首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 191 毫秒
1.
抗草甘膦大豆的安全性一直备受关注,对转G10-EPSPS基因抗草甘膦大豆SHZD32-01进行荒地生存竞争能力试验,以检验其是否具有杂草化风险。以转G10-EPSPS基因抗草甘膦大豆SHZD32-01、受体大豆中豆32、主栽品种皖豆28为材料,在上海交通大学农业与生物学院的转基因试验基地,采用地表撒播和常规方式播种,在2017年4月至7月分4次播种,每个处理重复4次,调查不同播种条件下大豆和杂草的生长情况,并对大豆及杂草群落的生长进行分析。结果发现,在地表撒播情况下,SHZD32-01与中豆32、皖豆28的存活率、株高、覆盖度和种植区域内杂草覆盖度基本无显著差异。在常规播种情况下,3种大豆种植区域内杂草发生情况无显著差异;4、5月播种的转基因大豆存活率弱于中豆32和皖豆28,且与中豆32差异显著;6月播种的3种大豆存活率均低于5%。在2种播种条件下,4月播种的转基因大豆繁育系数显著大于中豆32,5—7月播种的大豆繁育系数,三者之间差异不显著。综合分析上述指标,转基因大豆荒地生存竞争能力略弱于中豆32和皖豆28。同时所有试验小区8月杂草覆盖度均达到100%,转基因大豆SHZD32-01的荒地生存能力明显弱于杂草。在2种播种条件下,转基因大豆SHZD32-01与受体大豆、主栽品种以及杂草相比均没有竞争优势,没有转化为杂草的风险。  相似文献   

2.
为了快速检测转 Cp4 epsps 基因大豆, 本研究以纯化后的CP4-EPSPS单克隆抗体1D12为捕获抗体, 辣根过氧化物酶标记的羊抗CP4-EPSPS多克隆抗体8092为检测抗体, 通过优化抗体工作浓度和抗原抗体反应时间, 成功建立转 Cp4 epsps 基因大豆快速双抗夹心ELISA检测方法?结果显示:最佳检测条件为捕获抗体浓度10 μg/mL, 检测抗体浓度1.25 μg/mL, 样品与检测抗体先后加入酶标板37℃共同孵育60 min?该方法的检测范围为0.312 5~80 μg/mL, 待检叶片?籽粒最佳检测范围为10~80倍稀释; 板内变异系数为1.64%~5.42%, 板间变异系数为3.05%~9.13%, 符合ELISA定性试剂盒参考标准; 对100份大豆叶片?20份大豆籽粒进行检测, 与Western blot结果和标准结果进行比较, 符合率为100%, 表明该检测方法具有良好的准确性和重复性?该检测方法75 min内即可完成检测, 适用于快速检测转 Cp4 epsps 基因大豆, 为转 Cp4 epsps 基因快速检测试剂盒的开发奠定了基础?  相似文献   

3.
转基因大豆新品种在商业化之前必须进行环境安全评价,其中,转基因大豆对田间生物多样性的影响是环境安全评价的重要组成部分。本研究以转G2-EPSPS和GAT双价基因的抗草甘膦大豆‘ZH10-6’及其受体大豆‘中黄10’为材料,于2019年在北京顺义地区进行了大田试验,调查了不同处理对节肢动物多样性、主要病害发生、根瘤菌及杂草多样性的影响。结果表明:与非转基因大豆‘中黄10’相比,转基因大豆‘ZH10-6’不同处理田间节肢动物物种丰富度、Shannon-Wiener多样性指数、Simpson优势集中性指数、Pielou均匀性指数无显著差异;大豆霜霉病与病毒病的发病率和病情指数无显著差异;根瘤数差异不显著,大豆田杂草多样性无显著差异。研究结果为抗草甘膦转基因大豆‘ZH10-6’的环境安全性评价提供了依据。  相似文献   

4.
多重PCR检测转基因菜籽粕中的转基因成分   总被引:7,自引:0,他引:7  
以油菜内源基因PEP、抗除草剂基因(BAR、PAT)、筛选基因NPTII、常见启动子(CaMV35S、FMV35S)和终止子NOS为检测对象,通过研究不同引物终浓度的配比以及退火温度对转基因菜籽粕多重PCR检测的影响,建立了菜籽粕转基因成分7重PCR检测体系。结果表明,本研究所建立的检测体系能有效检测出菜籽粕以及其他作物(大豆、玉米、大米、棉花籽)中的转基因成分,检测过程简便、准确,值得推广应用。  相似文献   

