首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim. To obtain information on serum and liver vitamin B12 and urinary methylmalonic acid concentrations as diagnostic tests to predict a weight gain response to supplementation with vitamin B12 in young dairy cattle when grazing pasture of low cobalt content.

Methodology. Forty dairy cattle (12 Friesian, 14 Friesian × Jersey and 14 Jersey) were allocated to two equal sized groups, treated and untreated, based on liveweight. At monthly intervals for 14 months, all animals were weighed, their serum and urine sampled, their liver biopsied and the pasture sampled from the paddocks they were grazing and going to graze. Serum and liver were assayed for Vitamin B12 concentrations. For the first 5 months of the trial, urine was assayed for methylmalonic acid concentrations. Both washed and unwashed pasture samples were assayed for cobalt concentrations.

Results. No weight gain response occurred to Vitamin B12 supplementation in young growing cattle grazing pasture with a cobalt concentration of 0.04-0.06 mg/kg DM. For 5 months of the trial, liver Vitamin B12 concentrations from untreated calves were in the range 75-220 nmol/kg and serum vitamin B12 concentrations were as low as 72 pmol/1. There was no associated growth response to supplementation.

Conclusion. Further trials involving young cattle grazing pastures with cobalt concentrations less than 0.04 mg/kg DM are required to reliably determine liver and serum Vitamin B12 concentrations at which growth responses to Vitamin B12 or cobalt supplementation are likely under New Zealand pastoral grazing conditions.  相似文献   

2.
AIM: To compare serum analyses of vitamin B12 and methylmalonic acid (MMA) as indices of cobalt/vitamin B12 deficiency in lambs around weaning. METHODS: Lambs on five properties, considered to be cobalt- deficient, were supplemented with either cobalt bullets, or short- or long-acting vitamin B12 preparations. Blood samples, and in some cases liver biopsies, and liveweights were obtained at monthly intervals. Serum samples were assayed for vitamin B12 and MMA and liver for vitamin B12 concentrations. Pasture cobalt concentrations were measured on three of the properties. RESULTS: Pasture cobalt concentrations were generally maintained below 0.07 microg/g dry matter (DM) on the properties sampled. Growth responses to supplementation were observed on only 2/5 properties, despite serum vitamin B12 concentrations being within the currently used 'marginal' reference range (336-499 pmol/L) for at least 3 months on all properties and in the deficient reference range (0-335 pmol/L) for at least 2 months on all farms except one. Serum MMA concentrations in supplemented lambs were <2 micromol/L, except in those animals sampled 1 month after receiving treatment with a short-acting vitamin B12 injection. Serum MMA concentrations in unsupplemented animals on properties on which no growth response to supplementation occurred generally reached peak levels of between 4 and 7 micromol/L at the nadir of serum vitamin B12 concentration. When a growth response was observed, differences in weight gain between supplemented and unsupplemented lambs occurred as mean serum MMA concentrations increased from 9 to 14 micromol/L. On one property where supplementation commenced before weaning, normal growth rates were maintained despite serum vitamin B12 concentrations of 140 pmol/L and serum MMA concentrations in excess of 40 micromol/L serum. CONCLUSIONS: The possibility that current serum vitamin B12 references ranges for diagnosis of cobalt deficiency are set too high and lead to over-diagnosis of responsiveness to cobalt/ vitamin B12 supplementation is discussed. The suggestion is made that serum MMA concentrations in excess of 9-14 micromol/L will provide a more reliable diagnostic test for cobalt deficiency. However, there was sufficient variation between properties in the relationships between cobalt concentrations of pasture and serum vitamin B12 or MMA concentrations to require more rigorous testing of the reliability of using serum MMA concentration for this purpose. The possibility that differences in rumen fermentation and therefore propionate and vitamin B12 production could be involved is discussed. The measurement of serum MMA and vitamin B12 appears to be of little value whilst the lamb is still suckling. CLINICAL SIGNIFICANCE: Serum MMA concentration may offer advantages over serum vitamin B12 concentrations in the diagnosis of a cobalt/vitamin B12 responsiveness in weaned lambs.  相似文献   

3.
AIM: To compare serum analyses of vitamin B12 and methylmalonic acid (MMA) as indices of cobalt/vitamin B12 deficiency in lambs around weaning.

METHODS: Lambs on five properties, considered to be cobalt- deficient, were supplemented with either cobalt bullets, or short- or long-acting vitamin B12 preparations. Blood samples, and in some cases liver biopsies, and liveweights were obtained at monthly intervals. Serum samples were assayed for vitamin B12 and MMA and liver for vitamin B12 concentrations. Pasture cobalt concentrations were measured on three of the properties.

