首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Truffles, subterranean fruit-bodies of the ectomycorrhizal genus Tuber, are currently cultivated on host trees in plantations, both to offset declining wild production and to extend their geographic distribution. We report the effects of the potting medium and potting method components of two very different seedling production systems on the colonization of Quercus bicolor × Q. robur seedlings by T. aestivum (the Burgundy truffle). Seedlings grown in book planter containers using a peat-based medium were smaller yet much better colonized by T. aestivum than seedlings produced in RPM® (Root Production Method) containers using a ground bark-based RPM medium. In either container method, the peat-based medium supported development of more T. aestivum mycorrhizae than did the RPM medium. Seedlings grown in book planters developed significantly more root tips l?1 of medium than did seedlings grown in RPM containers. The optimum pH for T. aestivum mycorrhiza development in the peat-based medium is between 6.7 and 7.5.  相似文献   

2.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

3.
Castanea sativa is a valuable tree species in Hyrcanian forests, an evolutionary relict ecosystem whose communities suffer from overexploitation and fungal diseases. In the current study, three species delimitation methods were utilized with ITS regions sequencing to determine the taxonomic status of Septoria causing leaf blotch of C. sativa in Hyrcanian forests. The results indicated that the length of ITS region in the genus Septoria (extracted from GenBank) varied from 650 to 680 bp. There were almost three times more variable sites in ITS1 than in ITS2. The ITS2 secondary structure of Hyrcanian Septoria community had the highest similarity with Septoria castaneicola, except for some differences in helix II and III. Also, Hyrcanian samples had minimum genetic distances with S. castaneicola and maximum with Septoria quercicola. The maximum parsimony method divided the studied Septoria genus into three distinct clades, mostly located in clade I. Clade II consisted entirely of Septoria aciculosa, while clade III contained S. castaneicola as well as Hyrcanian samples.  相似文献   

4.
Taxus chinensis and T. wallichiana in have been threatened in their distribution areas in recent decades because of their over-exploitation and reduction and destruction of native habitats. Determining the genetic diversity in populations of the two species will provide guidelines for their protection and preservation. Two hundred and fifteen trees from six populations of T. chinensis and 150 sampled trees of T. wallichiana were sampled. Six microsatellite primer pairs selected from 16 primer pairs were used to investigate genetic variation at the population and species levels. Five yielded polymorphic alleles, and among the 13 putative alleles amplified, 11 were polymorphic (accounting for 76.33 %).Shannon’s information index (I) and percentage of polymorphic bands (PPB) (I = 0.202 and PPB = 67.22 % for T. chinensis; I = 0.217 and PPB = 65.03 % for T. wallichiana). Both species had low levels of genetic diversity (mean H o = 0.107, H e = 0.121 for T. chinensis; H o = 0.095, H e = 0.109 for T. wallichiana). Genetic differentiation among populations was higher (F ST = 0.189) for T. chinensis and lower (0.156) for T. wallichiana, indicating limited gene flow (Nm) among populations for T. chinensis (0.68) and T. wallichiana (0.65). Variation among individuals of T. chinensis was 63.59 and 73.12 % for T. wallichiana. Thus, the threatened status of the two conifers is related to a lack of genetic diversity. All populations are isolated in small forest remnants. An ex situ conservation site should be established with a new population for these species that comprises all the genetic groups for the best chance to improve their fitness under environmental stresses.  相似文献   

5.
Gardenia jasminoides and Rosa chinensis are economically important horticultural plants in China. Frankliniella occidentalis and Thrips hawaiiensis are serious coexisting pests that previously demonstrated opposite population trends on G. jasminoides and R. chinensis flowers. To further study the different performances between F. occidentalis and T. hawaiiensis, we investigated their population dynamics in the field (for 5 years) and their life history characteristics on the two flowers in the laboratory. In the field, the density of F. occidentalis was lower than that of T. hawaiiensis on G. jasminoides but was higher than that of T. hawaiiensis on R. chinensis. Under laboratory conditions, F. occidentalis showed significantly slower development, and lower survival and fecundity levels than T. hawaiiensis on G. jasminoides, but the opposite was true on R. chinensis. Significant differences in the net reproductive rate (R 0) between F. occidentalis and T. hawaiiensis were observed, with respective values of 38.66 ± 2.85 and 47.91 ± 2.70 on G. jasminoides, and 55.64 ± 2.15 and 32.45 ± 2.16 on R. chinensis. The intrinsic rates of increase (r m ) of F. occidentalis and T. hawaiiensis were 0.156 ± 0.008 and 0.198 ± 0.007, respectively, on G. jasminoides, and 0.172 ± 0.003 and 0.165 ± 0.002, respectively, on R. chinensis. Thus, the performances of both thrips with respect to population size in the laboratory were in accordance with those in the field, suggesting that the innate capacity for insect population increases may directly impact their population dynamics in fields. Thus, the population performance of different thrips species on flowers is species-dependent, which could be exploited in thrips control programs by breeding pest-resistant cultivars.  相似文献   

