首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsurface drip system is the latest method of irrigation. The design of subsurface drip system involves consideration of structure and texture of soil, and crop’s root development pattern. A 3-year experiment was conducted on onion (Allium Cepa L., cv. Creole Red) in a sandy loam soil from October to May in 2002–2003, 2003–2004 and 2004–2005 to study the effect of depth of placement of drip lateral and different levels of irrigation on yield. Tests for uniformity of water application through the system were carried out in December of each year. Three different irrigation levels of 60, 80 and 100% of the crop evapotranspiration and six placement depths of the drip laterals (surface (0), 5, 10, 15, 20 and 30 cm) were maintained in the study. Onion yield was significantly affected by the placement depth of the drip lateral. Maximum yield (25.7 t ha−1) was obtained by applying the 60.7 cm of irrigation water and by placing the drip lateral at 10 cm soil depth. Maximum irrigation water use efficiency (IWUE) (0.55 t ha−1 cm−1) was obtained by placing the drip lateral at 10 cm depth. The greater vertical movement of water in the sandy-loam soil took place because of the predominant role of gravity rather than that of the capillary forces. Therefore, placement of drip lateral at shallow depths is recommended in onion crop to get higher yield.  相似文献   

2.
In 2005 and 2006, a study was conducted to determine the effect of subsurface and surface drip irrigation systems and to determine optimum irrigation water using six different irrigation levels imposed on muskmelon (Cucumis Melo L. cv. Ananas F1) under semi-arid climatic conditions. Irrigation treatments received 0, 25, 50, 75, 100, and 125% of class A pan evaporation rates. In 2005, average yield from subsurface and surface drip irrigation systems ranged from 16.2 (I 0) to 31.1 (I 75) t ha−1 and from 16.2 (I 0) to 43.8 (I 75) t ha−1, respectively. While in 2006, fruit yields for the same systems ranged from 8.2 (I 0) to 40.4 (I 75) t ha−1 and from 8.2 (I 0) to 38.9 (I 100) t ha−1. Regression analysis of the yield data indicated no significant (P > 0.05) difference between years and irrigation systems. The highest muskmelon yields from subsurface and surface drip irrigation systems were obtained at 83 and 92% of class A pan. Bigger fruits were obtained with optimum irrigation amounts for both of the irrigation systems. However, there was no clear indication of irrigation water amounts on total soluble solid and flesh thickness of muskmelon fruits.  相似文献   

3.
Water consumption of table grapevines (Vitis vinifera cv. Superior Seedless) trained to a large open-canopy gable system was measured during six growing seasons (1999, 2001–2005) using 12 drainage lysimeters. The lysimeters (1.3 m3 each) were installed as part of a one-hectare vineyard in a semi-arid region in southern Israel. Water consumption of the lysimeter-grown vines (ETc) was used as the basis for the calculation of irrigation applications in the vineyard. Three irrigation treatments, 80% (high), 60% (medium) and 40% (low) of ETc of the lysimeter-grown vines, were applied in the vineyard. Reference evapotranspiration (ETo) was calculated from regional meteorological data according to the Penman–Monteith equation. Seasonal curves for the crop coefficient (K c) were calculated as K c = ETc/ETo. Maximum ETc values in different seasons ranged from 7.26 to 8.59 mm day−1 and seasonal ETc (from DOY 91 through DOY 304) ranged from 1,087 to 1,348 mm over the six growing seasons. Leaf area index (LAI) was measured monthly using the SunScan Canopy Analysis System. Maximum LAI ranged from 4.2 to 6.2 m2 m−2 for the 2002–2005 seasons. A second-order polynomial curve relating K c to LAI (R2 = 0.907, P < 0.0001) is proposed as the basis for efficient irrigation management. The effects of the irrigation treatments on canopy growth and yield are presented. The high ETc and K c values that were observed are explained by the wide canopy layout that characterize the large open-gable trellis system.  相似文献   

