首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT Rhizoctonia solani anastomosis group (AG)-13 was collected from diseased roots of field grown cotton plants in Georgia in the United States. Isolates of AG-13 did not anastomose with tester isolates of AG-1 through AG-12. Mycelium of all isolates of AG-13 were light brown but darkened as cultures aged. All isolates produced aerial mycelium. Concentric rings were visible after 3 to 4 days of growth but disappeared as cultures aged and darkened. Individual sclerotia were up to 1.5 mm in diameter, similar in color to the mycelium, and generally embedded in the agar. Clumps of sclerotia up to 5 mm in diameter were produced on the agar surface. All attempts to induce basidiospore production were unsuccessful. The 5.8S region of the rDNA from isolates of AG-13 was identical in length and sequence to isolates of all other AGs of R. solani. Length and sequence of the internal transcribed spacer (ITS) regions of rDNA from isolates of AG-13 were unique among AGs of R. solani. Similarity between AG-13 and other AGs of R. solani ranged from 68 to 85% for ITS region 1 and 85 to 95% for ITS region 2. Selected isolates of AG-13 caused minor or no damage to barley, cauliflower, cotton, lettuce, potato, and radish in laboratory or greenhouse studies.  相似文献   

2.
A combined baiting, double monoclonal antibody immunoassay was developed that allows specific and sensitive detection of the economically important soil-borne plant pathogen Rhizoctonia solani in naturally infested soils. The assay is quick, taking only three days to complete from receipt of soil samples and the immunoassay format allows recovery of Rhizoctonia isolates from colonized baits for determination of anastomosis group (AG) affiliation and pathogenicity. The assay was tested on naturally infested soils from commercial glasshouses used to grow lettuce. Using the immunoassay, conventional anastomosis tests against known AG isolates, and pathogenicity tests, it was shown that R. solani isolates recovered from soil samples were pathogenic towards lettuce and belonged to AG4. Furthermore, those isolates that exhibited strong pathogenicity towards lettuce were recovered from sites that had experienced severe Rhizoctonia damage in previous lettuce crops. The possibility of developing a preplanting test to predict damage to specific crop plants due to the presence of particular AGs in the soil is discussed.  相似文献   

3.
Isolates (a total of 129) of Rhizoctonia solani were collected from black scurf on potato tubers from different potato‐growing regions in New Zealand. Sequence analysis of the nuclear ribosomal DNA internal transcribed spacer (rDNA–ITS) regions from these isolates identified three anastomosis groups (AGs), AG‐3PT, AG‐2‐1 and AG‐5. Isolates classified as AG‐3PT were widely distributed, whereas AG‐2‐1 and AG‐5 were confined to distinct locations. Sequence heterogeneity was identified in the ITS regions of 100 AG‐3PT and AG‐2‐1 isolates. Variation in the sequence and length of the rDNA–IGS1 region was also observed for selected isolates of AG‐3PT and AG‐2‐1. Phylogenetic studies found all AG‐2‐1 isolates belong to AG‐2Nt, a subset of AG‐2‐1 previously associated with solanaceous crops in other countries. AG‐2‐1 isolates were consistently more aggressive than those of AG‐3PT. Delayed emergence, severe infection on stolons, formation of aerial tubers and considerable yield losses were associated with AG‐2‐1, but they caused negligible black scurf. In contrast, AG‐3PT caused black scurf on progeny tubers but variable effects on stem emergence and stolons. Furthermore, AG‐2‐1 isolates caused severe tuber malformation, but isolates of other AGs did not. This is the first report on the AG composition, genetic variability and pathogenicity of R. solani isolates associated with black scurf of New Zealand potatoes.  相似文献   

4.
Mazzola M 《Phytopathology》1997,87(6):582-587
ABSTRACT Rhizoctonia spp. were isolated from the roots of apple trees and associated soil collected in orchards located near Moxee, Quincy, East Wenatchee, and Wenatchee, WA. The anastomosis groups (AGs) of Rhizoctonia spp. isolated from apple were determined by hyphal anastomosis with tester strains on 2% water agar and, where warranted, sequence analysis of the rDNA internal transcribed spacer region and restriction analysis of an amplified fragment from the 28S ribosomal RNA gene were used to corroborate these identifications. The dominant AG of R. solani isolated from the Moxee and East Wenatchee orchards were AG 5 and AG 6, respectively. Binucleate Rhizoctonia spp. were recovered from apple roots at three of four orchards surveyed and included isolates of AG-A, -G, -I, -J, and -Q. In artificial inoculations, isolates of R. solani AG 5 and AG 6 caused extensive root rot and death of 2- to 20-week-old apple transplants, providing evidence that isolates of R. solani AG 6 can be highly virulent and do not merely exist as saprophytes. The effect of binucleate Rhizoctonia spp. on growth of apple seedlings was isolate-dependent and ranged from growth enhancement to severe root rot. R. solani AG 5 and AG 6 were isolated from stunted trees, but not healthy trees, in an orchard near Moxee, WA, that exhibited severe symptoms of apple replant disease, suggesting that R. solani may have a role in this disease complex.  相似文献   

