首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于幂律分布的森林燃烧生物量卫星遥感估测方法   总被引:1,自引:0,他引:1  
【目的】利用长时间序列卫星遥感数据产品按森林类型建立大区域燃烧生物量估测模型,并按年生成不同森林类型的燃烧生物量,为我国年林火碳排放估测提供一种新的技术手段。【方法】采用覆盖我国陆地区域的2001—2014年MODIS火产品数据(MOD14A2),按3种森林类型分析该数据产品中的火灾辐射率(FRP)分布特性,并按森林类型构建基于幂律分布的燃烧生物量估测模型,对我国2001—2014年各年林火消耗的森林生物总量进行估测;利用对数形式的概率分布函数线性回归拟合方法求解模型幂参数m;选取每年10场左右的典型森林火灾建立回归方程,修正每年的火灾持续时间d,并以年为单位估测我国不同森林类型因燃烧消耗掉的生物量;同时,利用林火排放物计算模型结合MODIS火烧迹地数据集(MCD45A1),对估测的燃烧生物量进行对比分析。【结果】阔叶林、针叶林和灌木林的FRP数据均呈幂律分布规律,在2001—2014年14年中,林火导致全国的阔叶林年消耗总生物量在0.94~1.37 Mt之间、针叶林在0.80~1.92 Mt之间、灌木林在0.37~0.53 Mt之间。通过与林火排放物计算模型对比分析发现,这2种方法的估测结果在某些年份差异显著,甚至林火排放物计算模型估测的某些年份森林燃烧生物量超过本文研究方法估测的14年总结果。相比国家统计局公布的森林火灾发生次数和森林过火面积,本文研究方法估测的结果和年际变化更符合我国森林火灾发生规律。【结论】基于长时间序列的MODIS火产品数据表明,我国阔叶林、针叶林和灌木林燃烧释放的能量具有幂律分布特性;基于该分布特性,构建按森林类型估测全国森林因燃烧消耗的年森林生物总量模型,并估测出逐年森林因燃烧消耗的森林生物总量,通过与林火排放物计算模型估测的全国同年林火消耗掉的森林生物总量进行对比,该方法比林火排放物计算模型的估测结果更准确。  相似文献   

2.
以2001—2018年的浙江省MODIS-MCD64A1森林火灾数据为研究基础,运用逻辑斯蒂和随机森林方法结合气象、植被、地形、经济、人口和基础设施等因子对浙江省的林火时空变化及影响因子进行研究。结果表明:(1)2001—2018年,浙江省共发生森林火灾1 866次,年均发生林火104次,林火时空分布不均匀,空间上集中在温州中部和东部及与丽水市交汇区域、丽水市中部和北部区域、衢州中部、台州和宁波东部区域及金华、杭州和湖州的小面积区域;(2)时间上,森林火灾的发生次数在年际间的波动较大,总体呈先增加后降低的趋势,月火点分布不均衡,林火在10、11、12月和次年的1、2、3和4月的火点占全年总火点的95.28%以上;(3)基于随机森林算法筛选出9个林火发生重要因子,按重要性由大到小排序依次为年均温度、高程、年降水量、河流密度、月植被覆盖度、坡度、前一年植被覆盖度、人均国内生产总值、公路密度;运用逻辑斯蒂模型方法计算出林火发生与日平均气压、月植被覆盖度、坡向指数、坡度、日最大地表气温、公路密度、人均国内生产总值、居民点密度、河流密度之间呈显著正相关关系,与年降水量和高程之间呈显著负相关关系。  相似文献   

3.
运用地理信息系统(GIS)的理论和空间分析方法,从林火空间等级、林火密度分布和火源空间分布三个方面对四川省的林火空间分布及趋势变化进行了研究。结果表明:四川省森林火灾在空间上有很强的异质性,全省森林火灾呈现出以四川盆地为中心的辐射状分布,中间少,外围多的分布特点。全省的林火密度有从聚集变分散的趋势。人为因素是四川省森林火灾的主导性因素,自然火源引起的森林火灾较为集中,但有向其他地区蔓延的趋势。根据研究结果,应对全省采用分区、分级的林火管理政策和措施,以优化防火资源的有效空间配置,提高林火管理水平。  相似文献   