4.
The continuous flow furrow irrigation (COFFI), surge flow furrow irrigation (SUFFI), cutback flow furrow irrigation (CUFFI), variable alternate flow furrow irrigation (VAFFI), and tail water reuse system furrow (TWRSF) techniques with the same inflow rate of 0.072 m3 min−1 were compared in relation to the cotton yield and water use efficiency at a 3-year field study conducted on cotton (Gossypium spp.) in the Southeastern Anatolia Project (GAP) area of Turkey. Yields revealed significant statistical differences between the furrow management techniques (P < 0.05). The maximum yield was obtained from the COFFI treatment (2,630 and 2,920 kg ha−1) in the first 2 years, and from SUFFI and CUFFI treatments (3,690 and 3,780 kg ha−1, respectively) in the last year. There were significant yield reductions, which varied from 10 to 35% in TWRSF and from 11 to 19% in VAFFI treatments although 43 and 28% more water was applied to the TWRSF than to CUFFI and SUFFI treatments, respectively. The average total water use efficiencies (WUEET) varied from 4.14 (VAFFI) to 2.59 (COFFI). The corresponding values were 0.37 and 0.36 kg ha−1 m−3 for CUFFI and SUFFI, respectively. The average irrigation water use efficiency (WUEIR) for CUFFI and SUFFI treatments were 0.30 and 0.23 kg ha−1 m−3, respectively.  相似文献   

5.
Two crop coefficient equations were derived as a function of fraction of thermal units from lysimeter measured corn evapotranspiration (ETc-lys) during 1997 and 1998, and reference evapotranspiration obtained from: (a) lysimeter measurements (Kcmes) or FAO Penman-Monteith (ETo-PM) estimates (Kcest-PM). For validation, corn evapotranspiration (ETc-est) was estimated in 2005 and 2006 from ETo-PM and: (a) the equation for Kcmes with (ETc-est-lyslc) or without (ETc-est-lys) locally calibrated ETo-PM; (b) the equation for Kcest-PM; and (c) the FAO approach (ETc-est-FAO). The ETc-est_lys estimates showed the lowest bias (0.09 mm day−1); the ETc-est-PM and ETc-est-FAO, the highest (0.50-0.51 mm day−1). However, the root mean square error (RMSE, 1.23–1.27 mm day−1) and the index of agreement (IA, around 0.94) of the ETc-est-lys, ETc-est-lyslc and ETc-est-PM were similar. Therefore, ETc-est-lys is recommended although the ETc-est-lyslc was similarly accurate. The ETc-est-PM is less recommended due to poorer bias and systematic mean square error, and a general underestimation except for low corn ET values. For real time irrigation scheduling, the ETc-est-FAO should be avoided as RMSE (1.35 mm day−1), IA (0.93) and bias were slightly worse, corn ET was overestimated but for high values, and the length of the four phenological stages must be known in advance.  相似文献   

6.
Performance of tomato when irrigated with sodic waters particularly under drip irrigation is not well known. A field experiment was conducted for 3 years to study the response of tomato crop to sodic water irrigation on a sandy loam soil. Irrigation waters having 0, 5 and 10 mmolc L−1 residual sodium carbonate (RSC) were applied through drip and furrow irrigation to two tomato cultivars, Edkawi (a salt tolerant cultivar) and Punjab Chhuhara (PC). High RSC of irrigation water significantly increased soil pH, ECe and exchangeable sodium percentage progressively; the increases were higher in furrow compared to drip irrigation. Effect of high RSC on increasing bulk density and decreasing infiltration rate of soil was also pronounced in furrow-irrigated plots. Higher soil moisture and lower salinity near the plant was maintained under drip irrigation than under furrow irrigation. Performance of the two cultivars was significantly different; pooled over 2002–03 and 2003–04 seasons, PC yielded 38.8 and 30.0 Mg ha−1 and Edkawi yielded 31.8 and 22.9 Mg ha−1 under drip and furrow irrigation, respectively. At RSC10, cultivar PC produced 38 and 46% higher fruit yield than cultivar Edkawi under drip and furrow irrigation, respectively. Reduction in fruit yield at higher RSC was due to lower fruit weight under drip irrigation and due to reduced fruit number as well as fruit weight under furrow irrigation. Decrease in fruit weight was more pronounced in cultivar Edkawi than in cultivar PC. Increase in RSC lowered quality of the fruits except the ascorbic acid content. High RSC under drip irrigation, in general, had lesser deteriorating effect on the fruit quality particularly for cultivar PC than under furrow irrigation. For obtaining high tomato yield and better-quality fruits using high RSC sodic waters, drip irrigation should be preferred over furrow irrigation. Better performance of local cultivar PC compared to Edkawi at medium and high RSC suggests that cultivars categorized as tolerant to salinity should be evaluated in the sodic environment particularly when irrigated with high RSC sodic waters.  相似文献   