6.
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture, soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa (Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate (P N), stomatal conductance (g s), and water-use efficiency (W UE) in the seedlings exhibited a clear threshold response to the relative soil water content (R SWC). The highest P N and W UE occurred at R SWC of 51.84 and 64.10%, respectively. Both P N and W UE were higher than the average levels at 39.79% ≤ R SWC ≤ 73.04%. When R SWC decreased from 51.84 to 37.52%, P N, g s, and the intercellular CO2 concentration (C i) markedly decreased with increasing drought stress; the corresponding stomatal limitation (L s) substantially increased, and nonphotochemical quenching (N PQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II (PSII) in the form of heat, and the reduction in P N was primarily due to stomatal limitation. While R SWC decreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry (F v/F m) and the effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (q P), and N PQ; in contrast, minimal fluorescence yield of the dark-adapted state (F 0) increased markedly. Thus, the major limiting factor for the P N reduction changed to a nonstomatal limitation due to PSII damage. Therefore, an R SWC of 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% ≤ R SWC ≤ 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F. suspensa.  相似文献   

7.
The rhizosphere, distinct from bulk soil, is defined as the volume of soil around living roots and influenced by root activities. We investigated protease, invertase, cellulase, urease, and acid phosphatase activities in rhizosphere and bulk soils of six Nothotsuga longibracteata forest communities within Tianbaoyan National Nature Reserve, including N. longibracteata + either Phyllostachys pubescens, Schima superba, Rhododendron simiarum, Cunninghamia lanceolata, or Cyclobalanopsis glauca, and N. longibracteata pure forest. Rhizosphere soils possessed higher protease, invertase, cellulase, urease, and acid phosphatase activities than bulk soils. The highest invertase, urease, and acid phosphatase activities were observed in rhizosphere samples of N. longibracteata + S. superba. Protease was highest in the N. longibracteata + R. simiarum rhizosphere, while cellulase was highest in the pure N. longibracteata forest rhizosphere. All samples exhibited obvious rhizosphere effects on enzyme activities with a significant linear correlation between acid phosphatase and cellulase activities (p < 0.05) in rhizosphere soils and between protease and acid phosphatase activities (p < 0.05) in bulk soils. A principal component analysis, correlating 13 soil chemical properties indices relevant to enzyme activities, showed that protease, invertase, acid phosphatase, total N, and cellulase were the most important variables impacting rhizosphere soil quality.  相似文献   

8.
The taiga coniferous forests of the Siberian region are the main carbon sinks in the forest ecosystems. Quantitatively, the size of the carbon accumulation is determined by the photosynthetic productivity, which is strongly influenced by environmental factors. As a result, an assessment of the relationship between environmental factors and photosynthetic productivity makes it possible to calculate and even predict carbon sinks in coniferous forests at the regional level. However, at various stages of the vegetative period, the force of the connection between environmental conditions and the productivity of photosynthesis may change. In this research, correlations between the photosynthetic activity of Scots pine (Pinus sylvestris L.) with the environmental conditions were compared in spring and in autumn. In spring, close positive correlation of the maximum daily net photosynthesis was identified with only one environmental factor. For different years, correlations were for soil temperature (rs = 0.655, p = 0.00315) or available soil water supply (rs = 0.892, p = 0.0068). In autumn within different years, significant correlation was shown with two (temperature of air and soil; rs = 0.789 and 0.896, p = 0.00045 and 0.000006, respectively) and four factors: temperature of air (rs = 0.749, p = 0.00129) and soil (rs = 0.84, p = 0.00000), available soil water supply (rs = 0.846, p = 0.00013) and irradiance (rs = 0.826, p = 0.000001). Photosynthetic activity has a weaker connection with changes in environmental factors in the spring, as compared to autumn. This is explained by the multidirectional influence of environmental conditions on photosynthesis in this period and by the necessity of earlier photosynthesis onset, despite the unfavorable conditions. This data may be useful for predicting the flow of carbon in dependence on environmental factors in this region in spring and in autumn.  相似文献   

9.

