首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We isolated the rotifers Brachionus ibericus and Proales similis from the sediment of shrimp tanks and studied their individual demographic characters and competition between them at two food levels (0.25?×?106, 1.00?×?106 cells ml?1 of Nannochloropsis oculata at 25 °C) and salinities ranging from 10 to 30‰. Our hypothesis was that growth rates would be higher with increasing food levels and salinities. Observations were taken twice a day for life table studies and daily once for population growth experiments. Using survivorship and fecundity data, we derived various life history variables. Although the average life span (7.6?±?0.4 days) and gross reproductive rate (33.8?±?2.9 neonate female?1 day?1) of B. ibericus were higher than those of P. similis (average life span 5.4?±?0.6 days and gross reproductive rate 13.0?±?0.6 neonate female?1 day?1), the population growth experiments showed that P. similis had higher r values (0.32?±?0.005 day?1) than B. ibericus (0.23?±?0.002 day?1) at 1.0?×?106 cells ml?1 of N. oculata. The rotifer P. similis was more adversely affected due to the presence of B. ibericus than vice versa. The data are important for developing techniques for a large-scale culture of these rotifers as food in aquaculture.  相似文献   

2.
Three experiments were carried out to separately investigate the effects of stocking density (1.0, 2.0, 4.0 and 8.0 larvae ml?1), diet (Isochrysis zhanjiangensis, Chlorella spp., Nannochloropsis oculata, 50 % I. zhanjiangensis/50 % Chlorella spp. and 50 % I. zhanjiangensis/50 % N. oculata), and water exchange (25 % once every other day and 25, 50 and 100 % once daily) on growth and survival of pearl oyster Pinctada maxima larvae. Results showed that there existed significant effects of stocking density, diet, and water exchange on the growth of pearl oyster larvae (P < 0.05). Larval survival was significantly affected by stocking density and diet (P < 0.05), but not by water exchange (P > 0.05). Larval growth decreased significantly with increasing stocking density (P < 0.05). A density of 1.0–4.0 larvae ml?1 was optimal for larval growth of pearl oyster. Chlorella spp. and N. oculata could replace 50 % of I. zhanjiangensis as a food source for the pearl oyster larvae without affecting growth and survival. A water exchange of 25 % once daily provided optimum larval growth and survival.  相似文献   

3.
The objective of this study was to assess the effects of stocking density on growth performance, serum biochemical parameters, and muscle texture properties of genetically improved farmed tilapia (Oreochromis niloticus, GIFT). Juvenile GIFT with an average initial weight of 12.54?±?0.45 g (mean?±?SD) were randomly stocked in 16 tanks (80 L) in a recirculation aquaculture system at four densities of 10 (D1), 20 (D2), 30 (D3), and 40 (D4) fish per tank for 56 days, with quadruplicate for each density. There were no significant differences in water temperature among the four treatments (P?>?0.05). D4 had the significantly lowest dissolved oxygen content (5.52 vs 5.69–6.09 mg L?1) (P?>?0.05) and pH (6.63 vs 6.87–7.20) (P?<?0.05). NO2-N and NH4-N concentrations significantly increased with increasing stocking density (P?<?0.05). Weight gain (WG) and specific growth rates (SGR) decreased with increasing stocking density. The lowest WG (617.20 vs 660.45–747.06%), SGR (3.52 vs 3.62–3.81% day?1), and highest feed conversion ratio (1.68 vs 1.53–1.58) were observed in D4. Fish at D4 had significantly lower condition factor (3.11 vs 3.29–3.37%) and survival rate (91.25 vs 97.50%) than those from D1 and D2 (P?<?0.05). With increasing stocking density, serum total cholesterol, triglyceride, and total protein concentrations decreased (P <?0.05) and aspartate aminotransferase and alanine aminotransferase activities increased (P <?0.05). D4 fish had higher moisture content (78.80 vs 76.97%) and lower crude protein content (18.14 vs 19.39%) in muscle than D1 fish (P?<?0.05). Compared to D1 and D2, D3 and D4 had lower muscle hardness (1271.54–1294.07 vs 1465.12–1485.65 g), springiness (0.62–0.65 vs 0.70–0.72), gumminess (857.33–885.32 vs 1058.82–1079.28 g), and chewiness (533.04–577.09 vs 757.53–775.69 g) (P <?0.05). High stocking density resulted in growth inhibition, declines in flesh quality, and disturbance to several serum biochemical parameters.  相似文献   

