首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DGAT1 is a microsomal enzyme that catalyses the final step in triglycerides synthesis. DGAT1‐deficient mice are viable, lean, fertile and resistant to diet induced obesity. We have previously identified a quantitative trait loci (QTL) on chromosome 4 that affects fatty acid composition in an F2 cross between Iberian × Landrace. The human DGAT1 gene is located on chromosome 8q24.3, this region aligns to porcine chromosome 4, making the pig DGAT1 gene a suggestive positional candidate gene for the QTL. In this study, we sequenced 1679 bp of the mRNA from animals of five pig breeds (Iberian, Landrace, Large White, Piétrian and Meishan) to identify genetic variants. One of the polymorphisms found creates a polymorphic HinfI restriction site and it was genotyped by PCR‐RFLP in these five pig breeds. Allele A was not found in the analysed Iberian and Landrace populations, whereas Meishan population presents the highest frequency (35%). The DGAT1 gene was located by radiation hybrid mapping to the porcine chromosome 4, outside the confidence interval for the fatty acid composition QTL and excludes it as a positional candidate gene.  相似文献   

2.
This study was carried out to identify SNP associated with fatness traits on pig chromosome 6. In total, 11,067 putative genomic variations were detected in 125 complete bacterial artificial chromosome sequences corresponding to the region between SW2098 and SW1881, which harbors multiple QTL affecting intramuscular fat content (IMF) and backfat thickness (BFT). Among 173 putative SNP validated by MassArray, 120 SNP were used in an association study on 541 offspring produced by a cross of Korean native pig and Landrace breeds. The significance level of each SNP was determined using single marker regression analysis. Further, significant threshold values were determined using a false discovery rate. Nine out of 120 SNP showed significant effects on BFT or IMF or both. Of the 9 significant SNP, 4 were significantly associated with IMF, 7 were significantly related to BFT, and 2 SNP (Kps8172 and Kps6413) showed significant effects on both traits. Moreover, multiple regression analysis considering all significant SNP was used to correct spurious false positives due to linkage disequilibrium. Consequently, only 1 SNP (Kps6413) was significant for IMF, whereas 4 SNP including Kps6413 showed significant effects on BFT. The significant SNP had generally additive effects and on average explained 1.72% of the genetic variation for IMF and 3.92% for BFT, respectively. These markers can potentially be applied in pig breeding programs for improving IMF and BFT traits after validation in other populations.  相似文献   

3.
Pituitary adenylate cyclase‐activating polypeptide (PACAP) is a neuropeptide with diverse biological actions. Type I PACAP receptors (PACAPR) are specific for PACAP, whereas type II and III PACAPRs are less restricted. To localize and analyse the variation of this gene, a 559‐bp long intronic fragment of the porcine PACAPR gene was amplified by polymerase chain reaction and sequenced in samples from five different pig breeds. One single nucleotide polymorphism was identified and its allele frequency was determined in all five breeds. Linkage analysis in a Berkshire × Yorkshire reference family placed the PACAPR gene on chromosome 18, between SW787 and S0062 (SW787– 8.1 cM –PACAPR– 3.0 cM –S0062). Radiation hybrid mapping confirmed that the PACAPR gene was linked to SW1682 on chromosome 18 (28.8 cR3000; LOD = 10.4).  相似文献   

4.
5.
A highly significant quantitative trait locus (QTL) on pig chromosome 6, affecting intramuscular fat (IMF), has previously been detected by our group and others. Two genes of positional and biological interest, the small heterodimer partner (SHP; NR0B2) and the heart fatty acid binding protein (FABP3; H‐FABP), were investigated for meat quality traits and IMF respectively. SHP was partially sequenced (GenBank: DQ002896 and DQ002897 ) and mapped to the QTL region on porcine chromosome 6, affecting IMF. The map shows no recombination between SHP and FABP3, which was previously mapped to the same QTL region. Twelve single nucleotide polymorphisms were detected in the sequenced region of SHP gene. Haplotype information was used to investigate association between genetic variation and different meat quality traits. SHP haplotype combinations were found to have significant effect on connective tissue. However, further studies are needed to evaluate this possible association more effectively. The FABP3 is involved in fatty acid transport and has been studied as a candidate gene for IMF by several research groups. In our study, FABP3 genotypes were confirmed to be significantly associated with IMF in pigs. The average content of IMF in our population was 1.6%, which may indicate that the FABP3 polymorphism explains as much as 30–35% of the variation in IMF in our pig cross‐population.  相似文献   