5.
Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two different anastomosis groups (AGs) of Rhizoctonia solani, the intermediately aggressive AG 2-2 and the highly aggressive AG 4 HGI, were included in growth-chamber experiments with bean plants. The wild-type strain CMR12a dramatically reduced disease severity caused by both R. solani AGs. A CLP-deficient and a phenazine-deficient mutant of CMR12a still protected bean plants, albeit to a lesser extent compared with the wild type. Two mutants deficient in both phenazine and CLP production completely lost their biocontrol activity. Disease-suppressive capacity of CMR12a decreased after washing bacteria before application to soil and thereby removing metabolites produced during growth on plate. In addition, microscopic observations revealed pronounced branching of hyphal tips of both R. solani AGs in the presence of CMR12a. More branched and denser mycelium was also observed for the phenazine-deficient mutant; however, neither the CLP-deficient mutant nor the mutants deficient in both CLPs and phenazines influenced hyphal growth. Together, results demonstrate the involvement of phenazines and CLPs during Pseudomonas CMR12a-mediated biocontrol of Rhizoctonia root rot of bean.  相似文献   

6.
In vitro analysis of host plant specificity in Rhizoctonia solani   总被引:1,自引:0,他引:1  
Rhizoctonia solani is a plant pathogenic fungus with a wide host range. Host plant specificity within R. solani was analysed on seedlings grown aseptically on agar, which allowed continuous observation of both the fungus and the whole plant without disturbing the interaction. Symptom development on cauliflower, Arabidopsis , eggplant, tomato and potato by 32 R. solani isolates, belonging to six different anastomosis groups (AGs), was studied. Host plant specificity of isolates, as analysed by similarity clustering, was similar to AG-related host plant specificity as observed in the field, with AG3 isolates (except two avirulent strains) separating from the other isolates. Two R. solani isolates with a reciprocal pathogenicity on cauliflower and tomato were selected for further studies. These showed that in the pathogenic combination, R. solani isolates grew over the plant, adhered and formed infection structures, while in the nonpathogenic combination isolates grew over the plant, but neither adhesion nor the formation of infection structures occurred. From these data, it was concluded that host plant specificity is mediated in the early steps of the infection process.  相似文献   

7.
Basal rot is a common disease in lettuce greenhouses. A 3-year study on the diversity of pathogens associated with basal rot in Belgium was carried out. A total of 150 isolates were collected originating from 56 greenhouses. Four pathogens appeared to be involved. Rhizoctonia solani was found to be the causal agent at 23 locations, Sclerotinia spp. at 14, Botrytis cinerea at 17 and Pythium spp. at seven. The isolates of R. solani were further characterised to anastomosis groups and subgroups using morphological characteristics, pectic zymogram and PCR-RFLP. Five anastomosis groups could be distinguished: AG1-1B, AG4 HGI, AG10, AG2-1, AG2-1 Nt and AG3, with isolates of AG4 HGI and AG1-1B being the most prevalent and the most aggressive. Sclerotinia sclerotiorum was found at 13 locations, while S. minor was found at only one location. Based on ITS-sequencing Pythium isolates were assigned to three different species. At 20°C, isolates of all pathogens were able to cause lesions on detached lettuce leaves, except isolates of R. solani AG3 and AG2-1 Nt. A correlation could be found between the occurrence of the pathogens and the growing season. Botrytis cinerea was the most common pathogen in winter, whereas R. solani was most frequently isolated in summer. Sclerotinia spp. and Pythium spp. were isolated in spring, summer and autumn. The information obtained in this study will be most useful in the development of an alternative control strategy for causal agents of basal rot.  相似文献   

8.
ABSTRACT Isolates of Rhizoctonia spp. were obtained from rice in India during 2000-2003. Characterization by conventional techniques and polymerase chain reaction showed that from 110 isolates, 99 were R. solani and 11 were R. oryzae-sativae. Of 99 isolates identified as R. solani, 96 were AG1-IA, 1 was AG1-IB, and 2 were AG1-IC. Amplified fragment length polymorphism (AFLP) analyzes were used to determine genetic relationships in Rhizoctonia pathogen populations collected from different geographic regions. Cluster analysis based on the AFLP data separated isolates belonging to the three different intraspecific groups of R. solani AG1 and differentiated R. solani from R. oryzae-sativae. Analysis of molecular variance (AMOVA) revealed that geographic region was the dominant factor determining population structure of R. solani AG1-1A; host cultivar had no significant effect. Pathogenicity tests on Oryza sativa cv. Zenith revealed that isolates of R. solani AG1-1A and AG1-1B were more virulent than R. solani AG1-IC and R. oryzae-sativae isolates.  相似文献   

