贡献率在8.95%~27.23%之间,其中q RL-2、q RLW-3、q RLW-8等3个区间内包含了3个已被克隆的主效QTLs—GW2、GS3以及GW8。本研究通过QTL检测分析,为水稻品质的分子改良育种提供了基础资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号