首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The construction of a physical map of chromosome 4Hch from Hordeum chilense containing molecular markers capable of detecting segments of this chromosome in a wheat background would be very useful for marker-assisted introgression of 4Hch chromatin into both durum and common wheat. With this aim, the applicability of 106 barley chromosome 4H primers (62 SSRs and 44 STSs) to amplify markers showing polymorphism between H. chilense and both common or bread and durum wheat was investigated. Twenty-five SSR (40.3%) and six STS (13.6%) barley primer pairs consistently amplified H. chilense products. Eight SSR (12.9%) and four STS (9.1%) barley primers were polymorphic between H. chilense and both common and durum wheat, 10 of them (6 SSRs and 4 STSs) were located on chromosome 4Hch using both the addition line of chromosome 4Hch in Chinese Spring wheat and a tritordeum line (an amphiploid between H. chilense and T. turgidum) nullisomic for chromosome 4Hch. Additionally, 18 EST-SSR barley markers previously located on chromosome 4Hch were screened for polymorphism; 15 were polymorphic between H. chilense and both durum and common wheat. For physical mapping we used a ditelosomic tritordeum line for the short arm of chromosome 4Hch and a tritordeum line homozygous for a 70% terminal deletion of the long arm of 4Hch. A total of 25 markers (6 SSRs, 4 STSs and 15 EST-SSRs) were mapped to chromosome 4Hch. Eight markers were allocated on the 4HchS, eight were mapped in the 30% proximal region of 4HchL and nine were on the 70% distal region of 4HchL, respectively. Arm location on barley chromosome 4H was also carried out using both 4HS and 4HL ditelosomic addition lines in wheat. All markers mapped may have a role in marker-assisted introgression of chromatin segments of chromosome 4Hch in both durum and common wheat backgrounds. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
We studied the seed storage protein composition and dough strength of chromosome deletion (CD) lines involving group-1 chromosomes. The presence or absence of genes and protein bands corresponding to glutenin and gliadin was assessed by using locus-specific DNA markers, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and acid-polyacrylamide gel electrophoresis (A-PAGE). In this study, we were able to map the physical positions of several glutenin and gliadin genes in detail. Dough strength was evaluated by SDS sedimentation volume and protein content. We found that protein composition affected dough strength. The absence of chromosome arm 1AL, which carries the truncated glutenin gene Glu-A1c, significantly increased dough strength, although the protein composition did not change when the size of the deleted chromosome region was varied. In contrast, the presence of chromosome arm 1DL, which carries Glu-D1a (the gene for glutenin subunits 2 and 12), significantly increased dough strength. We did not find any known seed storage protein loci in any of the other chromosomal regions that significantly affected dough strength.  相似文献   

3.
Chromosome 7Hch from Hordeum chilense has potential for improving seed carotenoid content in wheat as it carries a Phytoene synthase 1 (Psy1) gene, which has a major role in this trait. Structural changes in chromosome 7Hch were obtained in common wheat background by crossing the wheat disomic substitution line 7Hch(7D) with a disomic addition line carrying chromosome 2Cc from Aegilops cylindrica in common wheat cv. ‘Chinese Spring’. Rearranged 7Hch chromosomes were cytologically characterized by FISH. A set of 24 molecular markers and the Psy1 gene were used to identify the H. chilense chromosome segments involved in the introgressions. Six structural rearrangements of chromosome 7Hch were identified. They included three homozygous wheat–H. chilense centromeric translocations, one involving the 7HchS arm (T‐7HchS·A/B) and two involving the 7HchL arm (T1‐7HchL·A/B and T2‐7HchL·A/B). In addition, one 7HchS arm deletion, one 7HchL·7HchL isochromosome and one 7HchS telosome were obtained in hemizygous condition. These genetic stocks will be useful for studying the effect of chromosome 7Hch on wheat flour colour.  相似文献   

4.
A hybrid between an induced tetraploid of Hordeum chilense (2n = 28 = HchHchHchHch) and Triticum aestivum var. ‘Chinese Spring’ (2n = 42 = AABBDD) has been produced to test gene effects of this wild barley on homoeologous pairing in wheat. Cytological investigations in metaphase I have shown that the hybrid, which is perennial like H. chilense but morphologically more similar to the wheat parent, possesses the expected genome composition HchHch ABD and a stable euploid chromosome number of 2n = 35. Pairing among the homologous H. chilense chromosomes was almost complete. The level of non-homologous chromosome association proved to be lower than the range of pairing known from euhaploids of ‘Chinese Spring’.  相似文献   

