首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Despite decades of research, there is an intense debate about the consistency of the hump-shaped pattern describing the relationship between diversity and disturbance as predicted by the intermediate disturbance hypothesis (IDH). Previous meta-analyses have not explicitly considered interactive effects of disturbance frequency and intensity of disturbance on plant species diversity in terrestrial landscapes.

Objective

We conducted meta-analyses to test the applicability of IDH by simultaneously examining the relationship between species richness, disturbance frequency (quantified as time since last disturbance as originally proposed) and intensity of disturbance in forest landscapes.

Methods

The effects of disturbance frequency, intensity, and their interaction on species richness was evaluated using a mixed-effects model.

Results

We found that species richness peaks at intermediate frequency after both high and intermediate disturbance intensities, but the richness-frequency relationship differed between intensity classes.

Conclusions

Our study highlights the need to measure multiple disturbance components that could help reconcile conflicting empirical results on the effect of disturbance on plant species diversity.
  相似文献   

2.

Background

Despite increasing demand, imaging the internal structure of plant organs or tissues without the use of transgenic lines expressing fluorescent proteins remains a challenge. Techniques such as magnetic resonance imaging, optical projection tomography or X-ray absorption tomography have been used with various success, depending on the size and physical properties of the biological material.

Results

X-ray in-line phase tomography was applied for the imaging of internal structures of maize seeds at early stages of development, when the cells are metabolically fully active and water is the main cell content. This 3D imaging technique with histology-like spatial resolution is demonstrated to reveal the anatomy of seed compartments with unequalled contrast by comparison with X-ray absorption tomography. An associated image processing pipeline allowed to quantitatively segment in 3D the four compartments of the seed (embryo, endosperm, nucellus and pericarp) from 7 to 21 days after pollination.

Conclusion

This work constitutes an innovative quantitative use of X-ray in-line phase tomography as a non-destructive fast method to perform virtual histology and extends the developmental stages accessible by this technique which had previously been applied in seed biology to more mature samples.
  相似文献   

3.

Context

Natural regenerating forests are rapidly expanding in the tropics. Forest transitions have the potential to restore biodiversity. Spatial targeting of land use policies could improve the biodiversity benefits of reforesting landscapes.

Objective

We explored the relative importance of landscape attributes in influencing the potential of tree cover increase to restore native woody plant biodiversity at the landscape scale.

Methods

We developed land use scenarios that differed in spatial patterns of reforestation, using the Pangor watershed in the Ecuadorian Andes as a case study. We distinguished between reforestation through natural regeneration of woody vegetation in abandoned fallows and planted forests through managed plantations of exotic species on previously cultivated land. We simulated the restoration of woody plant biodiversity for each scenario using LANDIS-II, a process-based model of forest dynamics. A pair-case comparison of simulated woody plant biodiversity for each scenario was conducted against a random scenario.

Results

Species richness in natural regenerating fallows was considerably higher when occurring in: (i) close proximity to remnant forests; (ii) areas with a high percentage of surrounding forest cover; and (iii) compositional heterogeneous landscapes. Reforestation at intermediate altitudes also positively affected restoration of woody plant species. Planted exotic pine forests negatively affected species restoration.

Conclusions

Our research contributes to a better understanding of the recolonization processes of regenerating forests. We provide guidelines for reforestation policies that aim to conserve and restore woody plant biodiversity by accounting for landscape attributes.
  相似文献   

4.

Context

The habitat amount hypothesis has rarely been tested on plant communities. It remains unclear how habitat amount affect species richness in habitat fragments compared to island effects such as isolation and patch size.

Objectives

How do patch size and spatial distribution compared to habitat amount predict plant species richness and grassland specialist plant species in small grassland remnants? How does sampling area affect the prediction of spatial variables on species richness?

Methods

We recorded plant species density and richness on 131 midfield islets (small remnants of semi-natural grassland) situated in 27 landscapes in Sweden. Further, we tested how habitat amount, compared to focal patch size and distance to nearest neighbor predicted species density and richness of plants and of grassland specialists.

