首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Hydrological connectivity interferes directly in dispersal rates of organisms and in similarity of environmental conditions among floodplain environments. Consequently, connectivity promotes changes in food resources availability to fish. Here we tested the predictions that (a) isolated floodplain lakes have greater environmental heterogeneity than connected lakes, (b) fish diet differs more among isolated than among connected lakes and (c) trophic niche breadth of the species is smaller in isolated than in connected lakes. We used one invertivorous and one algivorous species of fish to test these two last predictions. The environmental heterogeneity (evaluated in relation to abiotic variables and the macrophyte composition) tended to be greater in isolated lakes. Diet of both species differed significantly in all isolated lakes populations, and in the majority of the populations in connected lakes; however, the main items consumed for invertivorous species were common in all connected lakes. Trophic niche breadth of the invertivorous fish was significantly greater in the connected lakes; however, the algivorous species showed no significant difference between connected and isolated lakes. Our findings suggest that connectivity can facilitate the dispersal of organisms, allowing the increase in food item richness and consequently, trophic niche breadth, as observed for invertivorous species. However, connectivity likely plays a minor role on the algivorous species, whose diet may be more affected by local conditions, such as habitat structure. Our results support the view that regional (dispersion) and local (habitat structure) factors interact with feeding habit to determine fish food composition in the floodplain lakes we studied.  相似文献   

2.
Small, adventitious tributaries (<3 orders of magnitude smaller than the stream it flows into) are a conspicuous feature of many river–floodplain systems, but their value as fish reproduction and nursery habitat is not well understood compared to oxbow lakes and the main river channel (MRC). Moreover, connectivity of tributaries to the MRC is often less impacted by anthropogenic modifications (e.g., dams and levees) compared to oxbow lakes. From April to July 2012, larval and juvenile fish were collected in the Fourche LaFave River (Arkansas, USA) system to better understand fish nursery habitat function of tributaries relative to oxbow lakes and the MRC. Nonmetric multidimensional scaling ordination of juvenile and larval fish genera revealed distinct fish assemblages in MRC and floodplain habitats. Ordination of juvenile fish at the species level resulted in distinct fish assemblages in tributary versus oxbow lake habitats. Tributaries had more unique species and higher abundance of shared species than oxbow lakes and MRC. Additionally, of the 46 species identified, all but six were collected in lower tributary reaches. Connectivity was strongly associated with both ordinations and was important in describing patterns of fish variation among habitats and between tributaries. Of the tributaries sampled, the least fragmented stream had the most similar fish assemblages between upper and lower sections. Findings of this study revealed tributaries are an important, yet overlooked, feature in the river–floodplain model. Especially in years of drought, channel–floodplain connectivity can be limited, but tributaries can be used by fishes for reproduction and nursery habitat.  相似文献   

3.
4.
Jiménez‐Segura LF, Palacio J, Leite R. River flooding and reproduction of migratory fish species in the Magdalena River basin, Colombia.
Ecology of Freshwater Fish 2010: 19: 178–186. © 2010 John Wiley & Sons A/S Abstract – In most tropical rivers subject to a single‐yearly flooding, migratory fish usually spawn in the onset of the flooding and larvae drift to their nursery habitats. To define when the migratory fish species reproduce, its relationship with the water level and when nursery areas in floodplain lakes are supplied with ichthyoplankton in the Magdalena River, a two‐yearly peak flooding river, we sampled the ichthyoplankton weekly throughout 2 years. The fish species Pseudoplatystoma magdaleniatum, Prochilodus magdalenae, Leporinus muyscorum, Sorubim cuspicaudus and Curimata mivartii spawn twice a year in the main channel and its larvae input into the floodplain lakes are not always associated with flooding. Spawning in the main channel and larvae inputs into the floodplain lakes suggest that the habitat used by the migratory fishes may be consistent with some hypotheses on habitats used by these fishes.  相似文献   

5.
Understanding the ecological dimensions of drought is critical for predicting how humans and nature will be affected by the expected increased prevalence of drought in the future. We tested life-history-based predictions for fish assemblage responses to drought using retrospective analysis of long-term (1986–2003) fish surveys from two streams in the Appalachian Mountains of North America. We hypothesised that (1) fish assemblage composition would correlate with wet and dry hydrologic conditions as assemblages fluctuated within a loose equilibrium and (2) life-history traits of fishes would correlate with dry versus wet periods such that opportunistic life-history strategists would dominate during drought. Results showed fish assemblage changes in Little River and Cataloochee Creek correlated with drought severity measured one year prior to fish surveys. Fish assemblages at all three sampling sites in Little River and two sites in Cataloochee Creek fluctuated within a loose equilibrium, while the remaining two sites in Cataloochee Creek indicated directional change. Life-history traits for fishes in Cataloochee Creek correlated with one-year time lag fluctuations in drought caused by opportunistic species being dominant during drought and periodic/equilibrium species dominant during wet periods. Time series plots of fish abundances aggregated by life-history strategy revealed dominance of opportunistic species emerged at the onset of a multi-year drought spanning 1998–2004, particularly for the two sites undergoing directional change. Our work provides empirical evidence for theoretical linkages between life history and environmental fluctuations and can ultimately be used to predict stream fish community response to future drought regimes.  相似文献   