RESULTS: Pasture cobalt concentrations were generally maintained below 0.07 μg/g dry matter (DM) on the properties sampled. Growth responses to supplementation were observed on only 2/5 properties, despite serum vitamin B12 concentrations being within the currently used ’marginal‘ reference range (336–499 pmol/L) for at least 3 months on all properties and in the deficient reference range (0–335 pmol/L) for at least 2 months on all farms except one. Serum MMA concentrations in supplemented lambs were <2 μmol/L, except in those animals sampled 1 month after receiving treatment with a short-acting vitamin B12 injection. Serum MMA concentrations in unsupplemented animals on properties on which no growth response to supplementation occurred generally reached peak levels of between 4 and 7 μmol/L at the nadir of serum vitamin B12 concentration. When a growth response was observed, differences in weight gain between supplemented and unsupplemented lambs occurred as mean serum MMA concentrations increased from 9 to 14 μmol/L. On one property where supplementation commenced before weaning, normal growth rates were maintained despite serum vitamin B12 concentrations of 140 pmol/L and serum MMA concentrations in excess of 40 μmol/L serum.

CONCLUSIONS: The possibility that current serum vitamin B12 references ranges for diagnosis of cobalt deficiency are set too high and lead to over-diagnosis of responsiveness to cobalt/ vitamin B12 supplementation is discussed. The suggestion is made that serum MMA concentrations in excess of 9–14 μmol/L will provide a more reliable diagnostic test for cobalt deficiency. However, there was sufficient variation between properties in the relationships between cobalt concentrations of pasture and serum vitamin B12 or MMA concentrations to require more rigorous testing of the reliability of using serum MMA concentration for this purpose. The possibility that differences in rumen fermentation and therefore propionate and vitamin B12 production could be involved is discussed. The measurement of serum MMA and vitamin B12 appears to be of little value whilst the lamb is still suckling.

CLINICAL SIGNIFICANCE: Serum MMA concentration may offer advantages over serum vitamin B12 concentrations in the diagnosis of a cobalt/vitamin B12 responsiveness in weaned lambs.  相似文献   

4.
AIM: To determine concurrent changes in serum methylmalonic acid (MMA) and vitamin B12 concentrations of ewes and their lambs on cobalt-deficient properties, subsequent to cobalt supplementation. METHODS: Three experiments were carried out on two farms. Groups of ewes (n=25-50) were either supplemented with cobalt bullets during late pregnancy, 23-47 days before the mean lambing date, or left unsupplemented. In two experiments, lambs from within each group were supplemented directly by vitamin B12 injection at 3-weekly intervals from birth, and in the third experiment by injection with micro-encapsulated vitamin B12 at tailing and 3 months later. Pasture samples were obtained for analysis of cobalt content at each sampling time. Blood samples were obtained and liveweight recorded from ewes and lambs at approximately monthly intervals. On one farm (two experiments), liver and milk samples were obtained from ewes and liver samples from lambs. RESULTS: Serum vitamin B12 concentrations in unsupplemented ewes fell below 250 pmol/L during early lactation in all experiments and mean concentrations as low as 100 pmol/L were recorded. MMA concentration was maintained below 2 micromol/L in serum from supplemented ewes but increased to mean concentrations ranging from 7 to 14 micromol/L at the nadir of serum vitamin B12 concentration during peak lactation. A significant liveweight response to supplementation was recorded in ewes on one property, and the vitamin B12 concentration in the ewes' milk and in the livers of their lambs more than doubled. No liveweight-gain response to supplementation was observed in lambs on this property. Mean serum MMA concentrations in lambs ranged from <2 in supplemented, to 19.2 micromol/L in unsupplemented lambs, and the latter had concurrent serum vitamin B12 concentrations of >300 pmol/L. Pasture cobalt concentration was lowest at 0.04-0.09 microg/kg dry matter (DM) on the property on which responses in lambs occurred but considerably higher (>0.09 microg/kg DM) on the property on which responses in ewes occurred. On the second property, serum vitamin B12 concentrations in lambs at tailing were extremely low (100 pmol/L), irrespective of supplementation of dams with cobalt. Mean serum MMA concentration was increased to 20 and 42 micromol/L in lambs from supplemented and non-supplemented ewes, respectively. Weight-gain response to direct supplementation of lambs with vitamin B12 occurred during suckling in the latter, but not the former. Lambs from ewes supplemented with vitamin B12 showed a much bigger increase in serum vitamin B12 concentrations a month after supplementation than did lambs from unsupplemented ewes (+1,400 pmol/L vs + 650 pmol/L). CONCLUSIONS: Serum MMA concentration gave a more precise indication of responsiveness to vitamin B12 or cobalt supplementation than serum vitamin B12 concentrations in ewes and lambs. Neither very low serum vitamin B12 nor elevated MMA concentrations were necessarily indicative of responsiveness to supplementation in suckling lambs, but the latter gave an early indication of impending responsiveness. Supplementation of the ewe with a cobalt bullet appeared to protect the growth performance of the lamb for 90 days and influence the subsequent serum vitamin B12 response in the lamb to vitamin B12 supplementation. CLINICAL SIGNIFICANCE: Supplementing ewes with cobalt bullets in late pregnancy can improve the vitamin B12 status of their lambs, and modify their response to vitamin B12 supplementation.  相似文献   