Results

A total of 381 plant species were recorded (including 85 grassland specialist species). A combination of patch size and isolation was better in predicting both density and richness of species compared to habitat amount. Almost 45% of species richness and 23% of specialist species were explained by island biogeography parameters compared to 19 and 11% by the amount of habitat. A scaled sampling method increased the explanation level of island biogeography parameters and habitat amount.

Conclusions

Habitat amount as a concept is not as good as island biogeography to predict species richness in small habitats. Priority in landscape planning should be on larger patches rather than several small, even if they are close together. We recommend a sampling area scaled to patch size in small habitats.
  相似文献   

5.

Context

Understanding how landscape patterns affect species diversity is of great importance in the fields of biogeography, landscape ecology and conservation planning, but despite the rapid advance in biodiversity analysis, investigations of spatial effects on biodiversity are still largely focused on species richness.

Objectives

We wanted to know if and how species richness and species composition are differentially driven by the spatial measures dominating studies in landscape ecology and biogeography. As both measures require the same limited presence/absence information, it is important to choose an appropriate diversity measure, as differing results could have important consequences for interpreting ecological processes.

Methods

We recorded plant occurrences on 112 islands in the Baltic archipelago. Species richness and composition were calculated for each island, and the explanatory power of island area and habitat heterogeneity, distance to mainland and structural connectivity at three different landscape sizes were examined.

Results

A total of 354 different plant species were recorded. The influence of landscape variables differed depending on which diversity measure was used. Island area and structural connectivity determined plant species richness, while species composition revealed a more complex pattern, being influenced by island area, habitat heterogeneity and structural connectivity.

Conclusions

Although both measures require the same basic input data, species composition can reveal more about the ecological processes affecting plant communities in fragmented landscapes than species richness alone. Therefore, we recommend that species community composition should be used as an additional standard measure of diversity for biogeography, landscape ecology and conservation planning.
  相似文献   

6.

Context

Habitat destruction is the leading threat to terrestrial biodiversity, isolating remnant habitat in a matrix of modified vegetation.

Objectives

Our goal was to determine how species richness in several broad taxonomic groups from remnant forest was influenced by matrix quality, which we characterized by comparing plant biomass in forest and the surrounding matrix.

Methods

We coupled data on species-area relationships (SARs) in forest remnants from 45 previously published studies with an index of matrix quality calculated using new estimates of plant biomass derived from satellite imagery.

Results

The effect size of SARs was greatest in landscapes with low matrix quality and little forest cover. SARs were generally stronger for volant than for non-volant species. For the terrestrial taxa included in our analysis, matrix quality decreased as the proportion of water, ice, or urbanization in a landscape increased.

Conclusions

We clearly demonstrate that matrix quality plays a major role in determining patterns of species richness in remnant forest. A key implication of our work is that activities that increase matrix quality, such as active and passive habitat restoration, may be important conservation measure for maintaining and restoring biodiversity in modified landscapes.
  相似文献   

7.
8.

Context

Forest loss and fragmentation negatively affect biodiversity. However, disturbances in forest canopy resulting from repeated deforestation and reforestation are also likely important drivers of biodiversity, but are overlooked when forest cover change is assessed using a single time interval.

Objectives

We investigated two questions at the nexus of plant diversity and forest cover change dynamics: (1) Do multitemporal forest cover change trajectories explain patterns of plant diversity better than a simple measure of overall forest change? (2) Are specific types of forest cover change trajectories associated with significantly higher or lower levels of diversity?

Methods

We sampled plant biodiversity in forests spanning the Charlotte, NC, region. We derived forest cover change trajectories occurring within nested spatial extents per sample site using a time series of aerial photos from 1938 to 2009, then classified trajectories by spatio-temporal patterns of change. While accounting for landscape and environmental covariates, we assessed the effects of the trajectory classes as compared to net forest cover change on native plant diversity.

Results

Our results indicated that forest stand diversity is best explained by forest change trajectories, while the herb layer is better explained by net forest cover change. Three distinct forest change trajectory classes were found to influence the forest stand and herb layer.

Conclusions

The influence of forest dynamics on biodiversity can be overlooked in analyses that use only net forest cover change. Our results illustrate the utility of assessing how specific trajectories of past land cover change influence biodiversity patterns in the present.
  相似文献   

9.