5.
Hordeum chilense is a wild barley species that has a high degree of genetic variability and significant potential for use in plant breeding. To establish a series of trisomics in H. chilense (2n = 14), plants with 2n + 1 chromosome numbers were isolated from the progenies of selfed triploid plants. Based on both fluorescent in situ hybridization with pAs1 and pTa71 repetitive DNA probes and C-banding patterns, seven different trisomics were tentatively identified. Primary trisomic plants were for chromosomes 1Hch, 4Hch, 5Hch, 6Hch and 7Hch. A secondary trisomic carrying a 5HchS-5HchS isochromosome as the extra chromosome and a trisomic for chromosome 3Hch heterozygous for the 3HchS-4HchL and 4HchS–3HchL interchange were identified. The trisomic for chromosome 1Hch cannot be phenotypically distinguished from the diploid. The rest of the trisomic types were distinguishable from the diploid by their morphological characteristics (relatively poor vigour, decreased size and shorter spikes) but they were morphologically indistinguishable from each other. The frequencies of trisomics among the progenies derived from self-fertilization of these aneuploids ranged from 10.7% to 37.5%, with an average frequency of 26.1%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Hexaploid tritordeum is the amphiploid derived from the cross between Hordeum chilense and durum wheat. The storage proteins synthesized in the Hch genome influence the gluten strength of this amphiploid. The D‐prolamins of H. chilense have been analysed by sodium dodecyl sulphate‐polyacrylamide gel electrophoresis with and without urea. A new locus named GluHch3 has been detected. The effects of allelic variation at this locus on gluten strength, as measured the sodium dodecyl sulphate sedimentation test, were determined using seeds of 92 lines from a cross of two hexaploid tritordeum lines. Two allelic variants have been detected for this locus, which have shown different effects on gluten strength.  相似文献   

7.
Tritordeum (X Tritordeum Ascherson et Graebner) is a synthetic amphiploid belonging to the Triticeae tribe, which resulted from crosses between Hordeum chilense and wheat. It presents useful agronomic traits that could be transferred to wheat, widening its genetic basis. In situ hybridisation with total genomic DNA from H. chilense and cloned, repetitive DNA sequences (pTa71 and pAs1) probes were used to discriminate the parental origin of all chromosomes, to analyse the chromosome pairing and to identify the chromosomes in pollen mother cells (PMCs) at metaphase I of the tritordeum line HT251 (HchHchDD, 2n = 4x = 28). The H. chilense total genomic DNA and the ribosomal sequence pTa71 probes, allowed the unequivocal discrimination of the 14 chromosomes of Hch genome-origin and the 14 chromosomes of D genome-origin. Chromosome pairing analysis revealed meiotic irregularities such as reduced percentage of PMCs with complete homologous pairing, high frequency of univalents, most of H. chilense-origin and a reduced frequency of intragenomic multivalents from both genomes. The H. chilense genome revealed high meiotic instability. After individual chromosome identification at metaphase I with the pAs1 probe, we found the occurrence of pairing between chromosomes of different homoeology groups. The possible interest of the tetraploid tritordeum in the improvement of other Triticeae species is also discussed.  相似文献   

8.
×Tritordeum (Ascherson et Graebner, an amphiploid between Triticum turgidum conv. durum and Hordeum chilense), and chromosome substitution lines of tritordeum where chromosomes 2 H ch or 3 H ch H. chilense were replaced with chromosome 2 D of T. aestivum or 3 H v chromosome of H. vulgare, respectively, were used to assess the effect of specific chromosomes on the rachis. ×Tritordeum has brittle rachis while the 2 D(2 H ch) and 3 H v (3 H ch) substitution lines have non-brittle rachis. Both lines also have compact spikes, a character highly desirable for the improvement of tritordeum threshability. Different combinations of 2 D and 3 H v translocations were developed in tritordeum. In this article we present information on the identification and characterisation of all these introgression lines by the fluorescent in situ hybridisation.  相似文献   