5.
In a controlled field study of three years' duration we evaluated the effect of cobalt supplementation on pathological changes in cobalt/vitamin B12-deficient Texel twin lambs grazing the same cobalt-deficient pasture. Semi-quantitative evaluation of the histopathology of liver and brain was done on 44 sets of twins. Pathological changes were related to blood concentrations of vitamin B12, methylmalonic acid, and homocysteine. Lesions were mainly confined to the liver and brain. Acute hepatic changes were characterized by steatosis, hepatocytic degeneration, and single cell necrosis. Chronic changes consisted of bile duct proliferation, the presence of ceroid containing macrophages, and fibrosis in the portal triads. Many non-supplemented lambs showed polymicrocavitation and Alzheimer type II reaction in the brain. Polioencephalomalacia was observed in three non-supplemented lambs but was regarded as a secondary lesion. Our results indicate that the main lesions found in cobalt/vitamin B12-deficient lambs are acute and chronic hepatitis. These lesions were associated with low concentrations of vitamin B12 and high concentrations of methylmalonic acid and homocysteine in the blood. The liver lesions were also associated with polymicrocavitation of the brain, probably as morphological evidence of hepatoencephalopathy.  相似文献   

6.
Forty-eight Friesian or Friesian-X factory supply dairy cows were divided into two groups. Group 1 received a supplement of sodiumtripolyphosphate (TPP, 25g P, 25g Na/cow/day), and group 2 a supplement of sodium chloride (25g Na/cow/day). Supplementation began at peak lactation, when the mean serum inorganic phosphorus (Pi) of all cows was 1.13 mmol/l. After four weeks, group 2 changed from NaCl to dicalcium phosphate supplementation (25g P/cow/day). Serum Pi and yields of milk, butterfat and protein were measured before, during and after supplementation. Pasture availability was assessed and P and Ca contents in pasture and the Pi content in milk were also determined. Supplementation raised serum Pi from 1.30 mmol/l (NaCI) to 1.42 mmol/l (TPP, P<0.05) but when dicalcium phosphate replaced NaCl the difference between groups disappeared (P>0.05). P supplementation had no effect on any milk parameter. Pre-grazing pasture mass above estimated grazing height averaged 2260 kg DM and contained >or=0.39 per cent P. It is concluded that a herd mean serum Pi concentration of around 1.2-1.3 mmol/l imposes no limitation to dairy production around the period of peak lactation of grazing dairy cattle.  相似文献   

7.
Abstract

Forty-eight Friesian or Friesian-X factory supply dairy cows were divided into two groups. Group 1 received a supplement of sodiumtripolyphosphate (TPP, 25g P, 25g Na/cow/day), and group 2 a supplement of sodium chloride (25g Na/cow/day). Supplementation began at peak lactation, when the mean serum inorganic phosphorus (Pi) of all cows was 1.13 mmol/l. After four weeks, group 2 changed from NaCl to dicalcium phosphate supplementation (25g P/cow/day). Serum Pi and yields of milk, butterfat and protein were measured before, during and after supplementation. Pasture availability was assessed and P and Ca contents in pasture and the Pi content in milk were also determined. Supplementation raised serum Pi from 1.30 mmol/l (NaCI) to 1.42 mmol/l (TPP, P<0.05) but when dicalcium phosphate replaced NaCl the difference between groups disappeared (P>0.05). P supplementation had no effect on any milk parameter. Pre-grazing pasture mass above estimated grazing height averaged 2260 kg DM and contained ?0.39 per cent P. It is concluded that a herd mean serum Pi concentration of around 1.2–1.3 mmol/l imposes no limitation to dairy production around the period of peak lactation of grazing dairy cattle.  相似文献   