7.
The increasing demand for irrigation water to secure food for growing populations with limited water supply suggests re-thinking the use of non-conventional water resources. The latter includes saline drainage water, brackish groundwater and treated waste water. The effects of using saline drainage water (electrical conductivity of 4.2–4.8 dS m−1) to irrigate field-grown tomato (Lycopersicon esculentum Mill cv Floradade) using drip and furrow irrigation systems were evaluated, together with the distribution of soil moisture and salt. The saline water was either diluted to different salinity levels using fresh water (blended) or used cyclically with fresh water. The results of two seasons of study (2001 and 2002) showed that increasing salinity resulted in decreased leaf area index, plant dry weight, fruit total yield and individual fruit weight. In all cases, the growth parameters and yield as well as the water use efficiency were greater for drip irrigated tomato plants than furrow-irrigated plants. However, furrow irrigation produced higher individual fruit weight. The electrical conductivity of the soil solution (extracted 48 h after irrigation) showed greater fluctuations when cyclic water management was used compared to those plots irrigated with blended water. In both drip and furrow irrigation, measurements of soil moisture one day after irrigation, showed that soil moisture was higher at the top 20 cm layer and at the location of the irrigation water source; soil moisture was at a minimum in the root zone (20–40 cm layer), but showed a gradual increase at 40–60 and 60–90 cm and was stable at 90–120 cm depth. Soil water content decreased gradually as the distance from the irrigation water source increased. In addition, a few days after irrigation, the soil moisture content decreased, but the deficit was most pronounced in the surface layer. Soil salinity at the irrigation source was lower at a depth of 15 cm (surface layer) than that at 30 and 60 cm, and was minimal in deeper layers (i.e. 90 cm). Salinity increased as the distance from the irrigation source increased particularly in the surface layer. The results indicated that the salinity followed the water front. We concluded that the careful and efficient management of irrigation with saline water can leave the groundwater salinity levels unaffected and recommended the use of drip irrigation as the fruit yield per unit of water used was on average one-third higher than when using furrow irrigation.  相似文献   

8.
Summary Citrus is considered to be specifically sensitive to chloride and sodium, yet little data exist to show the effect of these ions on yield. An experiment was started in 1978 to study the effect of sodic irrigation water on yield. The treatments were SAR of the irrigation water of 2.8-(L), 5.5-(M), and 10.3-(H) (mol/m3)1/2 . The experiment follows a study on the same plots using irrigation water of variable chloride concentration and a uniform SAR of 4.2 (mol/m3)1/2.The high SAR, high Cl water resulted in a yield reduction of 9% from the control treatment. This reduction was similar to the reduction observed when only Cl was a variable. Total water uptake was reduced as salt concentration in the soil increased. The average water uptake for the four irrigation seasons 1978 to 1981 was 1025 mm, 953 mm and 823 mm for the L, M and H treatments, respectively.Soil ESP was increased as a result of sodium accumulation in the soil profile in the M and H treatments, while Cl and EC remained relatively constant with time during the experiment. After four years of irrigation the infiltration capacity values were 0.26, 0.17 and 0.16 cm/h for the L, M and H treatments, respectively. Fruit quality was not affected by the treatments.No specific toxicity symptoms were observed when the Na concentration in the soil saturation extract was 16 mol/m3 and the ESP was 8.0. The results lead to the conclusion that within the range used in this experiment the high ESP did not specifically effect yield and that yield response was due to the total salt concentration in the soil.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 626-E, 1982 series  相似文献   