9.
The objective of this paper was to study the differences between some prolamin variants coded at the loci Glu-3/Gli-1, Glu-1 and Gli-A2 and their relative roles in durum-wheat quality. F3 lines from four durum wheat crosses (‘Abadia’בMexicali’. ‘Oscar’בArdente’, ‘Oscar × Mexicali’ and ‘Alaga’בC. of Balazote’) were analysed for gliadin and glutenin composition by electrophoresis. Whole-grain-derived samples were analysed for SDS sedimentation (SDSS) value, mixing properties, and contents of protein and vitreousness. The glutenin patterns LMW-2. LMW-2? and LMW-2 (CB) at Glu-B3/Gli-B1 were associated with better gluten quality than were LMW-1 and LMW-2*. The glutenin subunits LMW4 and LMW3 + 15 at Glu-A3/Gli-A1 and HMW-1 showed better mixing properties than LMW7 + 12, LMW5 and the null phenotype. respectively. The HMW glutenin subunits 20 + 8 at Glu-B1 showed a negative association with gluten quality, but the rest of the HMW glutenin subunits and α-gliadins did not show any influence on gluten quality. Correlations between the results of the SDSS test and the mixograph were highly significant, but no correlation was found between these results and protein and vitreousness contents. The results are discussed in relation to the development of durum wheat varieties with improved qualities.  相似文献   

10.
A new wheat-Thinopyrum substitution line AS1677, developed from a cross between wheat line ML-13 and wheat-Thinopyrum intermedium ssp. trichophorum partial amphiploid TE-3, was characterized by fluorescence in situ hybridization (FISH), sequential Giemsa-C banding, genomic in situ hybridization (GISH), seed storage protein electrophoresis, molecular marker analysis and disease resistance screening. Sequential Giemsa-C banding and GISH using Pseudoroegneria spicata genomic DNA as probe indicated that a pair of St-chromosomes with strong terminal bands were introduced into AS1677. FISH using pTa71 as a probe gave strong hybridization signals at the nuclear organization region and in the distal region of the short arms of the St chromosome. Moreover, FISH using the repetitive sequence pAs1 revealed that a pair of wheat 1D chromosomes was absent in accession AS1677. Seed storage proteins separated by acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that AS1677 lacked the gliadin and glutenin bands encoded by Gli-D1 and Glu-D1, further confirming the absence of chromosome 1D. The introduced St chromosome pair belonging to homoeologous group 1 was identified by newly produced genome specific markers. AS1677 is a new 1St (1D) substitution line. When inoculated with stripe rust and powdery mildew isolates, AS1677 expressed stripe rust resistance possibly derived from its Thinopyrum parent. AS1677 can be used as a donor source for introducing novel disease resistance genes to wheat in breeding programs aided by molecular and cytogenetic markers.  相似文献   

11.
Wheat (Triticum aestivum L.) glutenin allelic variation and presence of the 1AL.1RS wheat-rye (Secale cereale L.) translocation play important roles in determining end-use quality. This study was conducted to evaluate the effects of high and low molecular weight glutenin alleles and 1AL.1RS on dough mixing properties of 189 recombinant inbred lines (RILs) from the cross TAM 107-R7/‘Arlin’ grown in irrigated and rainfed Colorado (USA) environments. The results indicated that (1) higher values (P < 0.05) of some dough mixing properties were observed for Glu-A1b versus Glu-A1a, Glu-B1b versus Glu-B1c, Glu-D1d versus Glu-D1a, and non-1AL.1RS versus 1AL.1RS; (2) no differences in Mixograph properties were found for Glu-A3c versus Glu-A3e, Glu-B3e versus Glu-B3g, or Glu-D3a versus Glu-D3b; (3) although variation at some glutenin loci had little effect on Mixograph properties, pairwise combinations of glutenin loci or a glutenin locus combined with 1AL.1RS affected most Mixograph traits; and (4) in general, the effects of glutenin alleles and 1AL.1RS on dough mixing properties did not differ greatly between the irrigated and the rainfed environment. These results will be useful for assessing potential wheat quality and directing wheat breeding efforts in Colorado and similar environments.  相似文献   