Context

Seed-dispersing animals often move along “linear gaps” (linear anthropogenic features such as roads and trails that contain little vegetation), especially in densely-vegetated landscapes. As a result, linear gaps and their verges may receive more seeds than adjacent habitats. In addition, linear gap verges may provide more suitable conditions for plant establishment than neighboring habitats. In this way, linear gaps may increase plant abundance and diversity, and facilitate connectivity of native and non-native plant populations, ultimately increasing plant diversity in the landscape.

Objectives

We reviewed current evidence for the potential of anthropogenic linear gaps to increase plant abundance and diversity, and for the mechanisms involved.

Methods

We reviewed peer-reviewed literature published up to December 31st, 2014.

Results

Most (69.2 %) studies found significantly higher plant abundance and/or diversity in linear gap verges than in adjacent habitats. This suggests that linear gaps can increase plant abundance and diversity, and possibly facilitate population spread. However, there was a strong bias toward the study of exotic species. In addition, there were few mechanistic studies to allow estimation of the relative contributions of dispersal and post-dispersal mechanisms operating in linear gaps.

Conclusions

Future studies should focus on entire plant communities, not just exotic species, and should allow identification of the mechanisms by which linear gaps increase plant abundance and diversity. With this knowledge in hand, we will be in a better position to understand whether the net benefit of linear gaps for plant diversity in general outweigh their facilitation of the spread of exotic species.
  相似文献   

10.
Fine-grained recognition of plants from images   总被引:1,自引:0,他引:1  

Background

Fine-grained recognition of plants from images is a challenging computer vision task, due to the diverse appearance and complex structure of plants, high intra-class variability and small inter-class differences. We review the state-of-the-art and discuss plant recognition tasks, from identification of plants from specific plant organs to general plant recognition “in the wild”.

Results

We propose texture analysis and deep learning methods for different plant recognition tasks. The methods are evaluated and compared them to the state-of-the-art. Texture analysis is only applied to images with unambiguous segmentation (bark and leaf recognition), whereas CNNs are only applied when sufficiently large datasets are available. The results provide an insight in the complexity of different plant recognition tasks. The proposed methods outperform the state-of-the-art in leaf and bark classification and achieve very competitive results in plant recognition “in the wild”.

Conclusions

The results suggest that recognition of segmented leaves is practically a solved problem, when high volumes of training data are available. The generality and higher capacity of state-of-the-art CNNs makes them suitable for plant recognition “in the wild” where the views on plant organs or plants vary significantly and the difficulty is increased by occlusions and background clutter.
  相似文献   

11.

Context

Urban environments create a wide range of habitats that harbour a great diversity of plant species, many of which are of alien origin. For future urban planning and management of the green areas within the city, understanding of the spatial distribution of invasive alien species is of great importance.

Objectives

Our main aim was to assess how availability of different ecosystem types within a city area, as well as several parameters describing urban structure interact in determining the cover and identity of invasive alien species.

Methods

We studied the distribution of chosen invasive plant species in a mid-sized city in the Czech Republic, central Europe, on a gradient of equal sized cells from the city centre to its outskirts.

Results

A great amount of variation was explained by spatial predictors but not shared with any measured variables. The species cover of invasive species decreased with increasing proportion of urban greenery and distance from the city centre, but increased with habitat richness; road margins, ruderal sites, and railway sites were richest in invasive species. In contrast, the total number of invasive species in cells significantly decreased with increasing distance from the city centre, but increased with habitat richness.

Conclusions

Our results suggest that different invasive species prefer habitats in the vicinity of the city centre and at its periphery and the spatial structure and habitat quality of the urban landscape needs to be taken into account, in efforts to manage alien plant species invasions in urban environments.
  相似文献   

12.
13.

Context

‘Conserving Nature’s stage’ has been advanced as an important conservation principle because of known links between biodiversity and abiotic environmental diversity, especially in sensitive high-latitude environments and at the landscape scale. However these links have not been examined across gradients of human impact on the landscape.

Objectives

To (1) analyze the relationships between land-use intensity and both landscape-scale biodiversity and geodiversity, and (2) assess the contributions of geodiversity, climate and spatial variables to explaining vascular plant species richness in landscapes of low, moderate and high human impact.