4.
监测预报和挖掘发现林火发生的时空规律是森林防火工作的基础,本研究主要利用中国森林防火网2007—2017年卫星林火监测数据,借助时空立方体热点分析模型,研究发现湖南省近10年林火的时空分布规律和发展趋势;自2007年起的11年间共发生林火15 536起,主要集中在10月至次年4月,占累计总数的87.2%,属湖南省重点森林防火时段;热点分析发现冷点即林火低频区域8 799个、暖点即林火高频区域6 660个,整体火情呈下降趋势,林火热点区域集中在衡阳南部、郴州东北部以及永州中南部地区;相较于2001—2008年湖南省林火分布规律的报道可见,常德市石门县、湘西州以及张家界市的林火发生频率明显减少。  相似文献   

5.
卫星林火监测作为森林火灾预防和扑救工作的重要方法,在我国森林防火工作中得到广泛推广和应用。基于卫星监测研究全国各省份的林火热点分布规律以及热点集中区域的气象因子与火灾频率的关系,以我国各地区2010—2015年春季森林防火期(3月1日—6月1日)的卫星监测热点数据为研究对象,分析我国各省林火的年际变化及区域分布特征;通过提取火场时空因子,结合当年气象数据,建立热点集中区域的火灾趋势回归模型。结果表明,卫星监测热点统计的森林火灾次数与当地林业局统计的火灾数据吻合度高。2010—2015年春季林火热点从整体趋势上看,森林火灾的热点数量在逐年递减,主要集中在中国的西南部区域,最多的省份为云南省,占林火热点总数的20%;其次为四川省,占林火热点总数的13%。云南省的春季林火次数多元回归方程,复相关系数R=0.838**;四川省的春季林火次数多元回归方程,复相关系数R=0.744*,回归模型都达到了显著水平。卫星监测热点用于林火监测,可以高精度统计森林火灾次数,回归模型对于林火的预测预报具有一定适应性,为森林火灾发生预测预报提供数据支持。  相似文献   

6.
为搞清雷击火空间分布情况,芬兰科研单位通过调查芬兰记录的雷击火灾的空间分布,找到基于某个地区的人口数目和森林面积来估计未记录的雷击火灾数量的方法。该研究采用芬兰内务部1985年以来保存的林火记录。但由于雷电探测系统的升级,1993-1995年的数据没有被保存,只保存了1985-1992年和1996-2001年14年间的数据。另外,芬兰西南的Aland岛的数据也没有收录在数据库内。林火数据库系统记录的信息包括预测的火灾原因、时间、着火地区、过火面积和436个地区的总过火面积。森林伐区、开放性的泥炭地区及其它少林地区所发生的火灾都被看作森林火…  相似文献   

7.
《林业资源管理》2017,(4):50-58
根据广州市林火历史数据,在林火发生时间、分布范围、火源因素及与树种、地形之间关系分析的基础上,构造林火泰森多边形,利用泰森多边形面积反应林火发生概率的大小,结合火点与道路距离、海拔、坡度、林分类型等因素,建立林火条件熵模型,通过条件熵衡量林火的易发程度,并对林火易发程度进行区划,分为高发区、多发区、一般区、偶发区和无林火区5个等级,此方法能更加精确地确定林火发生的热点地区,直观地反映林火空间分布规律,使得林业管理部门在森林防火工作上更具针对性,有效防范和控制林火的发生,最大程度地减少林火损失。研究结果表明:1)林火多发月为10月至次年4月,与地形、道路、林分类型等因素密切相关,分布于离道路近,地势起伏的中、低丘陵地区,针叶林和针叶混交林发生林火次数多;2)林火空间分布非平稳性,林火高发区和多发区占4.23%,呈现斑状聚集分布,受地形和人为因素影响明显。偶发区占52.96%,分布范围广,具有突发性和随机性的特点。  相似文献   