4.
The main aim of the present study was to assess the effects of chronic high stocking density on liver proteome of rainbow trout. Rainbow trout juveniles (42.6 ± 2.3 g average body weight) were randomly distributed into six tanks at two stocking densities (low stocking density (LD) = 20 kg m?3 and high stocking density (HD) = 80 kg m?3). Both treatments were performed in triplicate tanks for a period of 60 days. High stocking density caused a reduction in the growth performance compared with LD fish. Lysozyme activity increased with stocking density, while serum complement activity presented the opposite pattern. Serum cortisol and total protein levels did not show significant differences (P > 0.05) between experimental groups. The fish reared at high stocking density showed significantly lower osmolality and globulin values but higher albumin level. The HD group had significantly higher activities of catalase, glutathione peroxidase and superoxide dismutase, and malondialdehyde content in the liver when compared to the LD group. Comparative proteomics was used to determine the proteomic responses in livers of rainbow trout reared at high stocking density for 60 days. Out of nine protein spots showing altered abundance (>1.5-folds, P < 0.05), eight spots were successfully identified. Two proteins including apolipoprotein A-I-2 precursor and mitochondrial stress-70 protein were found to increase in HD group. The spots found to decrease in the HD group were identified as follows: 2-peptidylprolyl isomerase A, two isoforms of glyceraldehydes-3-phosphate dehydrogenase, an unnamed protein product similar to fructose-bisphosphate aldolase, 78 kDa glucose-regulated protein, and serum albumin 1 protein.  相似文献   

5.
The present study was conducted to investigate the effects of stocking density on serum cortisol (COR) levels and expression of immune genes in the head kidney of juvenile GIFT tilapia (Oreochromis niloticus) after Streptococcus iniae (S. iniae) infection. Juveniles (2700) were distributed into 30 tanks at five stocking densities (150, 300, 450, 600 and 750 g/m3), and each treatment had six replicates. After a 45-day feeding trial, a S. iniae challenge study was conducted for 96 h. Differences in mortality, serum COR and gene expression of C-type lysozyme, heat-shock protein 70 (HSP70), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were analyzed. The levels of serum COR at all infected treatments were significantly higher compared with the levels of pre-infection (P < 0.05). At 96 h post-infection, serum COR levels of high stocking densities (600 and 750 g/m3) were significantly higher than those of low-density groups (P < 0.05); the mRNA levels of C-type lysozyme, HSP70, IL-1β, TNF-α and IFN-γ were significantly lower in tilapia reared at 600 g/m3 group than in those reared at 300 g/m3 group (P < 0.05). Fish reared in high-density treatments (600 and 750 g/m3) exhibited significantly higher post-challenge mortality (43.3 and 40.0 %) at 96 h following S. iniae infection, and it was significantly higher than other groups (P < 0.05). The data suggest that when living in high stocking density, GIFT tilapia showed decrease in immune capability, together with increased serum COR and susceptibility to S. iniae.  相似文献   

6.
We investigated the combined effects of temperature (23, 26, 29 and 32 °C) and salinity [15, 18, 21, 24, 27 and 30 practical salinity units (PSU)] on the growth and survival of juvenile ark shell Anadara broughtonii under hatchery conditions. Mortality, shell length and shell height were monitored for a period of 25 days in all exposure groups. Survival greater than 98% was observed in all treatment groups with no significant difference among treatment combinations. Absolute growth and specific shell length and height growth rate were significantly influenced by temperature and salinity. Growth of juvenile A. broughtonii increased with higher salinity and peaked at an intermediate temperature (26 °C). Optimal specific growth rates of 4.64 ± 0.04% day?1 by shell length and 4.76 ± 0.11% day?1 by shell height were observed at a combination of 26 °C and 30 PSU. This study enhances our understanding of the biology of A. broughtonii and determines ideal environmental conditions for pre-planting culture operations.  相似文献   