Key message

The high flammability of some companion species in Quercus suber forests, estimated in laboratory tests, could potentially generate an increase in fire vulnerability and in fire risk.

Context

Recurrent wildfire is one of the main causes of forest degradation, especially in the Mediterranean region. Increased fire frequency and severity due to global change could reduce the natural resilience of cork oak to wildfire in the future. Hence, it is important to evaluate the flammability of companion species in cork oak forests in the particularly dry bioclimatic conditions of North Africa.

Aims

This study aimed to assess and compare flammability parameters at laboratory scale among ten companion frequent species in cork oak forests.

Methods

Fuel samples were collected in a cork oak (Quercus suber L) forest in the southern part of the mountains of Tlemcen (Western Algeria). A series of flammability tests were carried out using a Mass Loss Calorimeter device (FTT ®). A cluster analysis to classify flammability of the selected species was conducted using the K-means algorithm.

Results

The results revealed differences in the four flammability parameters (ignitability, sustainability, combustibility and consumability), in both fresh and dried fine fuel samples from Quercus suber, Pinus halepensis, Quercus ilex, Quercus faginea, Erica arborea, Arbutus unedo, Pistacia lentiscus, Calicotome spinosa, Juniperus oxycedrus and Tetraclinis articulata. Application of the K-means clustering algorithm showed that C. spinosa, T. articulata, J. oxycedrus and P. halepensis are highly flammable because of their high combustibility and sustainability.

Conclusion

The findings identify species that could potentially increase the vulnerability of cork oak forests to forest fires.
  相似文献   

10.
Nontimber forest products are a source of income for women in rural African communities. However, these products are frequently damaged by insect pests. The present study investigates the diversity and damage rates of insect pests that attack Carapa procera seeds and Lophira lanceolata fruits. The experiment was set up in western Burkina Faso and, for C. carapa, consisted of pests collected from seeds that had fallen to the ground and from stockpiled seeds. For L. lanceolata, pests were collected from fruits on the trees, and on the ground. The collected samples were sent to the laboratory to estimate the proportion of damaged seeds/fruits and rear the insects. The results showed that Ephestia spp., Tribolium castaneum, Oryzeaphilus spp., and Tenebroides mauritanicus were the pests of Carapa procera seeds and Lophira lanceolata fruits. Ephestia spp. was recorded as the main pest of both C. procera and L. lanceolata, whereas T. castaneum was only detected from seeds of L. lanceolata. For C. procera, the stocks were the most infested (29 %) by Ephestia spp. The infestation rate of fruits of L. lanceolata by Ephestia spp. on trees (31.42 ± 3.75 %) was less than the rate of fruits by T. castaneum on the ground (44.00 ± 3.5 %). The different body sizes of Ephestia spp. may indicate the occurrence of two putative species, one from C. procera and another one from L. lanceolata. This work provides important information that could contribute to the setting up of a local-scale sustainable management framework for oil tree pests in Burkina Faso and surrounding countries.  相似文献   

11.
Bioactivity of essential oils (EOs) from Monarda species has never been investigated on phytoparasitic nematodes. In this study, the EOs from two Italian ecotypes of Monarda didyma and M. fistulosa and their main compounds, carvacrol, γ-terpinene, o-cymene, and thymol, were evaluated for their in vitro activity on the infective stages of phytoparasitic nematodes Meloidogyne incognita and Pratylenchus vulnus, as well as on M. incognita egg hatch. Soil treatments with the two EOs were also investigated for their suppressiveness on M. incognita on tomato. Both EOs were strongly active on M. incognita juveniles, as a only 1.0 μL mL?1 LC50 value was evaluated after a 24-h exposure to both EOs, whereas a lower activity was recorded on P. vulnus (15.7 and 12.5 μL mL?1 LC50 values for M. didyma and M. fistulosa EOs, respectively). Among the EOs’ main compounds, carvacrol was highly active also at a short exposure in low concentrations, whereas γ-terpinene and thymol were much less active on both nematode species and o-cymene showed a discrete activity on P. vulnus only at the highest concentration. Hatch percent of M. incognita eggs treated with M. didyma and M. fistulosa EOs was always significantly lower than in water or in Tween 20 and Oxamyl solutions. In the experiment in soil, the multiplication of M. incognita and gall formation on tomato roots was significantly reduced by soil treatments with both EOs. The strong nematicidal activity of both Monarda EOs may suggest them as potential sources of new sustainable nematicidal products.  相似文献   