12.
Wheat/Hordeum chilense disomic addition lines have been used to locate genes influencing resistance against greenbug (Schizaphis graminum Rond.) in specific chromosomes of H. chilense. H. chilense is a source of antixenosis, antibiosis and host tolerance to the greenbug, being resistant also to the Russian wheat aphid, the two key pests in wheat. For measuring antixenosis, the numbers of aphids per plant were recorded in a host free choice test; antibiotic resistance was determined by measuring the developmental time, the fecundity and the intrinsic rate of population increase of aphids reared on the different hosts, and host tolerance to aphids was evaluated by the leaf damage and the number of expanded leaves on the hosts after 3 weeks of infestation. The greenbugs belonged to a clone of biotype C. Plant genes with positive effects for antixenosis were located on chromosome 1Hch. Genes with positive effects for antibiosis were located on three different chromosomes and those that prolonged aphid developmental time were located on chromosomes 5Hch and 7Hch while those that reduced the total fecundity were on 4Hch. Chromosome 7Hch accounted for host tolerance to greenbug.  相似文献   

13.
×Tritordeum sp. (Ascherson et Graebner) is the amphiploid obtained after chromosome doubling of hybrids between Hordeum chilense (Roem. et Schult.) and diploid, tetraploid or hexaploid wheats. Tritordeums have consistently higher carotenoid pigment contents than durum or bread wheat. Two distinct H. chilense accessions (used for the synthesis of tritordeum) were analysed for this trait. The chromosomal localization of the genes coding the ability of H. chilense to increase the carotene content of wheat were carried out using two sets of wheat- H. chilense addition lines. The a arm of chromosome 7Hch is proposed to be responsible for the high carotene content in tritordeum. The implication of this finding in wheat breeding is discussed.  相似文献   

14.
Hexaploid tritordeum, the amphiploid Hordeum chilense×Triticum turgidum, has potential for bread making. In order to estimate the potential of bread wheat chromosome 1D for improving the bread‐making quality of tritordeum, and the processing properties and agronomic performance of euploid tritordeum, (1Hch)1D and (1A)1D substitution lines have been evaluated in field trials. No significant differences for agronomical traits were observed between the two substitution lines and the sister euploid tritordeum, except for the kernel weight of the (1Hch)1D tritordeum substitution, which was lower than that of euploid tritordeum. Gluten strength, estimated by alveograph deformation energy (W), and loaf volume were substantially higher in both substitution lines than in the euploid tritordeum.  相似文献   

15.
Somatic Embryogenesis and Plant Regeneration from Tritordeum   总被引:2,自引:0,他引:2  
P. Barceló    A. Vazquez  A. Martín 《Plant Breeding》1989,103(3):235-240
Regeneration of plants by somatic embryogenesis from immature embryos of hexaploid tritordeum (AABBHchHch, amphiploid Hordeum chilense×Triticum turgidum conv. durum) and durum wheat (Triticum tergidum) was induced on MS medium supplemented with different 2.4-D concentrations. Well-defined embryoids were formed with a high frequency on the scutellar callus from 1 or 2 weeks onwards and plantlets were developed from them. In the best cases from one single explant more than 100 plants could be obtained. Plants were also regenerated by somatic embryogenesis from inflorescences of Hordeum chilense×Triticum turgiditm conv. durum hybrid and its respective hexa-amphiploid. With regard to callus induction and regenerative ability, evident differences between hexa- and octoploid (H. chilense×T. aestivum) tritordeum were found, the latter showing a very low response.  相似文献   

16.
The genome of Tritordeum, AABBHchHch, was substituted into the cytoplasms of Triticum aestivum, T. turgidum and Hordeum chilense by repeated back-crossing to produce alloplasmic lines. This substitution did not greatly affect the characters studied, except yield per plot and fertile ears per plant, which were lower on T. turgidum cytoplasm. Cytoplasm from either H. chilense or T. aestivum could be used for breeding tritordeum.  相似文献   