7.
Sea urchins were stocked at a density of 15 (D15), 30 (D30), 45 (D45) and 60 (D60) urchins/cage (0.3 m long × 0.2 m wide × 0.4 m high) in a laboratory culture environment for 16 months. The wet body weight (BW) and test diameter growth were monitored at 2-month intervals during the experiment. At the conclusion of the experiment, the surviving sea urchins were counted and the gonad wet weight (GW) and gonad color were measured. Specific growth rate (SGR) of body weight, survival rate (SR), gonad index (GI), gonad color difference (ΔE 00), coefficients of variation (CV) of BW, GW, GI and ΔE 00, total biomass yield (TY) and total gonad yield (TGY) per cage were calculated. Two marketable yield variables, graded according to gonad index, i.e., marketable biomass yield (MY) and marketable gonad yield (MGY), were also calculated. Coefficient of variation of final body weight (FW) and final test diameter (FTD) of sea urchins increased as the stocking density increased, indicating the existence of adverse social interactions. These adverse social interactions detrimentally affected FW, FTD, SGR, GW and GI (P < 0.01). Although SR decreased with the increasing densities, no statistical significant difference was detected. Sea urchins at D15 had the lowest gonad color difference (ΔE 00) (P < 0.05). However, statistically equal CV of ΔE 00 indicates this density effect was not a result of adverse social interactions. TY and TGY increased with increased density and can be described by the following equations: TY = 84.18X 0.64, R 2 = 0.999 and TGY = 24.16X 0.38, R 2 = 0.979. However, the MY and MGY were not significantly different among stocking densities. The results of this study demonstrate that in intensive culture S. intermedius at low stocking density can achieve high growth rate, gonad index and desirable color without decreasing the marketable yield. Farmers should choose to culture S. intermedius at low stocking densities.  相似文献   

8.
Vertebrate corneal epithelium cell plays an important role for imaging, and the cell density, together with the appearance or type of affiliated microstructures, is considered as a result of evolution adapting to alternate terrestrial or aquatic environment. In this paper, we investigated the corneal cells of both larvae and adult amphibious mudskippers Boleophthalmus pectinirostris and Periophthalmus magnuspinnatus, to testify the relationship between morphology and function. The cell density values of the two species were 31,137 and 31,974 cells per mm2 in larvae and then significantly decreased to 15,826 and 25,954 cells per mm2 in adult (p < 0.001), respectively, which could be explained as the habitat change from aquatic to different degrees of terrestrial environment. The corneal epithelium cells were ridge type in larvae and differentiated into ridge type and reticular type in adult P. magnuspinnatus and ridge type, reticular type and ridge–reticular type in adult B. pectinirostris. Four kinds of microstructures as microridge, microvilli, microplicae and microhole appeared in both species. The difference of microridge width and its separation indicated that a dense cell connection was requested in a saltier and more terrestrial environment.  相似文献   

9.
The optimum culture conditions of the local strain Chaetoceros calcitrans were determined to improve biomass and reduce cost of production. Under outdoor culture conditions, higher cell density was attained when the cultures were enriched with Tungkang Marine Research Laboratory (TMRL) medium composed of cheap technical grade reagents and cultured at 25 g L?1 salinity. The cultures were lighted with two 40 W cool-white GE fluorescent tubes (24–35 μmol photon m?2 s?1). Using semi-continuous culture system under established optimum culture conditions, C. calcitrans can be re-cultured thrice and concentrated at each culture cycle using electrolytic flocculation method to produce 4.6 kg m?3 of diatom paste. The viability of concentrated C. calcitrans after 3 months of storage was comparable to live diatom cells. Simple preservation technique by low-temperature storage is convenient for storing algal concentrates for use as starter cultures and for feeding invertebrates. The paste costs USD 8.24 kg?1 inclusive of the assets and flocculation materials for culturing and harvesting the diatom, respectively. This study established the suitable conditions for mass culture of C. calcitrans and produced concentrated diatoms in paste form that is readily available for aquaculture hatcheries at a lower cost.  相似文献   