8.
湖南省森林火灾空间分布特征分析   总被引:1,自引:0,他引:1  
采用探索性空间数据分析方法对湖南省林火的分布规律进行了分析研究。结果表明,湖南省各个市(县)的林火分布存在着不均匀性,有4个林火高发区域和3个林火低发区域。林火次数由南向北、由西向东呈上升趋势。一般森林火灾发生次数较多的县市在空间上的分布大致呈一个"C"型;较大森林火灾的空间分布特点为"东多西少";重大森林火灾发生的空间分布特点是"周边多、中部少"。根据分析结果,应对林火进行分区管理,以提高林火管理水平、节约防火资源。  相似文献   

9.
【目的】通过地理加权回归(GWR)模型估算非干扰林龄,利用遥感数据和林火发生历史数据,获取过火区域信息,进而对林火烈度分级,讨论林火烈度与森林类型的交互作用,估算干扰林龄,最终获得黑龙江省森林年龄的空间分布。【方法】以黑龙江森林为研究区域,基于研究区域的多光谱数据结合地面森林资源清查数据,通过逐步回归方法提取了包括遥感因子绿度指数(Greeness)、湿度指数(Wetness)、林分平均胸径(ADBH)、林分平均树高(ASH)及海拔(Altitude)在内的5个显著因子作为自变量,采用GWR模型建立非干扰林龄估算模型。采用全局Moran I来描述模型残差的空间自相关性。绘制研究区非干扰林龄空间分布图并探究林龄的空间分布状态。[JP+1]结合林火位置与面积记录对多光谱数据目视解译提取过火区域,根据dNBR将过火区域火烈度分级。将火烈度图与植被类型图叠加分析,讨论不同森林类型在不同火烈度下的演替情况。定义干扰林龄时,未发生树种更替的森林林龄不变,树种发生更替的森林在林火发生年将其林龄归为0,并在新的优势树种萌发时从1开始累加,以此类推干扰后森林的林龄。【结果】黑龙江省非干扰森林平均林龄为48年,标准差为16年。GWR模型的 Radj^2 为0.68,RMSE为16.171 7。使用Moran I来检验模型的残差,发现GWR模型可很好地消除残差的空间自相关性。研究区林龄整体空间分布状态不均匀,大兴安岭地区林龄普遍高于黑龙江林区。黑龙江省2000―2010年林火主要发生在大兴安岭及小兴安岭地区,根据dNBR将已提取的过火区域林火烈度分为:未过火、轻度过火、中度过火和重度过火4类,总过火面积为527 932 hm^2,其中重度29 157 hm^2、中度180 268 hm^2、轻度318 507 hm^2。兴安落叶松林和蒙古栎林在整个研究区中过火面积最大,分别占总过火面积的28.63%和47.23%。根据不同森林类型在不同火烈度下的演替情况,估算干扰森林的林龄并绘制干扰林龄空间分布图。【结论】 GWR模型能较有效地估算黑龙江省非干扰林龄,成功地降低了残差的空间自相关性。在估算林龄的过程中加入林火干扰因素,以获取更真实的林龄空间分布数据,可为黑龙江地区森林NPP、NEP以及森林碳储量、森林生物量等相关研究提供数据支持。  相似文献   