6.
A QTL analysis of behavioral and neuroendocrine responses to a "novel environment" stress was conducted in a three-generation experimental cross between Meishan and Large White pig breeds. A total of 186 F2 males and 182 F2 females were studied for their behavioral and neuroendocrine reactivity to a novel environment test at 6 wk of age. Locomotion, vocalization, and defecation rate, as well as exploration time, were measured for 10 min. Blood samples were taken immediately before and after the test to measure plasma levels of ACTH, cortisol, and glucose. Animals were typed for a total of 137 markers covering the entire porcine genome. Analyses were performed using two interval mapping methods: a line-cross regression method, where founder lines were assumed to be fixed for different QTL alleles, and a half-/full-sib maximum likelihood method where allele substitution effects were estimated within each half-/full-sib family. Both methods revealed a highly significant gene effect for poststress cortisol level (P < 0.001) and a significant effect for basal cortisol level (P < 0.05) at the end of the q arm of chromosome 7, explaining, respectively, 20% and 7% of the phenotypic variance. Meishan alleles are associated with higher cortisol levels and are partially dominant (for poststress levels) over Large White alleles. Other significant gene effects on biological measures were detected on chromosomes 1 and 17 (ACTH response to stress), 3, 5, and 8 (glucose levels). The SSC 17 QTL explains 12% of the phenotypic variance of poststress ACTH levels, with a suggestive evidence of imprinting effects. Meishan alleles are associated with lower poststress ACTH levels. Gene effects of low amplitude only were found for behavioral reactivity traits. Considering the effects of stress neuroendocrine systems on energy fluxes and protein deposition, and the importance of stress reactivity for meat quality and animal welfare, these results open new perspectives for pig selection.  相似文献   

7.
A QTL analysis of fat androstenone levels from a three-generation experimental cross between Large White and Meishan pig breeds was carried out. A total of 485 F2 males grouped in 24 full-sib families, their 29 parents and 12 grandparents were typed for 137 markers distributed over the entire porcine genome. The F2 male population was measured for fat androstenone levels at 100, 120, 140, and 160 d of age and at slaughter around 80 kg liveweight. Statistical analyses were performed using two interval mapping methods: a line-cross (LC) regression method, which assumes alternative alleles are fixed in founder lines, and a half- full-sib (HFS) maximum likelihood method, where allele substitution effects were estimated within each half- and full-sib family. Both methods revealed genomewide significant gene effects on chromosomes 3, 7, and 14. The QTL explained, respectively, 7 to 11%, 11 to 15%, and 6 to 8% of phenotypic variance. Three additional significant QTL explaining 4 to 7% of variance were detected on chromosomes 4 and 9 using LC method and on chromosome 6 using HFS method. Suggestive QTL were also obtained on chromosomes 2, 10, 11, 13, and 18. Meishan alleles were associated with higher androstenone levels, except on chromosomes 7, 10, and 13, although 10 and 13 additive effects were near zero. The QTL had essentially additive effects, except on chromosomes 4, 10, and 13. No evidence of linked QTL or imprinting effects on androstenone concentration could be found across the entire porcine genome. The steroid chromosome P450 21-hydroxylase (CYP21) and cytochrome P450 cholesterol side chain cleavage subfamily XIA (CYP11A) loci were investigated as possible candidate genes for the chromosome 7 QTL. No mutation of coding sequence has been found for CYP21. Involvement of a candidate regulatory mutation of CYP11A gene proposed by others can be excluded in our animals.  相似文献   

8.
A QTL analysis of female reproductive data from a 3-generation experimental cross between Meishan and Large White pig breeds is presented. Six F(1) boars and 23 F(1) sows, progeny of 6 Large White boars and 6 Meishan sows, produced 502 F(2) gilts whose reproductive tract was collected after slaughter at 30 d of gestation. Five traits [i.e., the total weight of the reproductive tract, of the empty uterine horns, of the ovaries (WOV), and of the embryos], as well as the length of uterine horns (LUH), were measured and analyzed with and without adjustment for litter size. Animals were genotyped for a total of 137 markers covering the entire porcine genome. Analyses were carried out based on interval mapping methods, using a line-cross regression and a half-full sib maximum likelihood test. A total of 18 genome-wide significant (P < 0.05) QTL were detected on 9 different chromosomes (i.e., SSC 1, 5, 6, 7, 9, 12, 13, 18, and X). Five genome-wide significant QTL were detected for LUH, 4 for weight of the empty uterine horns and WOV, 2 for total weight of the reproductive tract, and 1 for weight of the embryos. Twenty-two additional suggestive QTL were also detected. The largest effects were obtained for LUH and WOV on SSC13 (9.2 and 7.0% of trait phenotypic variance, respectively). Meishan alleles had both positive (e.g., on SSC7) and negative effects (e.g., on SSC13) on the traits investigated. Moreover, the QTL were generally not fixed in founder breeds, and opposite effects were in some cases obtained in different families. Although reproductive tract characteristics had only a moderate correlation with reproductive performances, most of the major QTL detected in this study were previously reported as affecting female reproduction, generally with reduced significance levels. This study thus shows that focusing on traits with high heritability might help to detect loci involved in low heritability major traits for breeding.  相似文献   

9.