5.
针对抗草甘膦转基因大豆的外源基因Cp4-epsps,建立了一种基于环介导等温扩增(loop-mediated isothermal amplification,LAMP)技术的抗草甘膦转基因大豆的检测体系,其扩增产物既可利用常规琼脂糖凝胶电泳检测,还可通过SYBR Green I染色进行快速检测。LAMP检测体系中dNTPs浓度为0.8 mmol/L、Mg2+浓度为3mmol/L、反应时间为45min时扩增效果最佳,其检测灵敏度为5μg/L,比常规PCR灵敏100倍。田间实际检测结果表明,LAMP检测结果和PCR检测结果完全一致,准确率为100%。本研究所建立的抗草甘膦转基因大豆LAMP检测方法具有简便快速、特异性强、灵敏度高等特征,是一种能够用于抗草甘膦转基因大豆检测、田间基因漂移监测和环境安全研究的有力工具。  相似文献   

6.
为获得兼抗马铃薯X病毒(Potato virus X,PVX)、马铃薯Y病毒(Potato virus Y,PVY)、马铃薯卷叶病毒(Potato leaf roll virus,PLRV)和马铃薯潜隐花叶病毒(Potato virus S,PVS)4种病毒的转基因马铃薯新材料,分别以这4种病毒全长CP基因为模板,通过设计PCR引物和亚克隆获得4种病毒CP基因相对保守区段的基因片段,并将其拼接成融合基因,以载体pHANNIBAL和pBI121为基础,构建RNA干扰(RNA interference,RNAi)载体,利用农杆菌介导的转基因体系进行马铃薯遗传转化,并对获得的转基因马铃薯进行病毒抗性检测。结果表明,所获得的融合基因片段RH1和RH2,酶切鉴定分别得到长度为1 200 bp的条带,与预期片段相符;构建了含pdk内含子和RH1、RH2融合基因的RNAi植物表达载体,经Bam H I/Sac I双酶切,获得长度约3 200 bp的片段,表明RNAi植物表达载体pBI121-pRH构建成功;转化易感病毒马铃薯品种陇薯11号,PCR检测和PCRSouthern杂交分析表明融合基因已整合到陇薯11号马铃薯基因组中;抗病性检测显示4株转基因马铃薯植株对4种病毒均免疫。表明利用RNAi可筛选出抗多种病毒的转基因马铃薯新种质。  相似文献   

7.
转基因延熟番茄"华番一号"的品系特异性检测方法   总被引:3,自引:0,他引:3  
本文使用反向PCR方法克隆了转基因延熟番茄"华番一号"(Bioscein)的外源基因和番茄基因组之间的一段边界序列,并依据此段序列设计了具有品系特异性的引物和荧光探针,以实时荧光PCR技术建立了华番一号的品系鉴定检测方法,扩增片段长108bp,横跨在Nos启动子和番茄基因组之间.以转基因大豆(RR)、转基因玉米(Mon810)、转基因抗草甘膦油菜、转基因棉花(保龄棉)、非转基因番茄、马铃薯、茄子、大椒、大米、小麦、烟草等为试材,证明本方法同其它转基因作物及其它蔬菜无非特异性反应.本方法在检测华番一号番茄时,相对检测灵敏度可达到0.1%,绝对灵敏度达到20个拷贝.由于本方法的PCR扩增产物长度只有108bp,因此该方法也可以用于检测加工产品中的转基因成分,或作为常规PCR定性检测后的确证实验方法.  相似文献   

8.
磁性纳米粒子的制备及在转基因大豆检测中的应用   总被引:1,自引:0,他引:1  
利用热分解法和表面4-羧基苯硼酸修饰,制备了用于转基因大豆提取基因组DNA的纳米粒子。制备的纳米粒子分散性好,磁响应性高。对比磁性纳米粒子和植物基因组DNA提取试剂盒提取转基因大豆基因组DNA的提取效果,结果表明,磁性纳米粒子提取转基因大豆基因组DNA的浓度明显高于试剂盒,实时荧光PCR检测转基因大豆的Ct值低于植物基因组提取试剂盒。  相似文献   