10.
【目的】通过地理加权回归(GWR)模型估算非干扰林龄,利用遥感数据和林火发生历史数据,获取过火区域信息,进而对林火烈度分级,讨论林火烈度与森林类型的交互作用,估算干扰林龄,最终获得黑龙江省森林年龄的空间分布。【方法】以黑龙江森林为研究区域,基于研究区域的多光谱数据结合地面森林资源清查数据,通过逐步回归方法提取了包括遥感因子绿度指数(Greeness)、湿度指数(Wetness)、林分平均胸径(ADBH)、林分平均树高(ASH)及海拔(Altitude)在内的5个显著因子作为自变量,采用GWR模型建立非干扰林龄估算模型。采用全局Moran I来描述模型残差的空间自相关性。绘制研究区非干扰林龄空间分布图并探究林龄的空间分布状态。[JP+1]结合林火位置与面积记录对多光谱数据目视解译提取过火区域,根据dNBR将过火区域火烈度分级。将火烈度图与植被类型图叠加分析,讨论不同森林类型在不同火烈度下的演替情况。定义干扰林龄时,未发生树种更替的森林林龄不变,树种发生更替的森林在林火发生年将其林龄归为0,并在新的优势树种萌发时从1开始累加,以此类推干扰后森林的林龄。【结果】黑龙江省非干扰森林平均林龄为48年,标准差为16年。GWR模型的 Radj^2 为0.68,RMSE为16.171 7。使用Moran I来检验模型的残差,发现GWR模型可很好地消除残差的空间自相关性。研究区林龄整体空间分布状态不均匀,大兴安岭地区林龄普遍高于黑龙江林区。黑龙江省2000―2010年林火主要发生在大兴安岭及小兴安岭地区,根据dNBR将已提取的过火区域林火烈度分为:未过火、轻度过火、中度过火和重度过火4类,总过火面积为527 932 hm^2,其中重度29 157 hm^2、中度180 268 hm^2、轻度318 507 hm^2。兴安落叶松林和蒙古栎林在整个研究区中过火面积最大,分别占总过火面积的28.63%和47.23%。根据不同森林类型在不同火烈度下的演替情况,估算干扰森林的林龄并绘制干扰林龄空间分布图。【结论】 GWR模型能较有效地估算黑龙江省非干扰林龄,成功地降低了残差的空间自相关性。在估算林龄的过程中加入林火干扰因素,以获取更真实的林龄空间分布数据,可为黑龙江地区森林NPP、NEP以及森林碳储量、森林生物量等相关研究提供数据支持。  相似文献   

11.
运用克里格空间数据制图和传统统计分析相结合的方法对2001—2008年黔南州森林春季防火期主要气象因子与林火情况进行研究,结果表明:黔南州森林春季防火期内降雨量、蒸发量和最大风速相对空间分布不均匀,而最高气温、最小空气相对湿度则相反;空间分布上存在一定的水平地带性和垂直地带性,时间动态明显;森林火灾次数及火场面积呈逐渐增加趋势;空间分布上以都匀、平塘和罗甸3地为分界线,东南部6个县市森林火灾次数及火场面积大于西北部6县市。  相似文献   

12.
森林可燃物是林火发生及蔓延的物质基础,森林可燃物的研究是林火管理的重要基础。可燃物的空间分布是预测林火行为和森林火险等级的关键变量。介绍了国际上常用的几种用来进行森林可燃物类型划分的可燃物模型,总结了国内外利用遥感数据绘制森林可燃物类型图的方法,并对目前国内森林可燃物类型遥感分类研究中存在的问题进行分析。  相似文献   

13.
我省森林火灾频繁,损失严重,平均每年烧山1000多起,受害山林面积433千米~2。为了探索森林火灾发生规律,我们从气象条件入手,研究林火同气象因子的关系,研制适合本省的预报方法。多因子数值火险天气预报(简称多因子法)是通过严格筛选有关气象因子,最后确定以14时相对湿度、温度日较差、日降水量、日蒸发量,4个主要因子,作为森林火险天气预报的因子。我们从1985年开始收集重灾区7个县1982——1984年林火数据建立数学模式,确定5个森林火险等级,经理论检验,符合要求;于1986年和1987年森林防火期内,在全省  相似文献   

14.
通过对森林火灾数据的收集与处理,运用GIS中ESDA技术对湖南省2000-2012年森林火灾发生次数进行了空间特性分析,探索了森林火灾空间分布规律,用克里金插值方法对湖南森林火灾进行趋势预测,得到湖南省森林火灾预测图。预测结果表明湖南省森林火灾灾情严重区集中在湘中和湘东,从西至东主要分布在永顺-张家界-桃源-安化-宁乡-望城-浏阳县-平江一线,邵阳地区一般森林火灾发生次数也较多,邵东县为火灾高发区,周边新邵县、邵阳、祁东一带森林火灾发生次数较多,湘南地区,永州市宁远和蓝山县一带森林火灾发生次数较多,郴州市桂阳、宜章县是森林火灾高发区,怀化芷江和邵阳绥宁森林火灾发生频率也较高。  相似文献   

15.
宁德市是林火高发区,关于该地区林火预测模型和空间格局的研究还不完善。基于月平均气象数据、植被覆盖度、地形、人口密度,将2000~2009年林火数据分为60%(训练)和40%(测试)两部分进行建模和校验。结果表明,月平均气温、月平均降水、植被覆盖度、人口密度与林火发生显著相关,林火预测模型整体拟合水平和预测精度较高。  相似文献   