8.
Reproductive performance and lamb viability in cobalt sufficient and subclinically deficient ewes, and from ewes experiencing repletion from and depletion into cobalt deficiency, were investigated in two experiments. The sheep were fed a cobalt deficient ration and supplementation was by oral dose according to treatment. The treatments had a significant effect (P less than 0.001) on ewe serum vitamin B12 and methylmalonic acid concentrations. There were no significant effects on ewe liveweight, condition score or conception rate. Cobalt deficient ewes produced fewer lambs and had more stillbirths and neonatal mortalities than cobalt sufficient controls. Lambs from deficient ewes were slower to start suckling (P less than 0.05), had reduced concentrations of serum immunoglobulin G and zinc sulphate turbidity levels (P less than 0.05), and had lower serum vitamin B12 and higher methylmalonic acid concentrations (P less than 0.05), than lambs from cobalt sufficient dams. Cobalt supplementation in either the first or second half of pregnancy only did not fully alleviate these adverse effects.  相似文献   

9.
In two trials an assessment was made of serum methylmalonic acid as a diagnostic criterion of cobalt status in housed cattle. Despite the small number of animals used the method showed some promise, and normal concentrations are tentatively suggested as being less than 2 mumole/litre, subclinically cobalt deficient 2 to 4 mumole/litre and cobalt-deficient greater than 4 mumole/litre. However, for assessing how cobalt status is likely to influence the rate of liveweight gain of cattle, measurements of both serum methylmalonic acid and vitamin B12 concentrations would appear to be better.  相似文献   

10.
AIMS: This paper reviews the principles for the establishment of biochemical reference criteria for assessing the trace element status of farmed livestock and summarises data for copper, selenium, vitamin B12 and iodine for farmed red deer. COPPER: Enzootic ataxia and osteochondrosis occur when liver copper concentrations are below 60 micromol/kg fresh tissue, and serum copper concentrations are below 3-4 micromol/l. Growth responses to copper supplementation have been equivocal when blood copper concentrations were 3-4 micromol/l, but were significant when mean blood copper concentrations were 0.9-4.0 micromol/l. No antler growth or bodyweight response to copper supplementation was observed when blood ferroxidase levels averaged 10-23 IU/l (equivalent to serum copper concentrations of 6-13 micromol/l) and liver copper concentrations averaged 98 mumol/kg fresh tissue. These data suggest that 'deficient', 'marginal' and 'adequate' ranges for serum copper concentrations should be 5, 5-8, and 8 micromol/l, respectively, and those for liver copper concentrations should be 60, 60-100, and 100 micromol/kg, respectively. SELENIUM: White muscle disease has been reported in young deer with blood and liver selenium concentrations of 84-140 nmol/l and 240-500 nmol/kg fresh tissue, respectively. No growth-rate response to selenium supplementation occurred in rising 1-year-old deer when blood selenium concentrations were less than 130 nmol/l, the range in which a growth-rate response would be expected in sheep. VITAMIN B12: Vitamin B12 concentrations in deer are frequently below 185 pmol/l without clinical or subclinical effects. No growth response was observed in young deer with vitamin B12 concentrations as low as 75-83 pmol/l. A growth response to cobalt/vitamin B12 supplementation occurs in lambs with serum vitamin B12 concentrations 336 pmol/l. CONCLUSIONS: Data that can be used to establish reference ranges for assessing trace element status in deer are limited. More robust reference values for farmed red deer need to be established through further studies relating biochemical data to health and performance.  相似文献   

11.
AIM: To determine the impact of ingestion of soil on the iodine (I), selenium (Se), copper (Cu) and cobalt (Co; vitamin B12) status of young sheep. METHODS: Twenty young sheep were divided into two groups; one group was fed lucerne pellets, while the other group was fed lucerne pellets plus 100 g soil, for 63 days. At the end of the study the animals were blood-sampled, slaughtered, and the liver removed, and concentrations of I, Cu, vitamin B12 and Se were determined. RESULTS: The ingestion of soil significantly increased concentrations of I and vitamin B12 in serum, but had no effect on concentrations of Cu and Se in serum/blood and liver, and vitamin B12 in liver. CONCLUSION: Ingested soil can be a significant source of I and Co (vitamin B12) for grazing sheep.  相似文献   