Methods

We used generalized additive models (GAMs) to analyze relationships between land-use intensity and both geodiversity (geological, geomorphological and hydrological richness) and plant species richness in 6191 1-km2 grid squares across Finland. We used linear regression-based variation partitioning (VP) to assess contributions of climate, geodiversity and spatial variable groups to accounting for spatial variation in species richness.

Results

In GAMs, geodiversity correlated negatively, and plant species richness positively, with land-use intensity. Both relationships were non-linear. In VP, geodiversity best accounted for species richness in areas of moderate to high human impact. These overall contributions were mainly due to variation explained jointly with climate, which dominated the models. Independent geodiversity contributions were highest in pristine environments, but low throughout.

Conclusions

Human action increases biodiversity but may reduce geodiversity, at landscape scale in high-latitude environments. Better understanding of the connections between biodiversity and abiotic environment along changing land-use gradients is essential in developing sustainable measures to conserve biodiversity under global change.
  相似文献   

14.

Context

Spatial scale and pattern play important roles in forest aboveground biomass (AGB) estimation in remote sensing. Changes in the accuracy of satellite images-estimated forest AGBs against spatial scales and pixel distribution patterns has not been evaluated, because it requires ground-truth AGBs of fine resolution over a large extent, and such data are difficult to obtain using traditional ground surveying methods.

Objectives

We intend to quantify the accuracy of AGB estimation from satellite images on changing spatial scales and varying pixel distribution patterns, in a typical mixed coniferous forest in Sierra Nevada mountains, California.

Methods

A forest AGB map of a 143 km2 area was created using small-footprint light detection and ranging. Landsat Thematic Mapper images were chosen as typical examples of satellite images, and resampled to successively coarser resolutions. At each spatial scale, pixels forming random, uniform, and clustered spatial patterns were then sampled. The accuracies of the AGB estimation based on Landsat images associated with varying spatial scales and patterns were finally quantified.

Results

The changes in the accuracy of AGB estimation from Landsat images are not monotonic, but increase up to 60–90 m in spatial scale, and then decrease. Random and uniform spatial patterns of pixel distributions yield better accuracy for AGB estimation than clustered spatial patterns. The corrected NDVI (NDVIc) was the best predictor of AGB estimation.

Conclusions

A spatial scale of 60–90 m is recommended for forest AGB estimation at the Sierra Nevada mountains using Landsat images and those with similar spectral resolutions.
  相似文献   

15.

Context

We address the issue of adapting landscapes for improved insect biodiversity conservation in a changing climate by assessing the importance of additive (main) and synergistic (interaction) effects of land cover and land use with climate.

Objectives

We test the hypotheses that ant richness (species and genus), abundance and diversity would vary according to land cover and land use intensity but that these effects would vary according to climate.

Methods

We used a 1000 m elevation gradient in eastern Australia (as a proxy for a climate gradient) and sampled ant biodiversity along this gradient from sites with variable land cover and land use.

Results

Main effects revealed: higher ant richness (species and genus) and diversity with greater native woody plant canopy cover; and lower species richness with higher cultivation and grazing intensity, bare ground and exotic plant groundcover. Interaction effects revealed: both the positive effects of native plant canopy cover on ant species richness and abundance, and the negative effects of exotic plant groundcover on species richness were greatest at sites with warmer and drier climates.

Conclusions

Impacts of climate change on insect biodiversity may be mitigated to some degree through landscape adaptation by increasing woody native vegetation cover and by reducing land use intensity, the cover of exotic vegetation and of bare ground. Evidence of synergistic effects suggests that landscape adaptation may be most effective in areas which are currently warmer and drier, or are projected to become so as a result of climate change.
  相似文献   

16.

Context

Forest fragmentation alters the composition, structure and function of ecosystems and affects ecological processes that are fundamental for the provision of ecosystem services where functional diversity is sensitive to its effects. Analyzing the functional responses of the plant community to fragmentation can provide new approaches to its conservation and management.

Objectives

We analyzed whether the functional diversity of woody individuals associated with aboveground biomass (AGB) in a high Andean forest in Colombia is affected by fragmentation.