10.
To clarify the recruitment process of sand lance Ammodytes sp., we investigated larval condition factor, relative gut fullness (%GF), prey abundance and oceanographic structure in Mutsu Bay, Japan, during 1999–2001. Ammodytes sp. larvae, which were collected by horizontal hauls of Motoda nets and a ring net at depths of 1, 10, 20, 30 and 40 m, were mainly distributed at 10–30 m. Larvae at the first feeding time until 12 mm in body length (BL) fed predominantly on copepod nauplii, whereas large larvae with BL of 12.1–14.0 mm fed on a mixture of copepod nauplii, copepodites and appendicularians from late February to April. A path analysis showed that difference in water density between 35- and 5-m depths negatively affected naupliar abundance at 10–30-m depth (standardised path coefficient β = ?0.71, p = 0.005 for 3.3–8.0-mm BL larvae and β = ?0.78, p < 0.001 for 8.1–12.0-mm BL larvae). Naupliar abundance positively affected the %GF of Ammodytes sp. larvae (β = 0.75, p < 0.001 for 3.3–8.0-mm BL larvae and β = 0.66, p < 0.001 for 8.1–12.0-mm BL larvae), whereas it was negatively affected by water temperature (β = ?0.45, p = 0.008 for 3.3–8.0-mm BL larvae and β = ?0.56, p = 0.002 for 8.1–12.0-mm BL larvae), and the temperature effect was weak compared with that of naupliar abundance. In turn, %GF positively affected larval somatic weight (β = 0.91, p < 0.001 for 6.0-mm BL larvae and β = 0.70, p = 0.005 for 10.0-mm BL larvae). The recruitment failure in 1999 was likely caused by a reduced condition factor, which resulted from low naupliar abundance. In contrast, the abundance of nauplii and Oithona similis copepodites was high in 2000 and 2001. It is possible that the higher recruitment success in 2001 was because of the higher water temperatures in Mutsu Bay, sustaining faster growth of the larvae than in 2000 under the high-prey abundance conditions.  相似文献   

11.
This study was conducted to investigate the effects of dietary chitosan on growth performance, hematological parameters, intestinal histology, stress resistance and body composition in the Caspian kutum (Rutilus frisii kutum, Kamenskii, 1901) fingerlings. Fish (1.7 ± 0.15 g) were fed diets containing chitosan at different levels (0, 0.25, 0.5, 1 and 2 g kg?1 diet) for a period of 60 days. Results showed that the feed conversion ratio significantly decreased in fish fed diet containing 1 g kg?1 of chitosan compared to the other groups (P < 0.05), but there were no significant differences between treatments in terms of specific growth rate and condition factor (P > 0.05). Leukocyte increased in fish fed diet containing 2 g kg?1 of chitosan compared to the other groups (P < 0.05). Lymphocytes, eosinophils and neutrophils did not significantly change among dietary treatments (P > 0.05). Also, the chitosan supplementation did not affect the whole-fish body composition (P > 0.05). Light microscopy demonstrated that the intestinal villus length increased in fish fed diet containing 1 g kg?1 of chitosan compared to control group (P < 0.05). While 11 and 13 ‰ salinity and 30 °C thermal stress had no effect, 1 g kg?1 of chitosan (P < 0.05) showed highest survival rate (70 %) in 34 °C thermal stress. The results showed that chitosan in the diet of the Caspian kutum fingerlings could improve feed conversion ratio, the nonspecific defense mechanisms and resistance to some of the environmental stresses.  相似文献   