12.
Tomicus minor Hartig (Col., Curculionidae, Scolytinae), occurring on Pinus sylvestris L., is a species which demonstrates high reproductive capability on weakened stands, accelerating the process of forest death. In protected areas, T. minor is regarded as a sensitive bioindicator that reacts to decline in the health and vitality of forests. Although there have been many publications concerning T. minor, no precise method has yet been given for estimating its population so as to enable the monitoring of forest vitality and assessment of the role played by T. minor in the forest ecosystem. The aim of the present work is to develop a statistical method for estimating populations of T. minor, requiring minimum work and interference with the forest ecosystem and permitting the computation of estimation errors. Research was carried out in the years 1992–2011 in pine stands aged over 80 years, growing in a variety of habitats and situated at varying distances from sawmill timber yards. Attack density of T. minor was measured on trap logs made from uninfested living trees. The population of T. minor on the trap logs was described using a multiple linear regression model with two explanatory variables. Among the features investigated, the T. minor population was found to depend significantly on the number of egg galleries on the fifth metre of the trap log counted from the thinner end (p < 0.001) and on the diameter of the trap log in bark at the thinner end (p < 0.05). The model explains approximately 85% (R 2 = 0.8564) of the variation in the total number of T. minor egg galleries on the trap logs. The numbering of units beginning from the thinner end of the log enabled increased precision in determining the model parameter resulting from the concentration of egg galleries on certain units of the log. In all validated plots, the mean real and model values for the number of T. minor egg galleries on the trap logs are similar (p > 0.5), confirming the high accuracy of the developed model.  相似文献   

13.
Previous studies showed that Chaetomium globosum ND35 fungus fertilizer can improve the microbial community structure and enzyme activities of replanted soil. However, it remains unclear whether can improve the physiological and ecological characteristics of plants under successive rotation. In this study, we investigated the photosynthetic, physiological, and biochemical indexes including photosynthetic parameters, chlorophyll fluorescence, and chlorophyll content of 1-year-old poplar seedlings under seven different doses (range from 0 to 1.67 g kg?1) of C. globosum ND35 fungus fertilizer to study the effects of fungus fertilizer on photosynthesis of Poplar. Our results showed that: (1) With increasing application of fungus fertilizer in replanted soil, chlorophyll content of poplar leaves (Chl) increased, while physiological indexes such as electron transport rate (ETR), net photosynthetic rate (P n), quantum efficiency (Φ), nitrate reductase (NR) activity and root vigor initially increased and then declined. Meanwhile, heat dissipation that depended on the xanthophyll cycle declined and non-photochemical quenching (NPQ) initially increased and then decreased. When the dose of C. globosum ND35 fungus fertilizer was 0.67 g kg?1 (T3) and 1.00 g kg?1 (T4), excess light energy of photosynthetic apparatus was reduced, and photosynthetic apparatus distributed more light energy to the direction of photochemical reactions, which improved the efficiency of energy use. Plant height and biomass of leaves, stems, and roots were maximum at T3. We conclude that applying appropriate amounts of C. globosum ND35 fungus fertilizer can improve root physiological activity and capacity for use of light by poplar leaves. This can improve the operating states of the photosynthetic apparatus and lead to increased photosynthetic efficiency of poplar leaves and accumulation of dry matter. This suggests a strategy to alleviate the successive rotation obstacle of soil nutrient depletion.  相似文献   