12.
AIM: To derive reference ranges for serum methylmalonic acid (MMA) for the diagnosis of cobalt/vitamin B12-responsiveness in lambs and critique existing serum vitamin B12 reference ranges. METHODS: Individual animal data from earlier supplementation trials, involving 225 ewes, 106 suckling lambs, 301 lambs during the suckling and post-weaning periods and 414 weaned lambs, for which weight gain to supplementation was observed, were used to derive relationships between serum vitamin B12 and MMA, and liveweight gain. RESULTS: Serum MMA concentrations were rarely elevated above the norm of <2 micromol/L when serum vitamin B12 concentrations were >375 pmol/L, and not elevated into the range where a liveweight response to supplementation occurred (>10 micromol/L) unless serum vitamin B12 concentrations were below 200 pmol/L. Suckling lambs were able to maintain high growth rates despite elevated serum MMA concentrations (>20 micromol/L). CONCLUSIONS: The current reference ranges used in New Zealand for serum vitamin B12 are set conservatively high. Serum MMA concentrations appear to allow better differentiation of a responsive condition than vitamin B12 concentrations. Serum MMA concentrations >13 micromol/L indicate responsiveness to supplementation whilst concentrations <7 micromol/L indicate unresponsiveness. In the range 7-13 micromol/L, variation in response was observed and predictability of response is less certain, but supplementation is advisable. CLINICAL RELEVANCE: The current reference ranges for vitamin B12 responsiveness are conservatively high and lead to over-diagnosis of vitamin B12 deficiency in ill-thriftiness of sheep.  相似文献   

13.
AIM: To determine the effect of increasing molybdenum (Mo) intakes on serum and liver copper (Cu) concentrations and growth rates of grazing red deer (Cervus elaphus). METHODS: Molybdenum- and Cu-amended fertilisers were applied to six 1.1-ha paddocks in a 3 x 2 design. Three levels of Mo were applied on two paddocks at each level in mid April (designated Day 1); levels were: none (control), 0.5 (medium) and 1.0 (high) kg Mo/ha as sodium molybdate. In late May (Day 39), two levels of Cu (none and 3.0 kg Cu/ha, as copper sulphate) were applied to each of the three levels of Mo-treated paddocks. Pasture Mo, Cu and sulphur (S) concentrations were measured at about fortnightly intervals. In late June (Day 74), ten 6-month-old red deer hinds were placed on the six experimental pastures, and serum and liver Cu concentrations were monitored at about monthly intervals for 102 days. The hinds were weighed on four occasions during the trial. RESULTS: Mean pasture Mo concentrations on Day 56 were 2, 4.6 and 11.3 mg/kg dry matter (DM) for the untreated control, medium and high Mo-treated pastures, respectively. Pasture Cu concentration was 95 mg/kg DM on Day 59, 53 mg/kg DM on Day 90, and 9 mg/kg DM by Day 153. Mean S concentration in pasture was 3.3 (range 3.03-3.45) g/kg DM. Copper application to pasture had no significant effect on serum and liver Cu concentrations in deer so data were pooled within Mo treatment. Mean initial (Day 74) serum Cu concentration was 9.2 micromol/L. In the deer grazing the control Mo pasture, this increased to 10.3 micromol/L on Day 112, before decreasing to 6.4 micromol/L on Day 176. In deer grazing the medium and high Mo-treated pastures, mean serum Cu concentrations were 3.8 and 3.9 micromol/L, respectively, on Day 112, and 2.5 and 3.3 micromol/L, respectively, on Day 176. Mean initial (Day 74) liver Cu concentration was 131 micromol/kg fresh tissue. In the deer grazing the control Mo pasture, this declined to 120 and 52 micromol/kg on Days 112 and Day 176, respectively. In deer grazing the medium and high Mo-treated pastures, liver Cu concentrations decreased to 55 and 52 micromol/kg fresh tissue, respectively, on Day 112, and 21 and 20 micromol/kg fresh tissue, respectively, on Day 176. Mean serum and liver Cu concentrations were not significantly different between deer grazing the medium and high Mo-treated pastures, and were lower (serum p=0.003, liver p<0.001) in those groups than in deer grazing the untreated control pastures. No clinical signs of Cu deficiency associated with lameness were observed. Deer grazing pastures that had Mo concentrations >10 mg/kg DM had lower (p=0.002) growth rates (100 vs 130 g/day) than those on pastures containing <2.4 mg Mo/kg DM. CONCLUSION: Increasing pasture Mo concentrations from 2 mg/kg DM to > or =4.6 mg/kg DM significantly reduced serum and liver Cu concentrations in grazing deer. Reduced growth rate was observed at pasture Mo concentrations >10 mg/kg DM.  相似文献   

14.
Abstract

AIM: To monitor the consequences of withdrawing mineral Cu supplements from two dairy herds with initially high concentrations of Cu in liver.