6.
Abstract –  The fish assemblage of the floodplain of the Mamoré River (Bolivia) was estimated in eight lakes, corresponding to four habitat types, situated on an environmental gradient related to the river distance: lakes situated near the river, in the forested floodplain, at the floodplain edge and lakes isolated in the savanna. This paper documents the diet of 71 fish species (among the 140 recorded) and compares the taxonomic and trophic structure of fish assemblages between four lake types. The diet analysis was conducted to determine five trophic guilds: algivores/iliophages, herbivores, zooplanktivores, invertivores and piscivores. The taxonomic and trophic structures of the fish assemblages were not similar in the different lake types of the Mamoré River. The trophic structure of assemblages showed a coarse pattern of dominance of algivores/iliophages and invertivores, but different situations were observed in relative abundance of the trophic groups in relation to the spatial position of the lakes (except for piscivores). Lakes close to the river appeared more favourable to the microphages (algivores/iliophages, zooplanktivores) although remote lakes appeared more favourable to the macrophages (invertivores, herbivores). These results support the general idea that fish distribution follows a pattern linked to the ecology of the species, and related to environmental characteristics of the lakes.  相似文献   

7.
  1. The paper ‘Biodiversity values of remnant freshwater floodplain lagoons in agricultural catchments: evidence for fish of the Wet Tropics bioregion, northern Australia’, published in Aquatic Conservation: Marine and Freshwater Ecosystems in 2015, has contributed in several ways to the integration of freshwater wetland science within new catchment management policies and practices for Great Barrier Reef (GBR) sustainability.
  2. The Tully–Murray biodiversity study developed novel protocols to sample larval, juvenile, and adult fish life‐history stages in floodplain lagoons using a combination of boat‐based backpack electrofishing and fyke netting. In addition, hydrological and hydrodynamic models were applied in a completely new way to quantify the timing, extent, and duration of water connectivity across floodplain streams, cane drains, and wetlands. Combining the two novel approaches enabled an analysis of lagoon fish assemblage patterns in relation to environmental gradients, especially floodplain hydrology, connectivity patterns, and measures related to agricultural land use.
  3. In demonstrating the importance of different levels of connectivity for different biodiversity outcomes in freshwater floodplain lagoons of the Tully–Murray catchment, the subject paper established that floodplain connectivity needs to be taken into consideration in wetland management practices.
  4. The timing of the subject publication was fortuitous. It coincided with the preparation of the evidence‐based 2017 Scientific Consensus Statement on land‐based water quality impacts on the GBR. As one of the few freshwater wetland ecology publications for the catchments of the GBR at that time, this paper played an important role in demonstrating freshwater wetland values, fish conservation options, and management imperatives to sustain wetland ecological health and services in GBR catchments.
  5. By advancing the understanding of factors driving biodiversity patterns, and the importance of connectivity and ecohydrological processes in freshwater floodplain wetlands of the GBR catchment, the Tully–Murray study helped to drive new policy directives for the protection and restoration of catchment, floodplain, and estuary functions, and connectivity, now embedded in the Reef 2050 Long‐Term Sustainability Plan 2018, an overarching strategy for managing the GBR over the next 35 years, and complementary Queensland environmental legislation.
  相似文献   

8.
Assessing trait–environment relationships is crucial for predicting effects of natural and human‐induced environmental change on biota. We compiled a global database of fish assemblages in estuaries, functional traits of fishes and ecosystem features of estuaries. And we quantified the relative importance of ecosystem features as drivers of patterns of fish functional traits among estuaries worldwide (i.e. drivers of the proportions of fish traits). In addition to biogeographical context, two main environmental gradients regulate traits patterns: firstly temperature, and secondly estuary size and hydrological connectivity of the estuary with the marine ecosystem. Overall, estuaries in colder regions, with larger areas and with higher hydrological connectivity with the marine ecosystem, have higher proportions of marine fish (versus freshwater), macrocarnivores and planktivores (versus omnivores, herbivores and detritivores) and larger fish, with greater maximum depth of distribution and longer lifespan. The observed trait patterns and trait–environment relationships are likely generated by multiple causal processes linked to physiological constraints due to temperature and salinity, size‐dependent biotic interactions, as well as habitat availability and connectivity. Biogeographical context and environmental conditions drive species richness and composition, and present results show that they also drive assemblage traits. The observed trait patterns and trait–environment relationships suggest that assemblage composition is determined by the functional role of species within ecosystems. Conservation strategies should be coordinated globally and ensure protection of an array of estuaries that differ in ecosystem features, even if some of those estuaries do not support high species richness.  相似文献   