In an inbred pig family founded by commercial breeds, nine microsatellite markers from porcine chromosome 4 were screened to find associations with weight gain and fat deposition traits. In this family showing a linear decrease in weight gain with inbreeding, an association (P <0.05) was found between average daily slaughter gain and markers S0214 and S0373 located at approximately 88 and 98 cM in the linkage map constructed in this study. No association (P >0.05) between backfat thickness and marker genotypes could be detected. Furthermore, the genotypes of the markers showed a surprisingly high degree of heterozygosity in all of the inbred generations, even though the theoretical inbreeding coefficients reaching 0.59.  相似文献   

10.
Porcine chromosome 4 harbours many quantitative trait loci (QTL) affecting meat quality, fatness and carcass composition traits, detected in resource pig populations previously. However, prior to selection in commercial breeds, QTL identified in an intercross between divergent breeds require confirmation, so that they can be segregated. Consequently, the objective of this study was to validate several QTL on porcine chromosome 4 responsible for meat and carcass quality traits. The experimental population consisted of 14 crossbred paternal half-sib families. The region of investigation was the q arm of SSC4 flanked by the markers S0073 and S0813. Regression analysis resulted in the validation of three QTL within the interval: Minolta a * loin, back fat thickness and the weight of trimmed ham. The results were additionally confirmed by factor analysis. Candidate genes were proposed for meat colour, which was the most evident QTL validated in this study.  相似文献   

11.
The lamins are components of nuclear lamina and they have a profound influence on nuclear structure and functions. They are encoded by three genes, LMNA, LMNB1 and LMNB2. A genomic fragment of the porcine LMNA gene (822 bp; from exons 7 to 9) was amplified by polymerase chain reaction and comparatively sequenced. Four single nucleotide polymorphisms (SNPs) were identified in intronic sequences: G162A, G208A, T367G and C618T. The SNPs are within the restriction sites for enzymes Bsh1236I, HpaII, AluI and Bsh1236I respectively. Allele frequencies at SNPs G208A, T367G and C618T were determined by using eight pig breeds. Linkage analysis in the Hohenheim Meishan × Piétrain family placed the LMNA gene in the chromosome 4q linkage group, between MEF2D and GBA (MEF2D– 3.0 cM –LMNA– 0.2 cM –GBA). In radiation hybrid mapping LMNA was most significantly linked to SW270 on chromosome 4 (39 cR; LOD = 7.86). The LMNA gene is located in the quantitative trait loci region for some carcass traits on chromosome 4q.  相似文献   

12.
An experimental F2 cross between Iberian and Landrace pig strains was performed to map quantitative trait loci (QTL) for diverse productive traits. Here we report results for meat quality traits from 369 F2 animals with records for pH 24 h postmortem (pH 24 h), muscle color Minolta measurements L* (lightness), a* (redness), and b* (yellowness), H* (hue angle), C* (chroma), intramuscular fat (IMF) and haematin pigment content measured in the longissimus thoracis. Pigs were genotyped for 92 markers covering the 18 porcine autosomes (SSC). Results of the genome scan show evidence for QTL for IMF (SSC6; F = 27.16), pH 24 h (SSC3; F = 7.73), haematin pigments (SSC4 and SSC7; F = 8.68 and 9.47 respectively) and Minolta color measurements L* (SSC4 and SSC7; F =16.42 and 7.17 respectively), and a* (SSC4 and SSC8; F = 8.05 and 7.36 respectively). No QTL were observed for the color measurements b*, H*, and C*. Alternative models fitting epistasis between QTL were also tested, but detected epistatic interactions were not significant at a genome-wise level. In this work we identify genomic regions related with meat quality traits. Improvement by traditional selection methods is complicated, and finer mapping would be required for their application in introgression programs.  相似文献   