METHODS: Two herds were selected from dairy farms in the Waikato region of New Zealand that participated in an earlier survey of Cu supplementation practices and Cu status of dairy cows. The herds were fed pasture, grass and maize silage, plus palm kernel expeller (PKE) containing 25–30 mg Cu/kg dry matter (DM) fed at 2–4 kg/cow/day. No mineral Cu supplements were supplied from January 2009. Pasture samples were collected for mineral analysis in September 2008 and April 2009. Concentration of Cu in liver biopsies from the same 9–10 cows per herd was measured on three occasions between April 2009 and May 2010.

RESULTS: Pastures on both farms contained 10 mg Cu/kg DM, 0.1–0.5 mg Mo/kg DM and 3.5–4.0 g S/kg DM. The initial herd mean concentrations of Cu in liver were 1,500 (SD 590) and 1,250 (SD 640) μmol Cu/kg fresh tissue. In the absence of mineral Cu supplements, those mean concentrations decreased over 12 months to 705 (SD 370) and 1,120 (SD 560) μmol Cu/kg fresh tissue, respectively. For cows in the first herd, the rate of depletion of liver Cu reserves was influenced by initial concentration of Cu, such that high concentration led to faster loss according to first-order kinetics.

CONCLUSIONS: Mineral Cu supplementation was not necessary over 12 months for two dairy herds with mean concentrations of Cu in liver >1,250 μmol Cu/kg fresh tissue, grazing pastures containing 10 mg Cu/kg DM and concentrations of Mo <1 mg/kg DM. The quantity and particularly the duration of feeding PKE appeared to be a factor in whether or not the herd lost substantial reserves of Cu in liver during the year. However, the Cu status of both herds in this study was more than adequate to support late pregnancy and mating.

CLINICAL REVELANCE: Copper status of the herd should be monitored and on-farm management of Cu nutrition should take into account all sources contributing to daily intake of Cu. Where Cu supplementation has been excessive and there is risk of chronic Cu toxicity, mineral Cu supplements may be withdrawn for a period commensurate with the expected rate of liver Cu depletion.  相似文献   

15.
AIM: To determine the effect of increasing molybdenum (Mo) intakes on serum and liver copper (Cu) concentrations and growth rates of grazing red deer (Cervus elaphus).

METHODS: Molybdenum- and Cu-amended fertilisers were applied to six 1.1-ha paddocks in a 3 × 2 design. Three levels of Mo were applied on two paddocks at each level in mid April (designated Day 1); levels were: none (control), 0.5 (medium) and 1.0 (high) kg Mo/ha as sodium molybdate. In late May (Day 39), two levels of Cu (none and 3.0 kg Cu/ha, as copper sulphate) were applied to each of the three levels of Mo-treated paddocks. Pasture Mo, Cu and sulphur (S) concentrations were measured at about fortnightly intervals. In late June (Day 74), ten 6-month-old red deer hinds were placed on the six experimental pastures, and serum and liver Cu concentrations were monitored at about monthly intervals for 102 days. The hinds were weighed on four occasions during the trial.

RESULTS: Mean pasture Mo concentrations on Day 56 were 2, 4.6 and 11.3 mg/kg dry matter (DM) for the untreated control, medium and high Mo-treated pastures, respectively. Pasture Cu concentration was 95 mg/kg DM on Day 59, 53 mg/kg DM on Day 90, and 9 mg/kg DM by Day 153. Mean S concentration in pasture was 3.3 (range 3.03–3.45) g/kg DM. Copper application to pasture had no significant effect on serum and liver Cu concentrations in deer so data were pooled within Mo treatment. Mean initial (Day 74) serum Cu concentration was 9.2 µmol/L. In the deer grazing the control Mo pasture, this increased to 10.3 µmol/L on Day 112, before decreasing to 6.4 µmol/L on Day 176. In deer grazing the medium and high Mo-treated pastures, mean serum Cu concentrations were 3.8 and 3.9 µmol/L, respectively, on Day 112, and 2.5 and 3.3 µmol/L, respectively, on Day 176. Mean initial (Day 74) liver Cu concentration was 131 µmol/kg fresh tissue. In the deer grazing the control Mo pasture, this declined to 120 and 52 µmol/kg on Days 112 and Day 176, respectively. In deer grazing the medium and high Motreated pastures, liver Cu concentrations decreased to 55 and 52 µmol/kg fresh tissue, respectively, on Day 112, and 21 and 20 µmol/kg fresh tissue, respectively, on Day 176. Mean serum and liver Cu concentrations were not significantly different between deer grazing the medium and high Mo-treated pastures, and were lower (serum p=0.003, liver p<0.001) in those groups than in deer grazing the untreated control pastures. No clinical signs of Cu deficiency associated with lameness were observed. Deer grazing pastures that had Mo concentrations >10 mg/kg DM had lower (p=0.002) growth rates (100 vs 130 g/day) than those on pastures containing <2.4 mg Mo/kg DM.