9.
This paper evaluates the performance of the first drip irrigation scheme in commercial tea production in Tanzania with a view to making recommendations for improved management and providing data for investment decisions. Uniformity, efficiency and adequacy of irrigation were calculated and the scheduling of irrigation water was reviewed. Operators were interviewed to highlight the main benefits and problems of the system. Investment and recurrent costs of drip and overhead sprinkler systems were quantified and compared. Root development was assessed qualitatively using excavation pits. Irrigation uniformity DU and efficiency ranged between 88 and 95% in the 10 out of 14 irrigation blocks where endline pressures were at least 0.5 bars, and between 77 and 89% in the four blocks were endline pressure was less than 0.5 bars. Scheduling drip irrigation using tensiometers offered potential water savings of 26% in comparison to a water balance schedule, but these are not currently realised. Gross marginal income was very sensitive to tea price and yield. Economically optimal fertilizer rates vary in dependence of tea price and yield and appear to be lower than the current level of 300 kg N ha−1. The higher costs under drip, compared to overhead sprinklers, were mainly for purchase and installation and fertilizer. The costs of labour for applying water and fertilizer were reduced by nearly 50%. At average 2002 tea prices of 1.31 US$ kg−1, drip irrigation would improve the grower’s gross margin if an additional yield of at least 411 kg ha−1 was achieved. The main threats to drip system performance are discussed. Future research efforts should aim at establishing the yield response of tea to water and fertilizer under drip irrigation.  相似文献   

10.
The response of sunflower (Helianthus annuus L.) to 14 irrigation treatments in a sub-humid environment (Bursa, Turkey) was studied in the field for two seasons. A rainfed (non-irrigated) treatment as the control and 13 irrigation treatments with full and 12 different deficit irrigations were applied to the hybrid Sanbro (Novartis Seed Company) planted on clay soil, at three critical development stages: heading (H), flowering (F) and milk ripening (M). The yield increased with irrigation water amount, and the highest seed yield (3.95 t ha−1) and oil yield (1.78 t ha−1) were obtained from the HFM treatment (full irrigation at three stages); 82.9 and 85.4% increases, respectively, compared to the control. Evapotranspiration (ET) increased with increased amounts of irrigation water supplied. The highest seasonal ET (average of 652 mm) was estimated at the HFM treatment. Additionally, yield response factor (k y) was separately calculated for each, two and total growth stages, and k y was found to be 0.8382, 0.9159 (the highest value) and 0.7708 (the lowest value) for the total growing season, heading, and flowering-milk ripening combination stages, respectively. It is concluded that HFM irrigation is the best choice for maximum yield under the local conditions, but these irrigation schemes must be re-considered in areas where water resources are more limited. In the case of more restricted irrigation, the limitation of irrigation water at the flowering period should be avoided; as the highest water use efficiency (WUE) (7.80 kg ha−1 mm−1) and irrigation water use efficiency (IWUE) (10.19 kg ha−1 mm−1) were obtained from the F treatment.  相似文献   

11.
A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water use.  相似文献   

12.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

13.
Camelina sativa (L.) Crantz is an oilseed crop touted as being suitable for production in the arid southwestern USA. However, because any significant development of the crop has been limited to cooler, rain-fed climate-areas, information and guidance for managing irrigated-camelina are lacking. This study measured the crop water use of a November-through-April camelina crop in Arizona using frequent measurements of soil water contents. The crop was grown under surface irrigation using five treatment levels of soil water depletion. The seed yields of treatments averaged 1,142 kg ha−1 (8.0% seed moisture) and were generally comparable with camelina yields reported in other parts of the USA. Varying total irrigation water amounts to treatments (295–330 mm) did not significantly affect yield, whereas total crop evapotranspiration (ETc) was increased for the most frequently irrigated treatment. However, total ETc for the camelina treatments (332–371 mm) was markedly less than that typically needed by grain and vegetable crops (600–655 mm), which are commonly grown during the same timeframe in Arizona. The camelina water-use data were used to develop crop coefficients based on days past planting, growing degree days, and canopy spectral reflectance. The crop coefficient curves, along with information presented on camelina soil water depletion and root zone water extraction characteristics will provide camelina growers in arid regions with practical tools for managing irrigations.  相似文献   