13.
Three informative pig F2 families based on European Wild Boar (W), Meishan (M) and Pietrain (P) crosses have been used for genome‐wide linkage and quantitative trait loci (QTL) analysis. Altogether 129 microsatellites, 56 type I loci and 46 trait definitions (specific to growth, fattening, fat deposition, muscling, meat quality, stress resistance and body conformation) were included in the study. In the linkage maps of M × P, W × P and W × M families, average spacing of markers were 18.4, 19.7 and 18.8 cM, the numbers of informative meioses were 582, 534 and 625, and the total lengths of autosomes measured were 27.3, 26.0 and 26.2 Morgan units, respectively. Maternal maps were on average 1.3 times longer than paternal maps. QTLs contributing more than 3% of F2 phenotypic variance could be identified at p < 0.05 chromosome‐wide level. Differences in the numbers and positions of QTLs were observed between families. Genome‐wide significant QTL effects were mapped for growth and fattening traits on eight chromosomes (1, 2, 4, 13, 14, 17, 18 and X), for fat deposition traits on seven chromosomes (1, 2, 3, 4, 6, 7 and X), for muscling traits on 11 chromosomes (1, 2, 3, 4, 6, 7, 8, 12, 14, 15 and X), for meat quality and stress resistance traits on seven chromosomes (2, 3, 6, 13, 16, 18 and X), and QTLs for body‐conformation traits were detected on 14 chromosomes. Closely correlated traits showed similar QTL profiles within families. Major QTL effects for meat quality and stress resistance traits were found on SSC6 in the interval RYR1‐A1BG in the W × P and M × P families, and could be attributed to segregation of the RYR1 allele T derived from Pietrain, whereas no effect in the corresponding SSC6 interval was found in family W × M, where Wild Boar and Meishan both contributed the RYR1 allele C. QTL positions were mostly similar in two of the three families for body conformation traits and for growth, fattening, fat deposition and muscling traits, especially on SSC4 (interval SW1073‐NGFB). QTLs with large effects were also mapped on SSC7 in the major histocompatibility complex (MHC) (interval CYP21A2‐S0102) and affected body length, weight of head and many other traits. The identification of DNA variants in genes causative for the QTLs requires further fine mapping of QTL intervals and a positional cloning. However, for these subsequent steps, the genome‐wide QTL mapping in F2 families represents an essential starting point and is therefore significant for animal breeding.  相似文献   

14.
Twinning in cattle is a complex trait that is associated with economic loss and health issues such as abortion, dystocia, and reduced calf survival. Twinning-rate QTL have been detected previously on BTA5 in the North American Holstein and Norwegian dairy cattle populations and in a USDA herd selected for high twinning rate. In previous work with the North American Holstein population, the strongest evidence for a QTL was obtained from analysis of an extended, multiple-generation family. Using additional animals, an increased density of SNP marker association tests, and a combined linkage and linkage disequilibrium mapping method, we refined the position of this QTL in the North American Holstein population. Two sets of twinning-rate predicted transmitting abilities estimated during 2 different time periods in the North American dairy cattle population were used to provide validation of results. A total of 106 SNP and 3 microsatellites were used to scan the genomic region between 5 and 80 Mb on BTA5. Combined linkage-linkage disequilibrium analysis identified significant evidence for QTL within the 25- to 35-Mb and 64- to 70-Mb regions of BTA5. The IGF-1 gene (IGF1) was examined as a positional candidate gene and an SNP in intron 2 of IGF1 was significantly associated with twinning rate by using both data sets (P = 0.003 and P = 1.05 x 10(-6)). Replication of this association in other cattle populations will be required to examine the extent of linkage disequilibrium with the underlying quantitative trait nucleotide across breeds.  相似文献   

15.
The objective of this work was to analyse the porcine Fatty acid binding protein 2, intestinal ( FABP2 ) gene as a candidate gene for a fatty acid composition quantitative trait loci (QTL) previously described on porcine chromosome 8 in an Iberian by Landrace F2 cross (IBMAP). Re-sequencing of the porcine FABP2 gene in three Iberian and eight Landrace parental animals resulted in the identification of three single-nucleotide polymorphisms, all of them localized in intron 1. The polymorphism FABP2 :g.412T>C, localized in intron 1, and two additional microsatellites were genotyped in the IBMAP population in order to perform an association test of the FABP2 gene and to better define the QTL position previously described. Association analyses of the FABP2 :g.412T>C with the fatty acid composition traits were not significant in simple association and marker-assisted association tests, suggesting that the FABP2 region sequenced is not responsible for the QTL. However, the addition of three new markers to the pedigree allowed us to define the S0144–SW61 marker interval as the most likely QTL position, facilitating the future study of other candidate genes for this QTL.  相似文献   