CONCLUSION: Increasing pasture Mo concentrations from 2 mg/kg DM to ≥4.6 mg/kg DM significantly reduced serum and liver Cu concentrations in grazing deer. Reduced growth rate was observed at pasture Mo concentrations >10 mg/kg DM.  相似文献   

16.
In the experiment the influence of an elevated oral cobalt supply (Co content in the ration 0.27 mg Co/kg DM; supplement of 0.14 mg Co/kg DM as CoSO(4)) to pregnant dairy cows on the vitamin B(12) concentration in milk, colostrum and vitamin B(12) status of their calves was tested in comparison with unsupplemented controls (0.13 mg Co/kg DM). While there was no significant difference in vitamin B(12) concentration in the at 70th day of lactation (start of the experiment; 3.77 +/- 1.41 vs. 3.66 +/- 1.03 ng/ml) and 290th day of lactation (almost drying off; 4.75 +/- 3.05 vs. 4.44 +/- 0.96 ng/ml), cobalamin concentration in the milk colostrum showed a tendency towards a higher cobalt content in the ration of the supplemented cows in comparison with the controls (21.0 +/- 8.4 vs. 16.7 +/- 11.9 ng/ml). Differences in the vitamin B(12) concentration in the serum of the newborn calves before and after ingestion of colostrum were not detected. From these results it can be concluded that cobalt content of 0.13 mg Co/kg DM in the ration based on wilted grass silage seems to be sufficient for pregnant dairy cows.  相似文献   

17.
Abstract

Lambs grazing cobalt-deficient pastures and injected with hydroxocobalamine gained significantly more weight and excreted significantly less methylmalonic acid in the urine than untreated controls. Lambs with liver vitamin B12 levels in the range 0.1–0.2?g/g excreted less than 25 ?g of methylmalonic acid per ml of urine, whereas lambs with liver vitamin B12 concentrations of less than 0.1 ?g/g excreted greater amounts. Lambs in both groups had serum vitamin B12 concentrations less than 500 pg/ml.

No consistent diurnal variation in urinary methylmalonic acid concentrations was found for four lambs studied.

There was a decrease in the methylmalonic acid levels of urine after storage for more than 24 hours which could be prevented by acidification of the urine.

A mean urinary methylmalonic acid concentration greater than 30 ?g/ml for 10 animals randomly selected from a flock would indicate a cobalt deficiency in the flock as a whole.  相似文献   

18.
AIM: To determine the effect of grazing pasture that had a low selenium (Se) concentration on serum concentrations of triiodothyronine (T3) and thyroxine (T4), and erythrocyte glutathione peroxidase (GSH-Px) activity in dairy cows. METHODS: Forty pregnant Friesian cows were grazed on pasture that contained 0.03-0.04 ppm Se on a dry matter (DM) basis. Two months before parturition, 20 cows were randomly selected and treated with 1 mg Se/kg bodyweight subcutaneously, as barium selenate (Group Se-S). The other group (Se-D) was not supplemented. Blood samples were taken before supplementation (-60 days) and 30, 60, 90, 180 and 270 days after parturition, for determination of concentrations of T3 and T4 in serum, and GSH-Px activity in erythrocytes. RESULTS: Erythrocyte GSH-Px activity in the Se-D group was <60 U/g haemoglobin (Hb) throughout the experiment. Supplementation increased (p<0.05) activities to >130 U/g Hb throughout lactation. Mean serum concentrations of T4 in Se-D and Se-S cows increased from 23.7 (SEM 0.7) and 23.4 (SEM 0.8) nmol/L, respectively, in the prepartum period to 69.6 (SEM 0.1) and 67.6 (SEM 0.2) nmol/L, respectively, at 180 days of lactation (p<0.01), and no effect of Se supplementation was evident. Serum concentrations of T3 in Se-D cows decreased (p<0.05) from 1.6 (SEM 0.1) nmol/L prepartum to 1.0 (SEM 0.2) nmol/L at the beginning of lactation, and remained lower (p<0.05) than those in the Se-S cows which did not decrease after calving and ranged from 1.9 (SEM 0.1) to 2.4 (SEM 0.2) nmol/L throughout lactation. CONCLUSIONS: Serum T3 concentrations decreased during early lactation in unsupplemented cows grazing pastures low in Se (0.03-0.04 ppm) and both serum T3 and erythrocyte GSHPx activities were consistently lower throughout lactation compared with Se-supplemented cows. Se supplementation had no effect on serum T4 concentrations.  相似文献   