14.
The cost and scarcity of water is placing increasing pressure on Australian dairy farmers to utilise water for forage production as efficiently as possible. This study aimed to identify perennial forage species with greater water-use efficiency (WUE) than the current dominant species, perennial ryegrass (Lolium perenne L.). Fifteen perennial forage species were investigated under optimum irrigation and two deficit irrigation treatments, over three years at Camden, NSW, on a brown Dermsol in a warm temperate climate. Under optimal irrigation, there was a nearly twofold difference in mean WUEt (total yield/evapotranspiration) between forages, with kikuyu (Pennisetum clandestinum Hochst. ex. chiov.) having the highest (27.3 kg ha−1 mm−1) and birdsfoot trefoil (Lotus corniculatus L.) the lowest (14.8 kg ha−1 mm−1). Kikuyu was also the most water use efficient forage under the extreme deficit irrigation treatment, although its mean WUEt declined by 15% to 23.2 kg ha−1 mm−1, while white clover (Trifolium repens L.) in the same treatment had the largest decline of 44% and the lowest WUEt of only 8.8 kg ha−1 mm−1. In order to maximise WUE for any forage, it is necessary to maximise yield, as there is a strong positive relationship between yield and WUEt.  相似文献   

15.
Summary In order to study the drought sensitivity of pea (Pisum sativum L. cv. Bodil) during different growth phases, a field experiment was conducted in 1985 and 1986 on coarse textured sandy soil with low water-holding capacity. Drought occurred naturally or was imposed by shelters during the vegetative, the flowering and the pod filling growth phase, respectively. Drought sensitivities were assessed as the ratio between relative yield decrease (1 – Ya/Ym) and relative evapotranspiration deficit (1 – ETa/ETm) of the individual growth phases, where Ya and ETa are the actual yield and evapotranspiration, respectively, of a drought stressed plot and Ym and ETm are the maximum yield and evapotranspiration of the fully irrigated treatment. Root growth was followed by measuring root density (L v ) in 10 cm soil layers to a depth of 50 cm. The leaf osmotic potential at full hydration ( s 100 ) was measured in the last fully developed leaf during the growing season.The available water capacity was estimated to be 42–50 mm on the basis of a plot of ETa/ETm versus soil water deficit measured by the neutron moderation method or direct measurement of the root depth. The root zone with L v >0.1 cm–2 only reached a depth of 35 cm at the end of the flowering phase and a depth of 45–50 cm at maturity. Root growth continued during the drought periods. The drought sensitivity of pea was high during the flowering phase, especially in 1986 when water stress developed rapidly, and considerably lower during the pod filling phase. The yield reduction caused by drought in the flowering phase was mainly the result of a lower number of pods per stalk. Severe drought did not occur during the vegetative phase. The leaf osmotic potential ( s 100 ) declined from c. -0.75 MPa to c. -1.30 MPa during the growing season. Osmotic adjustment was largest during drought in the early growth phases; in 1985 s 100 decreased 0.5 MPa under relatively slow drought development during the flowering phase while in 1986, when drought stress developed rapidly, s 100 only decreased 0.2 MPa. Osmotic adjustment may have caused the lower drought sensitivity in 1985 than in 1986 and mediated the continued root growth during drought.  相似文献   

16.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

17.
The response of three durum wheat cultivars (C: Chen’s, V: Vitron, W: Waha) to irrigation was studied during 4 years in semi-arid Algeria (Chlef). The four treatments were NI (unirrigated), EI (early irrigation, up to heading), LI (late irrigation, from heading) and FI (full irrigation, over the entire season). FI increased rainfed grain yield (1,300 kg ha−1) by 270%, EI by 107%, and LI by 67%. The variety × irrigation interaction was significant each year. Under irrigation, cv. Vitron was generally the most productive cultivar while in rainfed conditions cv. Waha always resulted in the highest grain yield. Grain yield increased exponentially with seasonal evapotranspiration (r 2 = 0.741) and harvest index (r 2 = 0.873). Water use efficiency for grain ranged from 4.6–5.3 kg ha−1 mm−1 (NI) to 9.6–10.8 kg ha−1 mm−1 (FI) as a function of cultivar and irrigation, cv. Vitron and cv. Waha (full irrigation) and cv. Waha (rainfed) being the most efficient cultivars. According to the evaporation pan method, the seasonal crop coefficient (K c) values for the three cultivars were 0.64 (V), 0.62 (W) and 0.54 (C). The corresponding peak K c values were 1.0, 0.97 and 0.89, respectively. K c was closely related to leaf area index (LAI) and specific logarithmic relationships were calculated for each cultivar. Irrigation scheduling should be adapted to the type of cultivar in relation to its potential yield and LAI development pattern.  相似文献   