16.
The purpose of this study was to develop and implement least squares interval-mapping models for joint analysis of breed cross QTL mapping populations and to evaluate the effect of joint analysis on QTL detected for economic traits in data from two breed crosses in pigs. Data on 26 growth, carcass composition, and meat quality traits from F2 crosses between commercially relevant pig breeds were used: a Berkshire x Yorkshire cross at Iowa State University (ISU) and a Berkshire x Duroc cross at the University of Illinois (UOI). All animals were genotyped for a total of 39 (ISU) and 32 (UOI) markers on chromosomes 2, 6, 13, and 18. Marker linkage maps derived from the individual and joint data were similar with regard to order and relative position, but some differences in absolute distances existed. Maps from the joint data were used in all analyses. The individual and joint data sets were analyzed using several least squares interval-mapping models: line-cross (LC) models with Mendelian and parent-of-origin effects; halfsib models (HS); and combined models (CB) that included LC and HS effects. Lack-of-fit tests between the models were used to characterize QTL for mode of expression and to identify segregation of QTL within parental breeds. A total of 26 (8), 47 (18), and 53 (16) QTL were detected at the 5% chromosome (genome)-wise level in the ISU, UOI, and joint data for the 26 analyzed traits. Of the 53 QTL detected in the joint data, only six were detected in both populations and for many, allele effects differed between the two crosses. Despite the lack of overlap between the two populations, joint analysis resulted in an increase in significance for many QTL, including detection of ten QTL that did not reach significance in either population. Confidence intervals for position also were smaller for several QTL. In contrast, 24 QTL, most of which were detected at chromosome-wise levels in the ISU or UOI population, were not detected in the joint data. Presence of paternally expressed QTL near the IGF2 region of SSC2 was confirmed, with major effects on backfat and loin muscle area, particularly in the UOI population, as well as one or more QTL for carcass composition in the distal arm of Chromosome 6. Results of this study suggest that joint analysis using a range of QTL models increases the power of QTL mapping and QTL characterization, which helps to identify genes for subsequent marker-assisted selection.  相似文献   

17.
The porcine major insulin sensitive glucose transport gene (known by SLC2A4 and GLUT4 ) was mapped, by physical and linkage methods, to chromosome 12 in the PiGMaP population. Furthermore, the role of the porcine SLC2A4 was investigated in about 1700 animals from different pig breeds and crosses from the USA and Norway. Ten traits for meat quality and carcass composition were recorded for the U.S. population, while 44 traits for meat quality traits were recorded for the Norwegian population. For the analyses of associations between SLC2A4 gene variants and quantitative traits, one restriction fragment length polymorphism (RFLP) was examined. Relatively weak and inconsistent associations were found in some of the lines investigated between SLC2A4 genotypes and the meat quality traits drip loss, colour, loin marbling and loin depth (p < 0.05). Due to the inconsistencies in the results we conclude that it is likely that the SLC2A4 polymorphism investigated is not associated with meat quality traits in the lines studied.  相似文献   

18.
19.
为确定猪脱碘酶3(DIO3)基因能否作为某些生产性状的候选基因,本研究设计猪DIO3基因特异引物,采用辐射杂种细胞系,将其定位在猪7号染色体微卫星SW764附近。通过比较猪QTL数据库,发现该座位存在7个分别影响猪肌纤维直径、内脂率、胴体长、胴体质量、皮质醇水平调控的QTL,结果表明DIO3基因可作为猪肉质性状、胴体性状和应激相关性状的候选基因。  相似文献   

20.
In commercial livestock populations, QTL detection methods often use existing half-sib family structures and ignore additional relationships within and between families. We reanalyzed the data from a large QTL confirmation experiment with 10 pig lines and 10 chromosome regions using identity-by-descent (IBD) scores and variance component analyses. The IBD scores were obtained using a Monte Carlo Markov Chain method, as implemented in the LOKI software, and were used to model a putative QTL in a mixed animal model. The analyses revealed 61 QTL at a nominal 5% level (out of 650 tests). Twenty-seven QTL mapped to areas where QTL have been reported, and eight of these exceeded the threshold to claim confirmed linkage (P < 0.01). Forty-two of the putative QTL were detected previously using half-sib analyses, whereas 46 QTL previously identified by half-sib analyses could not be confirmed using the variance component approach. Some of the differences could be traced back to the underlying assumptions between the two methods. Using a deterministic approach to estimate IBD scores on a subset of the data gave very similar results to LOKI. We have demonstrated the feasibility of applying variance component QTL analysis to a large amount of data, equivalent to a genome scan. In many situations, the deterministic IBD approach offers a fast alternative to LOKI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号