14.
Pinus tabulaeformis has been widely planted in order to conserve soil and water and improve the ecological environment in China. This study aimed to unravel how soil aggregates and soil carbon (C) stock stability of a P. tabulaeformis plantation change after 60 years of natural development and was performed in Vitex negundo var. heterophylla and Ziziphus jujuba var. spinosa shrub (shrub), a P. tabulaeformis forest (pine), and a coniferous broadleaf P. tabulaeformis mixed forest (pine-oak). Afforestation increased the stability of soil aggregates in the 0–10 cm soil layer but resulted in a decrease in the 10–20 cm soil layer. However, the presence of deciduous broadleaf species in the pine plantation improved the stability of soil aggregates. The total soil C stock was increased by afforestation, especially in the pine-oak forest, where it reached a significant level. The mineral soil C stock in the shrub stand was higher than that in pine and lower than that in pine-oak forests, but the C fractions had a different change. Afforestation increased the C fraction of macroaggregates in the 0–10 cm soil layer but decreased it in the 10–20 cm soil layer. This result suggested that afforestation could improve soil C stabilization in deeper soil. However, the pine-oak forest had a higher C fraction of macroaggregates than the pine forest in the 10–20 cm soil layer, indicating that soil C stabilization of the P. tabulaeformis plantation decreased when deciduous broadleaf species were present and thus formed the coniferous broadleaf mixed forest.  相似文献   

15.
Picea crassifolia and P. wilsonii, commonly used for afforestation in northern China, are increasingly likely to be subjected to high temperatures and soil drought stress as a result of global warming. However, little is known about the effects of these stresses on foliar photosynthesis in the two species. To investigate how photosynthetic characteristics and sensitivity respond to prolonged high temperatures and soil drought, foliar gas exchange and other closely related parameters were recorded from four-year-old seedlings of both species. Seedlings were grown under two temperature treatments (25/15 and 35/25 °C) and four soil water regimes [80, 60, 40 and 20% of maximum field capacity (FC)] for 4 months. Although all treatments significantly reduced photosynthetic rates (P n) of both species, P. crassifolia exhibited greater photosynthetic acclimation than P. wilsonii. Differences in photosynthetic acclimation were mainly related to variations in stomatal conductance (Cond) and the maximum quantum yield of PSII (F v/F m) between treatments. Indeed, higher Cond and F v/F m in all treatments were shown for P. crassifolia than for P. wilsonii. Moreover, photosynthesis in P. crassifolia exhibited inherently lower temperature sensitivities (broader span for the temperature response curves; lower b) and higher thermostability (invariable b between treatments). Further, severe drought stress (20% FC) limited the survival of P. wilsonii. Our results indicate that P. wilsonii is more susceptible to high temperatures and soil drought stress. Planting P. crassifolia would be more expected to survive these conditions and hence be of greater benefit to forest stability if predicted increases in drought and temperature in northern China occur.  相似文献   

16.
The naturally occurring Verticillium nonalfalfae shows promise for biocontrol of the highly invasive Tree of Heaven (Ailanthus altissima), but might also bear a risk for non-target tree species. In this study, we conducted inoculations on potted seedlings of A. altissima as well as on eight indigenous and two invasive tree species associated with Tree of Heaven in Austria. Although vascular discolourations developed in all inoculated tree species, V. nonalfalfae was reisolated from Ailanthus and eight of the ten non-target-species, whereas typical disease symptoms and mortality only occurred on A. altissima. Results confirmed high susceptibility (S) of A. altissima to V. nonalfalfae but indicated tolerance (T) of Acer campestre, Acer pseudoplatanus and Quercus robur, possible resistance (PR) of Fraxinus excelsior, Populus nigra, Tilia cordata, Ulmus laevis and Ulmus minor and resistance (R) of Fraxinus pennsylvanica and Robinia pseudoacacia to this potential biocontrol agent. Results from seedling inoculations were confirmed by cursory field observations in Ailanthus-inoculated forest stands, where admixed A. campestre, A. pseudoplatanus, F. excelsior, Populus alba, R. pseudoacacia and U. laevis canopy trees remained asymptomatic, while mortality was induced in Ailanthus.  相似文献   