18.
We describe the three dimensional variation in root length density (Lv) within a quarter of the planting area of Colombard grapevines on Ramsey rootstock grown under drip and full-cover microjet irrigation. Under drip irrigation roots were concentrated under the vine row, whereas under microjet irrigation roots were evenly spread across the planting area. The maximum Lv were 1.2 and 0.6 cm/cm3 and the estimated total root lengths per vine were 32 and 26 km for drip and microjet irrigated vines, respectively. Under drip irrigation, 56% of the variation in Lv could be accounted for as a function of depth and radial distance into the row, and under microjet, 45% of the variation in Lv could be accounted for as a function of depth. Twenty five per cent of the vine roots were in soil with an air filled porosity at field capacity of 6% or less. Based on the variation of root length per unit area (La) across a quarter of the planting area and between vines, we concluded that selection of a location at which the La would be representative of that in the entire irrigation unit is feasible in microjet irrigated vines but not in those irrigated with drip. The absence of a location representative of La confounds the scheduling of drip irrigation based solely on measurements of soil moisture.  相似文献   

19.
Two-year field experiments were conducted to investigate the effect of alternate partial root-zone drip irrigation on fruit yield, fruit quality and water use efficiency of table grape (Vitis vinifera L. cv Rizamat) in the arid region of northwest China. Three irrigation treatments were included, i.e. CDI (conventional drip irrigation, both sides of the root-zone irrigated), ADI (alternate drip irrigation, both sides of the root-zone irrigated alternatively with half the water) and FDI (fixed drip irrigation, only one side of the root system irrigated with half the water). Results indicated that compared to CDI, ADI kept the same photosynthetic rate (Pn) but reduced transpiration rate, thus increased leaf water use efficiency (WUE) of table grape. And diurnal variation of leaf water potential showed no significant differences during 7.00 a.m. to 14.00 p.m. in both years. ADI also produced similar yield and improved WUEET by 26.7–46.4% and increased the percentage of edible grape by 3.88–5.78%, vitamin C content in the fruit by 15.3–42.2% and ratio of total soluble solid concentration/titrated acid in both years as compared to CDI. Thus ADI saved irrigation water, improved the water use efficiency and fruit quality of table grape without detrimental effect on the fruit yield in arid region.  相似文献   

20.
A 3-year study was carried out to assess the root biomass production, crop growth rate, yield attributes, canopy temperature and water-yield relationships in Indian mustard grown under combinations of irrigation and nutrient application for revealing the dynamic relationship of crop yield (Y) and seasonal evapotranspiration (ET). Three post-sowing irrigation treatments viz. no irrigation (I 1), one irrigation at flowering (I 2) and two irrigations one each at rosette and flowering stage (I 3), three nutrient treatments viz. no fertilizer or manure (F 1), 100% recommended NPK i.e., 60 kg N, 13.1 kg P and 16.6 kg K ha−1 (F 2) and 100% recommended NPK plus farmyard manure @ 10 Mg ha−1 (F 3) were tested in a split-plot design. Root biomass was significantly greater in I 3 than I 2 and I 1, and in F 3 than F 2 and F 1. The I 3 × F 3, I 2 × F 3 and I 3 × F 2 combinations maintained significantly greater crop growth rate, plant height, yield components, ET and crop yield and better plant water status in terms of canopy temperature, canopy-air temperature difference (CATD) and relative leaf water content (RLWC). Number of siliqua plant−1 and seeds siliqua−1 were the major contributors to the seed yield. Marginal analysis of water production function was used to establish Y–ET relationship. The elasticity of water production (E wp) provides a means to assess relative changes in Y and ET, and gives an indication of improvement of Y due to nutrient application. The ET–Y relationships were linear with marginal water use efficiency (WUEm) of 3.09, 4.23 and 3.95 kg ha−1 mm−1 in F 1, F 2 and F 3, respectively, and the corresponding E wp were 0.63, 0.71 and 0.61. This implies that the scope for improving yield and WUE with 100% NPK was little compared with 100% NPK + farmyard manure. The crop yield was highest in I 3 × F 3 combination, and the similar yield was obtained in I 2 × F 3 and I 3 × F 2 combinations. Application of organic manure along with 100% NPK fertilizers maintained greater crop growth rate, better water relation in plants, yield attributes and saved one post-sowing irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号