9.
We studied the trait diversity and structure in the fish communities of two floodplain lakes of the Caura River: Aricagua and Paramuto, during one hydrological cycle. We calculated taxonomic and a functional alpha and beta diversities and made comparisons among hydrological seasons and among habitats within each lake based on rarefactions. The trait structure was explored with an RLQ (analysis of a table R of environmental conditions, a table L of abundances of species and a table Q of species traits) analysis, and pairwise relationships between environmental variables and traits were explored with fourth‐corner analyses. Despite its smaller extension, Paramuto showed higher alpha taxonomic and trait diversities. The substrates of open sand and those covered by leaf litter were the most diverse habitats in terms of both species and traits. The trait structure of the fish communities was influenced by the hydrological seasons, the lakes as well as water pH and temperature, and in a lesser degree dissolved oxygen, habitat type and total dissolved solids in the water. These factors constitute the habitat templet for the fish community's composition and trait structure.  相似文献   

10.
11.
  1. River fish diversity is threatened by anthropogenic environmental alteration to landscapes. The early life-history stages of fish play an important role in maintaining diversity and population recruitment and can be heavily influenced by landscape patterns. Information on temporal and spatial distribution patterns of fish eggs and larvae is also important for biodiversity conservation and management of fish resources.
  2. The Yangtze River possesses a high diversity of fishes, including many commercially important species. The economy along the lower reach of the river is well developed, and most of the area is experiencing high pressure from human impacts. This section of the Yangtze River connects with the largest freshwater lake in China at the upstream end and flows into the estuary at the downstream end. These two landscape features are likely to have a significant impact upon the spatial distributions of fish egg and larval assemblages.
  3. Environmental variables, fish eggs, and larval assemblages were sampled in three locations, at Hukou, Anqing, and Jingjiang, in the lower reach of the Yangtze River. The results suggest that the higher number of species and greater abundance in upstream sites reflect the critical function of connectivity of Poyang Lake with the river for fish recruitment in the lower Yangtze. The delayed bloom of larval fish, occurrence of estuarine species, and a lower species number and abundance of freshwater fish downstream reflect the influence of tidal intrusion from the estuary.
  4. This study highlights the value of maintaining natural river–lakes connectivity in the Yangtze River as a conservation measure. The connected river–lake system should be designated as a priority area for fish resource protection in the lower reach of the Yangtze River. We recommend further measures to break down barriers between the river and other lakes and to restore the natural lateral connectivity of the floodplain ecosystem.
  相似文献   

12.
The Yangtze River and its watershed have undergone vast changes resulting from centuries of human impacts, yet ecological knowledge of the system is limited. The seasonal variation and spatial variation of three sub‐lakes of Poyang Lake, a huge wetland in the middle Yangtze Basin, were investigated to examine how fish assemblages respond to seasonal hydrology and associated environmental conditions. In all three sub‐lakes, fish assemblage structure revealed strong variations associated with seasonal water level fluctuation. Fish species richness in all sub‐lakes was highest during the middle of the monsoon season and lowest during the dry season. Fish numerical abundance and biomass varied significantly, with several of the most common species having inconsistent patterns of seasonal variation among sub‐lakes. Fish assemblage structure was significantly associated with environmental gradients defined by water level, aquatic macrophyte coverage, conductivity and dissolved oxygen concentration. Assemblage composition in all three sub‐lakes underwent strongest shifts between December and April, the period when water levels were lowest and fishing has the greatest impact on fish stocks. Future impacts that change the hydrology of the middle Yangtze would alter the dynamics of habitat connectivity and affect environmental conditions and fish assemblages of the Poyang Lake wetland system.  相似文献   