9.
本文针对大豆内源基因Lectin和转基因大豆DAS81419品系的5′端插入位点序列,设计特异性引物及探针,建立了同时检测转基因大豆DAS81419品系和大豆内源基因Lectin的二重荧光定量PCR方法,运用15种转基因大豆、3种转基因玉米、1种转基因油菜、1种转基因水稻和非转基因大豆对该方法进行了特异性评价,并分析了该方法的灵敏度和稳定性。结果显示,该方法能准确从20种转基因样品和1种非转基因样品中检出靶目标,检测结果与待检样品信息一致,表明本方法具有良好的特异性;灵敏度高达0.01%;并具有良好的重复性。该方法特异性强、灵敏度高、稳定性强,适用于各口岸实验室进行转基因大豆DAS81419的快速、准确的检测。  相似文献   

10.
正2016年11月21日~2017年2月27日,浙江出入境检验检疫局杭州邮检办事处连续从英国进境邮包中截获4批次仓鼠粮,共计56.69 kg,内含大豆、小麦、玉米、葵花籽、花生、豌豆等6种种子。大豆经浙江省检验检疫科学技术研究院检测,检出检疫性大豆北方茎溃疡病菌,为全国邮检口岸首次检出,并从中检出2种抗除草剂转基因成分。  相似文献   

11.
转基因作物外源基因的漂移已为国内外学者所证实。我国每年进口转基因大豆的数量巨大,转基因大豆外源基因的漂移对我国传统的大豆作物和生态环境是一个潜在威胁。本文论述了转基因大豆的概况和外源基因漂移的风险,并对进境转基因大豆的检测监管进行了思考。  相似文献   

12.
There are concerns that genetically modified soybean might threaten the genetic diversity of the wild soybean populations that are distributed in East Asia because genetically modified soybean has no crossing barrier with wild soybean. A simple and effective method to prevent hybridization via pollen flow is spatial separation between the two species because their hybridization occurs only when they grow in close proximity. Therefore, the invasiveness of wild soybean needs to be known in order to secure the appropriate distances. As wild soybean seeds are dispersed mechanically by pod dehiscence, an experiment was conducted in which white sheets were placed on the ground, concentric circles were drawn around the parent plants, and the number of dispersed seeds within each 0.5 m‐wide zone were counted. About 40% of the produced seeds were dispersed and the number of dispersed seeds gradually declined as the distance from the parent plants increased. The model that explained the relationship between the number and distance of the dispersed seeds was produced by using a generalized linear model procedure. More than 95, 99, and 99.9% of the produced seeds stayed within 3.5, 5.0, and 6.5 m after natural pod dehiscence. Knowing these values is useful for evaluating the level of invasive risk by mechanical seed dispersal. The goal of the work is to efficiently and deliberately prevent hybridization by isolating genetically modified soybean fields and wild soybean populations by vegetation management, including weeding and setting up specific‐width buffer zones.  相似文献   

13.
转基因作物的全球快速发展,其对环境的安全性影响成为人们关注的热点。我国转基因大豆的发展还处于试验研究阶段,对转基因大豆环境安全性进行科学严谨评价是我国转基因大豆商业发展的有力支撑,具有非常重要的理论和实践生产意义。本研究以转G2_EPSPS和GAT双价基因抗草甘膦大豆材料GE-J16与受体材料Jack以及当地主栽品种中黄37为研究对象。采用田间栽培试验,比较其生长时期的竞争能力以及成熟期繁育和生存能力的差异,研究了转基因和非转基因大豆栽培环境生存竞争安全性;连续3年调查供试大豆品种田间节肢动物的种类与数量,分析其多样性指数、优势集中性指数、均匀性指数的动态变化,明确转基因和非转基大豆以及草甘膦除草剂对豆田节肢动物群落多样性的影响。试验结果显示,不同生育时期的3个大豆品种的株高、复叶数、田间覆盖度、繁育系数和落粒性都基本一致无差异显著性,无栽培地生存竞争优势;转基因大豆GE-J16人工除草、转基因大豆GE-J16喷施草甘膦和非转基因大豆Jack人工除草三个处理3年的节肢动物的多样性指数、均匀性指数、优势集中性指数变化趋势一致,且3个处理同一生育时期之间各指标无显著性差异,说明耐草甘膦转基因大豆以及草甘膦除草剂并不会引起豆田节肢动物群落多样性的明显变化。  相似文献   