17.
Recombination within the closely linked genes encoding for omega and gamma gliadins at the complex Gli-B1 locus present on the short arm of chromosome 1B was detected in a durum-wheat line (Triticum durum) from Iran. This recombinant differs from a previous one the authors detected in the durum-wheat cultivar ‘Berillo’ since it shows the gamma gliadin component 45 associated with a triplet of omega components usually found linked with the allelic gamma gliadin 42. Analysis of low-molecular-weight glutenin subunits, encoded by genes at the complex Glu-B3 locus associated with the Gli-B1 locus, showed the presence of the protein type designated LMW-1 which is peculiar to durum-wheat cultivars possessing the gamma gliadin 42.  相似文献   

18.
Milling and baking quality traits in wheat (Triticum aestivum L.) were studied by QTL analysis in the ITMI population, a set of 114 recombinant inbred lines (RILs) generated from a synthetic-hexaploid (W7985) × bread-wheat (Opata 85) cross. Grain from RILs grown in U.S., French, and Mexican wheat-growing regions was assayed for kernel-texture traits, protein concentration and quality, and dough strength and mixing traits. Only kernel-texture traits showed similar genetic control in all environments, with Opata ha alleles at the hardness locus Ha on chromosome arm 5DS increasing grain hardness, alkaline water retention capacity, and flour yield. Dough strength was most strongly influenced by Opata alleles at 5DS loci near or identical to Ha. Grain protein concentration was associated not with high-molecular-weight glutenin loci but most consistently with the Gli-D2 gliadin locus on chromosome arm 6DS. In Mexican-grown material, a 2DS locus near photoperiod-sensitivity gene Ppd1 accounted for 25% of variation in protein, with the ppd1-coupled allele associated with higher (1.1%) protein concentration. Mixogram traits showed most influence from chromosomal regions containing gliadin or low-molecular-weight glutenin loci on chromosome arms 1AS, 1BS, and 6DS, with the synthetic hexaploid contributing favorable alleles.Some RI lines showed quality values consistently superior to those of the parental material, suggesting the potential of further evaluating new combinations of alleles from diploid and tetraploid relatives, especially alleles of known storage proteins, for improvement of quality traits in wheat cultivars.Contribution number 06-77J from the Kansas Agricultural Experimental Station.  相似文献   

19.
Hexaploid tritordeum is an amphiploid derived from the cross between Hordeum chilense and durum wheat. This amphiploid has shown potential for bread making, which has been associated to the prolamins from H. chilense. The role of each prolamin subunit on the gluten strength in tritordeum has been evaluated. Advanced progenies from two hexaploid tritordeum crosses were analysed for prolamins composition and gluten strength. Six loci were found for the prolamins synthesised at the Hch genome, which showed significant effects on gluten strength. Although these tritordeum lines represent only a small proportion of the genetic variability available in the development programme for this new crop, a certain degree of variation for prolamins composition was detected. In fact, up to three allelic variants have been detected for some loci, which have shown different effect on gluten strength in tritordeum. Each of these six loci appeared on the same linkage group that corresponded to chromosome 1Hch. The search of new variants for these loci could be useful for tritordeum quality breeding and, using tritordeum as a bridge species, this genetic variability could be introgressed into bread wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Dough rheological properties and end-use quality were evaluated to determine the effects of Glu-1 and Glu-3 alleles on those characteristics in Korean wheat cultivars. SDS-sedimentation volume based on protein weight was positively correlated with mixograph parameters and maximum height of dough and also positively correlated with bread volume, crumb firmness and springiness of cooked noodles. Protein content was negatively correlated with optimum water absorption of noodle dough, lightness of noodle dough sheet and hardness and cohesiveness of cooked noodles. Within Glu-1 loci, 1 or 2* subunit and 5 + 10 subunits showed longer mixing time, higher maximum dough height and larger bread volume than other alleles. Cultivars with 13 + 16 subunits at Glu-B1 locus showed higher protein content and optimum water absorption of mixograph than cultivars with 7 + 8 subunits. At Glu-3 loci, Glu-A3d showed longer mixing time than Glu-A3e, and Glu-B3d and Glu-B3h had stronger mixing properties than Glu-B3i. Glu-B3h had higher bread volume and hardness of cooked noodles than Glu-B3d. Glu-D3a had lower protein content than Glu-D3c, and Glu-D3b showed stronger mixing properties than Glu-D3a. Glu-D3c showed lower hardness of cooked noodles than others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号