13.
In the Oueme River, a lowland river in Benin, Africa, artificial ponds constructed in the floodplain (whedos) are colonised during the high‐water period by a presumably random sample of fishes from the river channel. As water slowly recedes from the floodplain, fishes are isolated in whedos until they are harvested near the end of the dry season. We surveyed fishes in whedos and adjacent main‐channel and floodplain habitats during two low‐water periods (2008 and 2009) and one falling‐water period (2010–2011) to evaluate the relevance of four alternative metacommunity models to these systems. In 2010–2011, we also measured a suite of physicochemical variables including dissolved oxygen, temperature, specific conductivity and per cent cover of aquatic vegetation. Whedos were covered with dense growth of aquatic vegetation, and dissolved oxygen concentrations were lower in whedos and a natural floodplain depression compared with the main channel. Multivariate analyses revealed that habitat types were distinct with regard to assemblage structure and abiotic conditions. Assemblages in whedos and natural floodplain depressions were differentiated from those of the river channel, with the floodplain habitats being dominated by piscivorous fishes that tolerate aquatic hypoxia. Dispersal, aquatic hypoxia and predation act in concert to shape local community structure. Patch dynamics, species sorting and mass effect models all were consistent with patterns in fish assemblage structure in this system. We conclude that the underlying mechanisms of drift, speciation, selection and dispersal ultimately may be more useful for explaining patterns in ecological communities than alternative metacommunity models.  相似文献   

14.
Inland fisheries underpin food security in many tropical countries. The most productive inland fisheries in tropical and subtropical developing countries occur in large river–floodplain systems that are often impacted by land cover changes. However, few studies to date have assessed the effects of changes in floodplain land cover on fishery yields. Here, we integrated fisheries and satellite‐mapped habitat data to evaluate the effects of floodplain deforestation on fishery yields in 68 floodplain lake systems of the lower Amazon River, representing a wide range in relative amounts of woody, herbaceous and non‐vegetated land cover. We modelled relative fish yields (fish capture per unit effort [CPUE]) in the floodplain lakes as a function of the relative amounts of forest, shrub, aquatic macrophyte and bare/herbaceous habitats surrounding them. We found that forest amount was positively related (= .0003) to multispecies CPUE. The validity of these findings was supported by rejection of plausible alternative causative mechanisms involving habitat‐related differences in amount of piscivores, fishing effort, lake area, and habitat effects on CPUE of the nine taxa dominating multispecies yields. Our results provide support to the idea that removal of floodplain forests reduces fishery yields per unit effort. Increased protection of floodplain forests is necessary to maintain the food, income and livelihood security services provided by large river–floodplain fisheries.  相似文献   

15.
Knowledge of the movement and habitat use of fishes is important in identifying and understanding the causes of population declines and predicting how populations are likely to respond to management interventions. In this study, radiotelemetry was used to examine the spring and summer movement and habitat use patterns of the freshwater catfish (Tandanus tandanus) in a remnant wetland to inform the development of recovery actions for this threatened species. Twenty‐one adult fish were tagged and released within Tahbilk Lagoon, Victoria, Australia, in September 2009. Fish were located every 1–2 weeks between September 2009 and February 2010, a period which coincides with the spawning period for the species. Eleven of the fish were also tracked every 2 h for 68 consecutive hours in December 2009 to examine diel movements. The study revealed that freshwater catfish make extensive use of cover (e.g. wood and macrophytes) and typically have limited ranges (median total linear range and 90% linear range 599 and 173 m respectively), although they occasionally moved more extensively (up to 1.5 km) between floodplain and riverine habitats. Fish moved over much greater areas at night compared with during the day. There was also evidence of sex‐specific variation in movement, with a trend for greater movement of female fish at night compared with males. The results of the study suggest that strategies that protect macrophyte and wood habitats and improve connectivity between riverine and floodplain habitats are likely to be important in maintaining and restoring remnant populations of this species.  相似文献   

16.
Montaña CG, Winemiller KO. Local‐scale habitat influences morphological diversity of species assemblages of cichlid fishes in a tropical floodplain river.
Ecology of Freshwater Fish 2010: 19: 216–227. © 2010 John Wiley & Sons A/S Abstract – We examined the taxonomic and morphological diversity of cichlid fish assemblages in a floodplain river in Venezuela during the dry season at two spatial scales: macrohabitats (lagoons, main channels and creeks) and mesohabitats (leaf litter, sand banks, rocky shoals and woody debris). Nonmetric multidimensional scaling did not reveal differences for species assemblages among macro and mesohabitats. The first two axes from canonical correspondence analysis based on 19 species and six physical variables modelled >61% of the taxonomic variation in assemblages from rock shoals and woody debris, and 55% of variation in assemblages from sand banks and leaf litter. Principal components analysis based on 22 morphological variables yielded two dominant axes that explained >86% of variation in the cichlid assemblages. Morphological diversity was analysed to test the idea that assemblage structure is nonrandom, with structurally complex habitats supporting more species with more functional morphological diversity than simple habitats. Average and standard deviation (SD) of the morphological Euclidean distances of local assemblages among mesohabitats tended to decrease or be constant as the number of species increased. Regressions of the average nearest neighbour distance (NND) and SD of NND with species richness resulted in low and negative slopes of species assemblages among mesohabitats. These relationships suggest that when more species are added to a habitat patch, assemblage morphospace remains approximately constant, species average similarity increases and species dispersion in morphological space becomes more uniform. Results support that cichlids partition habitat at the local scale but not at the macrohabitat scale.  相似文献   