12.
The effects of tank color on the growth, stress responses, and skin color of snakeskin gourami (Trichogaster pectoralis) were investigated in this study. Fish with initial body weights of 5.03±0.00 g were reared in five experimental tank colors (white, red, green, blue, and black) for 8 weeks. Each tank color was tested in triplicate with an initial stocking density of 15 fish per tank. Fish were fed with commercial sinking pellets at 4% of the average body weight per day. Growth performance, feed utilization efficiency, stress indicators (hematocrit, blood glucose, plasma cortisol levels), and skin color parameters were investigated. The fish reared in blue tanks had a significantly higher average final body weight (9.73?±?0.14 g) and significantly lower average feed conversion ratio (3.42?±?0.12) than the fish reared in black tanks (P?<?0.05). The fish reared in black tanks exhibited higher average hematocrit (36.63?±?1.11%), blood glucose (48.33?±?1.45 mg dL?1), and plasma cortisol (9.00?±?0.56 μg dL?1) levels than those reared in the other tank colors. However, the blood glucose levels in only the fish reared in black tanks were significantly higher than those in the fish reared in the other tank colors. The fish skin color ranged from very pale (high skin lightness) in the white tanks to very dark (low skin lightness) in the black tanks, and 80% of the variation in skin lightness were explained by the tank lightness. The use of a blue tank resulted in normal skin color; hence, blue tanks will not affect the customer acceptance of the fish. Our study revealed that blue is the most appropriate tank color for culturing snakeskin gourami.  相似文献   

13.
Fairy shrimp is known as a nutritional food for fish and crustaceans in aquaculture. In most hatcheries, the microalga Chlorella sp. appears to be the most common, suitable, and nutritious food to feed fairy shrimp. In this study, we attempted to determine other alternative algal diets for cultivation of fairy shrimp Branchinella thailandensis. Seven experimental diets including three treatments of dried Spirulina sp. at 0.75 (S1), 1.5 (S2), and 3.0 mg dry weight individual?1 (S3); three treatments of Chlorococcum humicola at 5 × 105 (Ch1), 1 × 106 (Ch2), and 2 × 106 cells mL?1 (Ch3); and a control diet (Chlorella vulgaris at 1 × 106 cells mL?1) were fed to 5-day-old shrimp for 15 days. Evaluation of growth performance, egg production, survival percentage, and nutritional and carotenoid content of the experimental fairy shrimp revealed that Ch3 is the most suitable algal diet. Our results suggest that C. humicola is the best alternative food source for the cultivation of B. thailandensis. In addition, dried Spirulina powder is also a good choice when live algae are not available and can be used as an alternative feed in fairy shrimp cultures.  相似文献   

14.
Environmental stressors caused by inadequate aquaculture management strategies suppress the immune response of fish and make them more susceptible to diseases. Therefore, efforts have been made to relieve stress in fish by using various functional feed additives in the diet, including probiotics. The present work evaluates the effects of Lactobacillus rhamnosus (LR) on physiological stress response, blood chemistry and mucus secretion of red sea bream (Pagrus major) under low salinity stress. Fish were fed four diets supplemented with LR at [0 (LR0), 1 × 102 (LR1), 1 × 104 (LR2) and 1 × 106 (LR3) cells g?1] for 56 days. Before stress, blood cortisol, urea nitrogen (BUN) and total bilirubin (T-BIL) showed no significant difference (P > 0.05), whereas plasma glucose and triglyceride (TG) of fish-fed LR2 and LR3 diets were significantly lower (P < 0.05) than those of the other groups. Plasma total cholesterol (T-CHO) of fish-fed LR3 diet was significantly (P < 0.05) lower than that of the other groups. Furthermore, total plasma protein, mucus myeloperoxidase activity and the amount of mucus secretion were significantly enhanced in LR-supplemented groups when compared with the control group (P < 0.05). After the application of the low salinity stress test, plasma cortisol, glucose, T-CHO and TG contents in all groups showed an increased trend significantly (P < 0.01) compared to the fish before the stress challenge. However, plasma total protein and the amount of secreted mucus showed a decreased trend in all groups. On the other hand, BUN, T-BIL and mucus myeloperoxidase activity showed no significant difference after exposure to the low salinity stress (P > 0.05). In addition, the fish that received LR-supplemented diets showed significantly higher tolerance against low salinity stress than the fish-fed LR-free diet (P < 0.05). The physiological status and the detected immune responses, including total plasma protein and mucus myeloperoxidase activity in red sea bream, will provide a more comprehensive outlook of the effects of probiotics to relieve stress in fish.  相似文献   