Methods

Based on three fragmentation categories identified using landscape metrics, we selected ten forest fragments. Multitrait and monotrait functional diversity indexes (foliar and wood) weighted by aboveground biomass were calculated in plots of 0.1 ha in each fragment. Analysis of variance was performed, and simple linear regressions were quantified to identify the relationships between functional diversity and fragmentation.

Results

The category of large fragments had a higher average AGB than did the medium and small fragments. Fragmentation had effects on the variance of some foliar and stem traits but not on functional dominance. For the multitraits indexes, the edge contrast was negatively related with functional dispersion.

Conclusions

The categories analyzed have similar responses in terms of functionality associated with AGB. We highlight the importance of small fragments in the maintenance of plant functional diversity and as reservoirs of AGB. We underline that small fragments are important to consider in the development of conservation and connectivity strategies.
  相似文献   

17.
18.

Context

Revealing the interaction between landscape pattern and urban land surface temperature (LST) can provide insight into mitigating thermal environmental risks. However, there is no consensus about the key landscape indicators influencing LST.

Objectives

This study sought to identify the key landscape indicators influencing LST considering a large number of landscape pattern variables and multiple scales.

Methods

This study applied ordinary least squares regression and partial least squares regression to explore a combination of landscape metrics and identify the key indicators influencing LST. A total of 49 Landsat images of the main city of Shenzhen, China were examined at 13 spatial scales.

Results

The landscape composition indicators derived from biophysical proportion, a new metric developed in this study, more effectively determined LST variation than those derived from land cover proportion. Area-related landscape configuration indicators independently characterized LST variation, but did not give much more new information beyond that given by land cover proportion. Shape-related landscape configuration indicators were effective in combination with land cover proportion, but their importance was uncertain when temporal and spatial scales varied.

Conclusions

The influence of landscape configuration on LST exists but should not be overestimated. Comparison of numerous variables at multiple spatiotemporal scales can help identify the influence of multiple landscape characteristics on LST variation.
  相似文献   

19.

Background

Climate change represents a grand challenge for agricultural productivity. Understanding complex plant traits such as stress tolerance, disease resistance or crop yield is thus essential for breeding and the development of sustainable agriculture strategies. When screening for the most robust plant phenotypes, fast, high-throughput phenotyping represents the means of choice.

Results

We have developed a plant phenotyping platform to measure the emission of volatile organic compounds (VOCs), photosynthetic gas exchange and transpiration under ambient, or abiotic and biotic stress conditions. These parameters are highly suitable markers to non-invasively and dynamically study plant growth and plant stress status, making them perfect test variables for long-term, online plant monitoring. Here we introduce the new phenotyping platform, termed VOC-SCREEN, and present results of a first case study with three barley cultivars, demonstrating that the plant’s volatilome can be successfully applied to discriminate different barley varieties.

Conclusion

Volatilomics is a promising technique to non-invasively screen for plant phenotypic traits.
  相似文献   

20.

Background

It is well known that preparation of biological (plant and animal) tissues for Scanning Electron Microscopy (SEM) by chemical fixation and critical point drying results in shrinkage of tissues, often by up to 20-30%, depending on the tissue type and fixation protocol used. We sought to identify a protocol that would preserve tissue size and morphology better than standard chemical fixatives and dehydration regimes. We compared a range of processing techniques by quantifying changes in tissue size and recording details of surface morphology using leaf tissues from three commonly studied species; Arabidopsis thaliana, barley and cotton.

Results

All processing protocols altered tissue dimensions. Methanol fixation and dehydration, followed by a further short (1 h) dehydration step in ethanol and critical point drying (which was based on a previously published method), preserved tissue dimensions most consistently of all protocols tested, although it did cause 8% shrinkage in all three species. This protocol was also best for preservation of surface morphology in all three species. We outline a recommended protocol and advise that the method is best trialled for different tissues, especially thicker or larger samples.

Conclusions

This study shows that simultaneous fixation and dehydration in methanol followed by ethanol results in better preservation of dimensions and morphology of critical point dried plant tissues than other fixation and dehydration procedures. It is a quick and simple method, and requires standard SEM preparation equipment.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号