19.
The first deer farms were established in New Zealand about 30 years ago. Extensive studies on trace elements in sheep and cattle have resulted in clarification of the requirements of those species and the development of protocols to diagnose and prevent deficiencies. In contrast, there have been very few studies conducted with deer. This review summarises information available on trace element nutrition of deer and concludes that, in New Zealand, cobalt (Co), vitamin B12, selenium (Se) and iodine (I) deficiencies are of lesser importance than copper (Cu), which can have a significant impact on deer health and performance. However, on individual farms, Se and I deficiency may cause significant production losses if not managed appropriately. There are no reports of production limitations caused by Co deficiency. Copper deficiency manifests itself as clinical disease, namely enzootic ataxia and osteochondrosis. Growth responses to Cu supplementation have only been reported in 2/11 trials and were not predicted from low serum and/or liver Cu concentrations. On the basis of clinical signs of Cu deficiency, the proposed reference ranges used to predict Cu status from serum Cu concentrations (micromol/l) are: 5, deficient; 5-8, marginal and; 8, adequate; and for liver Cu concentrations (micromol/kg fresh tissue) are: 60, deficient; 60-100, marginal and; 100, adequate. Copper supplementation strategies based on Cu-EDTA injections, Cu-oxide needles or the application of Cu to pasture are effective at increasing Cu status for varying periods. More recent research suggests that alternative forage species that have a high Cu content (10 mg/kg dry matter (DM), may play a role in the prevention of Cu deficiency.  相似文献   

20.
The objectives of this study were to provide baseline data for alpha-tocopherol, selenium and polyunsaturated fatty acid concentrations in the serum and feed of New Zealand dairy cattle, and to assess the likelihood that abnormal peroxide metabolism has a role in the impaired lactational and reproductive performance noted in selenium-deficient cattle. Twenty-four Friesian heifers were randomly allocated one of four winter diets consisting of hay with or without selenium supplementation, or pasture and silage with or without selenium supplementation. A winter diet consisting exclusively of hay (alpha-tocopherol concentration 19 mg/kg of dry matter) resulted in a pre-calving serum alpha-tocopherol concentration of 1.2 mg/l compared to 4.5 mg/l for pastured heifers (p<0.01). The pre-calving alpha-tocopherol concentration for the heifers fed hay fell into the range considered deficient (<2.0 mg/l), whereas heifers fed pasture and silage remained in the range considered adequate throughout the study period. Serum fatty acid concentration, and the proportion of fatty acids that were polyunsaturated, were lowest in the hay-fed heifers before calving (1.0 mg/ml, 37.1% respectively), and remained unchanged following re-introduction to pasture after calving in late July and August. Serum fatty acid concentration did not increase following the re-introduction of the heifers to pasture because of the unexpectedly low fatty acid concentration (4.8 g/kg of dry matter) of the mature winter pasture. In October, however, the proportion of fatty acids in serum that were polyunsaturated increased (50%) as did serum cy-tocopherol concentrations (greater than 13 mg/l). Mean serum selenium concentrations in the unsupplemented heifers ranged from 139 to 204 nmol/l, being lowest in October (p<0.01). Supplementation with intraruminal selenium pellets (two pellets delivering about 3 mg of selenium/day) increased serum selenium concentration and glutathione peroxidase activity (p<0.01) whereas the type of winter diet had no effect (p>0.05). These results suggest that dairy cattle wintered on hay can become Vitamin E-depleted, whereas the feeding of pasture and silage should provide adequate Vitamin E. The pasture offered following calving during July and August provided a low dietary polyunsaturated fatty acid challenge, suggesting that abnormal peroxide metabolism is unlikely to be an important mechanism in the impaired performance of selenium-deficient adult cattle which calve at this the of year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号