17.
Dibble ED, Pelicice FM. Influence of aquatic plant‐specific habitat on an assemblage of small neotropical floodplain fishes.
Ecology of Freshwater Fish 2010: 19: 381–389. © 2010 John Wiley & Sons A/S Abstract – This study investigated the effects of plant‐specific habitat on the distribution of young and small adult fishes in lagoons of the Upper Paraná River floodplain, Brazil. We compared fish catch per unit effort (CPUE) and species richness and used an indirect gradient analysis to investigate fish‐plant relationships within three aquatic macrophytes beds (Cabomba furcata, Eichhornia azurea, Nymphaea amazonum), and explored microhabitat influence (indexed by eight variables related to physical structure and water quality) on the structure of fish assemblages. Rarefaction analysis was used to compare fish species richness among the vegetated habitats. We captured a total of 1599 fish constituting 23 species, 7 families and 3 orders. Fish CPUE and species richness increased relative to microhabitat structure innate to the macrophytes; higher CPUE and richness were observed in C. furcata beds, a submerged aquatic macrophyte with finely dissected leaves. On the contrary, N. amazonum, a species that provides low microhabitat complexity, harbored fewer individual fish and number of species. Reproduction dynamics, hydrology and the amount of available plant‐generated habitat structure (surface effect) contributed to the disproportionally high number of individuals captured during the dry season. Our data suggest that the microhabitat physical structure (e.g., edge distance, stem density and patch size) provided by macrophyte beds in the lagoons of the Upper Paraná River may play a more important role than physicochemistry (e.g., oxygen, temperature and pH) at mediating distribution patterns of small‐sized fishes.  相似文献   

18.
Mims MC, Olden JD, Shattuck ZR, Poff NL. Life history trait diversity of native freshwater fishes in North America.
Ecology of Freshwater Fish 2010: 19: 390–400. © 2010 John Wiley & Sons A/S Abstract – Freshwater fish diversity is shaped by phylogenetic constraints acting on related taxa and biogeographic constraints operating on regional species pools. In the present study, we use a trait‐based approach to examine taxonomic and biogeographic patterns of life history diversity of freshwater fishes in North America (exclusive of Mexico). Multivariate analysis revealed strong support for a tri‐lateral continuum model with three end‐point strategies defining the equilibrium (low fecundity, high juvenile survivorship), opportunistic (early maturation, low juvenile survivorship), and periodic (late maturation, high fecundity, low juvenile survivorship) life histories. Trait composition and diversity varied greatly between and within major families. Finally, we used occurrence data for large watersheds (n = 350) throughout the United States and Canada to examine geographic patterns of life history variation. Distinct patterns of life history strategies were discernible and deemed congruent with biogeographic processes and selection pressures acting on life history strategies of freshwater fishes throughout North America.  相似文献   

19.
湖泊鱼类群落结构与物理生境特征密切相关。为了探究鱼类群落结构与物理生境特征之间的关系,在鄱阳湖设立17个采样点,通过采集鱼类样本研究其群落结构,并利用遥感技术分析样点物理生境特征(包括岸线分形维数、距离指数和高程值)及其空间区域差异。结果表明,依据17个采样位点的物理生境特征,鄱阳湖丰水期物理生境空间上可以划分为3个区域,分别为北方区、南方区和主湖区,但枯水期鄱阳湖生境没有显著的区域划分规律。丰水期鄱阳湖鱼类可以分为北方群、南方群和主湖区群3个类群,而枯水期鱼类组成没有明显规律。从功能类群上看,鄱阳湖鱼类以杂食性、湖泊定居性和偏好于底层以及中下层栖息的中小型鱼类为主。不同区域的鱼类功能群之间存在时间和空间上的变化,北方区和南方区鱼类功能群组成相似,主湖区与北方区和南方区存在差异。总体上,鱼类群落结构的时空变化和差异与物理生境特征具有良好的一致性;未来鄱阳湖鱼类的保护工作需要关注湖泊物理生境特征,不同区域应制定不同的保护措施。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号