15.
To investigate the correlation between lipid deposition variation and stocking density in Amur sturgeon (Acipenser schrenckii) and the possible physiological mechanism, fish were conducted in different stocking densities (LSD 5.5 kg/m3, MSD 8.0 kg/m3, and HSD 11.0 kg/m3) for 70 days and then the growth index, lipid content, lipase activities, and the mRNA expressions of lipid-related genes were examined. Results showed that fish subjected to higher stocking density presented lower final body weights (FBW), specific growth ratio (SGR), and gonad adipose tissue index (GAI) (P < 0.05). Lower lipid content was observed in the liver, gonad adipose tissue and muscle in sturgeons held in HSD group (P < 0.05). The serum concentrations of triglyceride (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) decreased significantly with increasing stocking density, while no significant change was observed for low-density lipoprotein cholesterol (LDL-C). Furthermore, the cDNAs encoding lipoprotein lipase (LPL) and hepatic lipase (HL) were isolated in Amur sturgeon, respectively. The full-length LPL cDNA was composed of 1757 bp with an open reading frame of 501 amino acids, while the complete nucleotide sequences of HL covered 1747 bp encoding 499 amino acids. In the liver, the activities and mRNA levels of LPL were markedly lower in HSD group, which were consistent with the variation tendency of HL. Fish reared in HSD group also presented lower levels of activities and mRNA expression of LPL in the muscle and gonad. Moreover, the expressions of peroxisome proliferator-activated receptor α (PPARα) in both the liver and skeletal muscle were significantly upregulated in HSD group. Overall, the results indicated that high stocking density negatively affects growth performance and lipid deposition of Amur sturgeon to a certain extent. The downregulation of LPL and HL and the upregulation of PPARα may be responsible for the lower lipid distribution of Amur sturgeon in higher stocking density.  相似文献   

16.
Independent and combined effects of stocking density and algal concentration on the survival, growth and metamorphosis of the Bobu Ivory shell Babylonia formosae habei larvae were assessed using a 5 × 5 factorial design with densities of 0.25, 0.5, 0.75, 1.00 and 1.50 larvae mL−1 and algal concentrations of 5, 10, 15, 20 and 25 × 104 cells mL−1 in the laboratory. Larval growth, survival and metamorphosis were significantly affected by both the independent effects of stocking density and algal concentration and by their interaction. The highest per cent survival (72.5%) and metamorphosis (49.5%), fastest growth (41.57 μm day−1) and shortest time to initial metamorphosis (10 days) all occurred at the lowest stocking density and the highest algal concentration. Both crowding and food limitation had independently negative impacts on the survival, growth and metamorphosis of larvae, and these negative impacts were further strengthened by the interaction of a higher stocking density and a lower algal concentration. Moreover, the results suggest that stocking density and algal concentration obviously played different roles in determining larval survival and growth. To maximize survival and growth, B. formosae habei larvae should be reared at a lower stoking density of 0.25 larvae mL−1 and fed a higher algal concentration of 25 × 104 cells mL−1 in large-scale hatchery seed culture.  相似文献   

17.
The present study was conducted to demonstrate the dietary myo-inositol requirement and its effects on the growth, proximate composition and blood chemistry of Amur sturgeon (Acipenser schrenckii). Triplicate groups of 30 fish (initial weight 11.90?±?0.12 g) were fed different diets containing graded levels of myo-inositol (28.75, 127.83, 343.83, 565.81, 738.15 and 936.28 mg kg?1) until satiation for 56 days. The fish were weighed after a 24-h fast, and six fish were used for whole body composition analysis. Further, the liver and muscle were sampled from another six fish for lipid analysis. The blood and liver were sampled from the remaining six fish for haematology and fatty acid analysis. The weight gain of fish increased with myo-inositol content, from the 28.75- to 343.83-mg kg?1 myo-inositol treatment groups, and then stabilised. The liver lipid content and hepatosomatic index decreased significantly from 21.91 to 19.14% and from 3.20 to 2.76% with increased dietary myo-inositol supplementation, respectively. The whole body lipid content generally decreased from 6.33 to 5.55%. The content of liver-saturated fatty acids decreased significantly (28.13%) in the 936.28-mg kg?1 treatment group. The content of plasma non-esterified fatty acids increased with the increase in dietary myo-inositol supplementation from 0.77 to 1.17 mmol L?1, whereas the content of triglycerides significantly decreased from 4.62 to 3.28 mmol L?1. In conclusion, the optimum myo-inositol requirement was found to be 336.1 mg kg?1, based on weight gain in a two-slope quadratic broken-line model.  相似文献   