17.
The selection of wood species and the styles of sculpture play key roles in the characterization of Buddhist statues. After Jianzhen, a Chinese Buddhist monk, visited Japan in the mid-eighth century, wood of the genus Torreya had been frequently used to produce single-bole statues. Establishing measures for the accurate identification of wood in the genus Torreya is effective for investigating the drastic change in the production of statues during this period. Analyzing the plastid deoxyribonucleic acid (DNA) fragments extracted from wood is considered helpful in the identification of species in the same genus. This study analyzed the sequences and residual amounts of plastid DNA fragments in the wood of Torreya nucifera. Nucleotide substitutions in the plastid DNA were clearly identified between T. nucifera and the species distributed in China, indicating that the wood of Torreya sp. can be discriminated based on the plastid DNA sequences. DNA polymorphism analyses revealed sequence diversity for the intergenic spacers on the T. nucifera plastid DNA. A series of polymerase chain reaction (PCR) analyses demonstrated that the plastid DNA fragments with a length of approximately 100 bp could be amplified from the residual DNA extracted from the T. nucifera sapwood with longer elapsed years after cutting. Therefore, an identification of wood species in the genus Torreya based on their plastid DNA is considered to be one of the most effective measures taken in the study regarding the historical changes of Buddhist statues.  相似文献   

18.
Halyomorpha halys, the brown marmorated stink bug, is a serious agricultural and horticultural pest native to East Asia, which became an invasive pest in northern temperate parts of other regions in the mid-1990s. Trissolcus japonicus is a dominant egg parasitoid of H. halys in its native range. In this paper, we investigated mating, oviposition and fecundity of both virgin and mated females of H. halys. Virgin H. halys females produced unfertilized eggs, while mated females produced fertilized eggs, but mating states of adult females did not affect the number of eggs produced. We further compared the development and fecundity of T. japonicus on fertilized or unfertilized eggs of various ages. Fertilized eggs were tested continuously for up to 5 days (time to hatch), while unfertilized eggs were tested for up to 11 days (time to egg collapse). The fertilization status of the host egg had a significant effect on the development, emergence success, and sex ratio of T. japonicus progeny. A small increase in development time was observed for T. japonicus in fertilized eggs, fewer T. japonicus emerged from fertilized eggs than unfertilized eggs, and the proportion of female progeny was lower on fertilized eggs. The age of host eggs also significantly affected the development rate and fecundity of T. japonicus, with unfertilized eggs becoming more favorable than fertilized eggs as egg age increased. In summary, unfertilized H. halys eggs were better suited for T. japonicus development and fecundity, indicating their potential use in T. japonicus mass rearing.  相似文献   

19.
The study aimed to test the potential anthelmintic activity of Salix babylonica (SB) extract for the control of gastrointestinal and pulmonary parasites in sheep and goats under field conditions. A representative sample of 20 % of all animals reared in 8 sheep and 7 goat farms was used in the study. Animals from each farm were randomly selected for a total number of 93 sheep and 75 goats. Animals suffered a natural gastrointestinal nematode infection and had never been treated with chemical anthelmintic drugs. The SB extract (20 mL) was orally administered weekly before the morning feeding to each animal for 60 days. Fecal eggs or oocysts were counted at 0, 1, 20, 40, and 60 days after starting the extract administration. Differences (P < 0.01) in the fecal oocyst and egg output of Eimeria, Dictyocaulus, and Moniezia were observed between sheep and goats. In addition, the treatment influenced (P < 0.05) egg outputs of Cooperia, Dictyocaulus, and Trichuris. Fecal egg or oocyst counts of Haemonchus contortus, Eimeria, Cooperia, Chabertia, Dictyocaulus, Moniezia, and Ostertagia were time-dependent (P < 0.05). For sheep, administration of SB decreased (P < 0.05) the fecal eggs count of H. contortus, Cooperia, Chabertia, Dictyocaulus, Moniezia, and Trichuris. After 20 days of treatment, H. contortus, Cooperia, or Moniezia were not detected. For goats, SB reduced (P < 0.05) the fecal egg counts of H. contortus, Cooperia, Chabertia, and Moniezia. Moreover, decreases were observed (P < 0.05) for Chabertia, Trichostrongylus, and Ostertagia. Eggs of H. contortus and Moniezia were not present in the feces after 1 day of administration of the extract. It could be concluded that the weekly administration of SB extract at 20 mL per animal can be used to treat gastrointestinal and lung nematodes of small ruminants in organic and traditional farming systems of tropical regions.  相似文献   

20.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号