16.
[目的 ]对内蒙古大兴安岭地区的森林火灾进行预测,为森林防火工作的开展提供重要支持。[方法 ]以内蒙古大兴安岭林区为研究对象,结合MCD64 A1月度火点产品、地形、气候等数据,构建森林火灾潜在影响因子数据集,分别利用卷积神经网络、随机森林、支持向量机模型对研究区森林火灾的发生概率进行预测与可视化,在此基础上对模型效果进行评价并分析森林火灾空间分布特征。[结果 ]大兴安岭的主要林火驱动因子按重要性值由高到低排序为海拔、平均气温、总降水量、与水域的距离等;CNN、RF、SVM预测森林火灾发生概率的AUC值分别为0.838、0.794、0.788,CNN的精度最高;CNN能够有效划分出森林火灾易感性极高、极低的区域,有利于划分森林火灾的警示区。[结论 ]CNN模型比RF、SVM模型更适用于大兴安岭林火发生概率的预测;大兴安岭林火风险的空间分布有明显的区域性,主要发生在东南地区。  相似文献   

17.
黑龙江省2000-2009年林火规律分析   总被引:1,自引:0,他引:1  
通过对黑龙江省林火年际变化的分析,总结出林火对森林生态系统的影响规律。黑龙江省10年间发生的林火以人为火为主;林火发生由西北向东南呈带状分布,即林火脆弱带的分布区域为大兴安岭、黑河及伊春部分;10年间森林火灾次数随年际时间呈下降趋势;其年均林火面积在105 hm2附近震荡;森林火灾发生所产生的危害程度,2003年和2006年危害指标最重;10年间森林火灾扑救费用呈现逐年上升的趋势。  相似文献   

18.
根据大兴安岭地区1990~2012年森林火灾(简称林火)数据信息,选择对林火发生影响较大的温度、最高温度、降水量、风速、相对湿度和当日最低湿度6个气象因子,分析了气象因子和林火发生的相关关系,为林火预防提供参考.  相似文献   

19.
根据山东省2002-2015年的林火火源统计资料,利用Microsoft Office Excel统计分析,揭示了山东省林火火源发生的时空分布特征。结果表明:从林火火源发生的时间分布来看,2002-2015年间山东省林火火源发生年际间波动较大,2002年林火火源发生次数最多,2008年以来林火发生次数呈明显的下降趋势;林火火源主要发生在春季,特别是2-4月的林火火源发生次数最多,这与山东省人们的生产生活习惯有关。从林火火源发生的空间分布来看,森林火源发生区域主要集中在胶东半岛和鲁西北森林资源较多山区,分别为济南市和沿海的青岛市、烟台市、威海市,以济南市为最多。从林火火源发生的类型来看,多为人为火源,以烧荒烧碳、野外吸烟和上坟烧纸这三种为主。  相似文献   

20.
大兴安岭地区森林火险变化及FWI适用性评估   总被引:3,自引:0,他引:3  
根据研究区内及附件气象站每日气温、相对湿度、24小时降水和风速计算1987—2006年大兴安岭每日的加拿大林火天气指数系统(FWI)各组分值。利用空间插值方法,获得1987—2006年所有森林火灾发生日的FWI系统各组分值。大兴安岭林区森林火灾主要发生在落叶针叶林(61.3%)、草地(23.9%)和落叶阔叶林(8.0%),主要火源是雷击火(占57.1%)。4—6月份森林火灾发生时的FWI、FFMC和ISI平均值高。根据1987—2006年FWI组分指数的分布和火发生情况,对森林火险指数进行了分级,低、中、高、很高和极高火险的FWI取值范围分别为0~2.5,2.6~10.0,10.1~18.0,18.1~31.0,≥31.1。FWI对大兴安岭地区森林火险有显著的指示意义,FFMC和ISI对预测火灾的发生与蔓延有较好的指示作用。1987—2001年每年明显有春季和秋季2个火险期,但2002—2006年火险期显著延长。春季火险严重度指数(SSR)波动幅度比较大,夏季SSR和春季SSR有相反的波动趋势,2000—2006年秋季火险严重度明显升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号