14.
杜松烯合成酶作为转基因棉花PCR检测的内参照基因   总被引:1,自引:0,他引:1  
根据棉属植物中棉酚合成的关键酶之一杜松烯合成酶[(+)-d-cadinene syhnthase]基因序列,设计合成了该酶的实时荧光PCR的引物和TaqMan探针,经研究发现,此套引物探针能特异性检测海岛棉和陆地棉,有较高的检测灵敏度。同马铃薯、大椒、茄子、烟草、番茄、玉米、大豆、小麦、水稻和其它转基因作物无非特异性反应,可以作为转基因棉花检测的内参照。  相似文献   

15.
随着转基因植物种植规模不断扩大,对其中转基因成分检测也提出了新的要求。近年来,数字PCR作为一种新兴的分子生物学技术在其检测方面得到了广泛应用。本文主要介绍了数字PCR的原理及数字PCR在转基因检测中的应用优势,并对转基因植物检测中的转基因成分定量检测、标准物质制备与定值及外源基因拷贝数鉴定等应用进行了总结。  相似文献   

16.
The frequency of hybridization through pollen flow from the cultivated soybean to the wild soybean was evaluated for the purpose of assessment of the ecological risk of genetically modified crops. The flowering habits of three soybean cultivars and one wild soybean accession were monitored on an experimental farm. A cultivar and a wild accession, both of which flowered at a similar period, were then planted alternately in 5 12 arrays with 50 cm spacing on the farm. The seedlings of progeny seeds gathered from individual plants of the wild accession were used for an isozyme analysis to identify whether they were hybrid or not. In 23 plants of the wild accession, four plants produced hybrids (the incidence of hybridization = 17.4%). There was no directionality in hybridization. The hybridization rate per maternal plant varied from 0 to 5.89% with a mean of 0.73% for all maternal plants. The results indicate that natural hybrids are easily produced in a certain frequency by pollen flow from the cultivated soybean to the wild soybean under their simultaneous flowering with adequate pollinators.  相似文献   

17.
Glyphosate (N-(phosphonomethyl)glycine) blocks the shikimate pathway, reducing the biosynthesis of aromatic amino acids, followed by the arrest interruption of protein production and a general metabolic disruption of the phenylpropanoid pathway. Glyphosate-resistance is conferred to soybean by incorporating a gene encoding a glyphosate-insensitive enzyme (CP4-EPSP synthase) that acts in the shikimate pathway. This paper evaluates the metabolic effects caused by this herbicide on the shikimate (shikimate dehydrogenase activity and shikimate content) and phenylpropanoid (phenylalanine ammonia-lyase activity, phenolic and lignin contents) pathways in BRS-133 (susceptible) and BRS-245RR (resistant) soybean (Glycine max L.) roots. In general, the results showed that in susceptible roots (1) glyphosate affects the shikimate pathway (massive shikimate accumulation and enhanced shikimate dehydrogenase activity) and the phenylpropanoid pathway (increase in PAL activity, production of benzoate derivatives and decrease of lignin) and (2) the metabolic disruption contributes to the production of p-hydroxybenzoate and vanillate, which likely originate from shikimate and/or cinnamate and their derivatives. No such changes were observed in the genetically modified soybean consistent with its resistance to glyphosate.  相似文献   

18.
Soybean 'Harosoy' is resistant to Cucumber mosaic virus soybean strain C (CMV-SC) and susceptible to CMV-S strain D (CMV-SD). Using enzyme-linked immunosorbent assay and Northern hybridization, we characterized the Harosoy resistance and found that CMV-SC did not spread systemically but was restricted to the inoculated leaves in Harosoy. Harosoy resistance was not controlled by either a dominant or recessive single gene. To dissect this system controlling long-distance movement of CMV in soybean, we constructed infectious cDNA clones of CMV-SC and CMV-SD. Using these constructs and the chimeric RNAs, we demonstrated that two viral components were required for systemic infection by the virus. The region including the entire 2b gene and the 5' region of RNA3 (mainly the 5' untranslated region) together were required. By quantitative trait locus (QTL) analysis using an F(2) population and the F(3) families derived from Harosoy and susceptible 'Nemashirazu', we also showed that at least three QTLs affected systemic infection of CMV in soybean. Our study on Harosoy resistance to CMV-SC revealed an interesting mechanism, in which multiple host and viral genes coordinately controlled viral systemic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号