18.
Suitable culture conditions for Rhodomonas sp. Hf-1 strain were examined for high productivity. Hf-1 strain was grown in an incubator for 7 days. The factorial experimental design investigated the following 19 variables: temperature (12, 16, 20, 24 and 28 °C), salinity (7, 14, 21, 28 and 35 psu), light intensity (20, 35, 50, 65 and 80 μmol m?2 s?1), light color (white, red, green and blue lights), and 3 factorial designs of photoperiod (24L:0D, 16L:8D and 12L:12D light:dark cycle). The cell density and specific growth rates (SGR) were analyzed. The best cell growth was observed under the following culture conditions: temperature of 24 °C, salinity of 21 psu, light intensity of 80 μmol m?2 s?1, and white light. In the photoperiod test, the highest cell density of 4.7?×?106 cells ml?1 was obtained at 24L:0D light:dark cycle, and the SGR was 0.57 μ day?1 at this time. We found that the Hf-1 strain was able to be cultured in extremely wide culture conditions. These results are expected to serve as a baseline study for culturing the Hf-1 strain in the laboratory and for its use in aquaculture.  相似文献   

19.
Two populations of catarina scallop, Argopecten ventricosus (= circularis) (Sowerby II, 1842), were evaluated for their larval growth and survival responses to different stocking densities. Larvae from the Magdalena population had a significantly higher growth but equal survival at a density of 10 larvae ml?1 compared with 20 larvae ml?1. Larvae from the Concepcion population grew better at densities of 15 and 20 larvae ml?1 than at densities of 5 and 10 larvae ml?1, although survival was lower at higher densities. The differing response of these two populations to increased stocking densities is explained as a possible consequence of different population adaptations related to behavioural and physiological mechanisms. The importance of establishing optimum stocking densities for molluscan larvae is stressed in two contexts: maximizing growth and survival for different populations when artificially reared, and understanding the effects of stocking densities on phenotypic variance, especially during the course of genetic studies.  相似文献   

20.
A 12-week feeding trail was conducted to assess the effect of rare earth-chitosan chelate (RECC) on growth performance and immune responses of gibel carp, Carassius auratus gibelio. Isonitrogenous and isolipid experimental diets were supplemented with graded levels of rare earth-chitosan chelate (RECC 0, 0.8, 4 and 8 g Kg?1). A total of 720 gibel carps (initial body weight about 14.32 g) were divided randomly into four groups with six replicates, respectively. Fish were fed with the experimental diets three times every day. At the end of the feeding trail, the survival rate was higher than 96 %. Weight gain rate and specific growth rate (SGR) significantly increased with RECC supplementation up to 0.8 g Kg?1 (P < 0.05) and tended to decline at higher supplementation levels, while feed conversion ratio was not significantly different between groups (P > 0.05). Based on broken-line regression analysis of SGR, the optimum dietary RECC was estimated to be 0.71 g Kg?1 of the diet. Condition factor and viscerosomatic index were not significantly affected by RECC (P > 0.05), while hepatosomatic index in the group fed with 0.8 g Kg?1 RECC (3.45 ± 0.10 %) was significantly lower than in other groups (P < 0.05). Plasma ALT was significantly affected by RECC (P < 0.05), while AST was not. Plasma total protein and albumin were increased with RECC supplementation up to 0.8 g Kg?1 and decreased significantly at higher supplementation levels (P < 0.05). RECC supplementation significantly decreased plasma urea and glucose concentration and increased plasma creatinine concentration significantly (P < 0.05). Respiratory burst activity of phagocytes and myeloperoxidase activity were not significantly different between groups, while superoxide dismutase activity and nitrogen monoxide concentration were increased with the increasing level of RECC in the diets. In conclusion, RECC could enhance growth performance and improve immunity of gibel carp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号