9.
The prevalence of Rhizoctonia spp. in European soils was determined by analysing soil samples from 282 locations. Rhizoctonia spp. were found in 68% of these samples from France, Germany, the UK, Poland, Italy, Spain, Hungary and the Czech Republic. Samples from 136 locations were further analysed by pyrosequencing. Seventy‐six percent of the isolates were Rhizoctonia solani and 24% binucleate Rhizoctonia spp. Rhizoctonia solani anastomosis group (AG) 5 was detected most frequently (25%), followed by AG 9 (16%) and AG 4 (13%). For the binucleate Rhizoctonia spp., AG E was most prevalent (13%). Rhizoctonia cerealis was not detected in soil samples. Soil type or cropping history had no effect on the type of Rhizoctonia observed. Rhizoctonia solani AG 5 was the most frequently detected AG irrespective of the previous crop. The spectrum of AGs detected was similar for France, Germany and Poland but was significantly different for the UK (= 0·0016). Finally, the baseline sensitivity towards sedaxane, a new active ingredient for seed treatment, was analysed for all isolates. The results indicate a low baseline sensitivity (average EC50 of 0·028 p.p.m.) for all Rhizoctonia AGs. No difference in sensitivity was observed with the isolates obtained from different countries.  相似文献   

10.
ABSTRACT A murine hybridoma cell line GD2 secreting an immunoglobulin (Ig)M monoclonal antibody (MAb) was produced against surface antigens from an anastomosis group (AG) 4 isolate of Rhizoctonia solani (teleomorph: Thanatephorus cucumeris). Ascites were produced in mice using GD2 hybridoma cells and used to develop a rapid immunochromatographic lateral flow device (LFD) for the detection of antigens from R. solani and certain related Rhizoctonia spp. The LFD was tested for specificity against surface antigens from related and unrelated soil fungi. Antigens from representative isolates of R. solani AGs 1, 2-1, 2-3, 2-t, 3, 4, 5, 6, 7, 8, 9, 10, 11, and BI gave a positive response in LFD tests, as did antigens from Thanatephorus orchidicola, T. praticola, R. fragariae (teleomorph: Ceratorhiza fragariae), Ceratorhiza goodyerae-repentis, Ceratobasidium cornigerum, and binucleate AGE. Antigens from R. solani AGs 2-2, 2-2IIIB, and 2-2IV and from the related fungi R. carotae, R. cerealis (teleomorph: Ceratobasium cereale), R. crocorum (teleomorph: Helicobasidium brebissonii), R. oryzae (teleomorph Waitea circinata), and R. zeae gave negative responses, as did antigens from a range of unrelated fungi and oomycetes including Fusarium, Gliocladium, Trichoderma, Pythium, and Phytophthora spp. The usefulness of the LFD to detect R. solani was demonstrated in soils naturally infested with R. solani AG3. There was close agreement between results of LFD tests and conventional plate enrichment tests employing selective medium. The specificity of the technique was confirmed by polymerase chain reaction PCR using R. solani AG3-specific primers and by analyses based on sequences of the internal transcribed spacer (ITS)1-5.8S-ITS2 rRNA-encoding regions of unrelated fungi recovered from soil samples. The LFD was used to quantify R. solani AG4 in artificially infested soil samples (chopped potato soil inoculum). Estimates of CFU per gram of soil were derived using a most-probable number technique, which was based on the presence or absence of a detectable signal in the LFD. Estimates of CFU obtained in LFD tests and those obtained in a plate-trapped antigen enzyme-linked immunosorbent assay incorporating MAb GD2 were identical (449 CFU g(-1) of soil).  相似文献   

11.
Glasshouse and field experiments showed that the pathogenicity and disease type on potato varied between different anastomosis groups (AGs) of Rhizoctonia solani. For example, severe stem and stolon disease developed in plants inoculated with a single isolate of AG3PT and AG5. Severe root disease was observed with single isolates of AG8 and to a lesser extent AG3PT, but rarely with single isolates of the other AGs tested. In both field and glasshouse experiments the AG2‐1 isolate (X81) produced only small lesions (<5 mm). However, this was not representative of two other AG2‐1 isolates. When AG2‐1 isolates of the three different rDNA IGS1 types were tested in a glasshouse trial, one caused more severe stem and stolon infection than AG3PT. In the field experiment, the yield of tubers, by weight, was significantly less (P < 0·05) in all inoculated plants than for uninoculated (control) plants. Yield losses were greatest and tuber numbers smallest in plots inoculated with an AG8 isolate, suggesting that root infection is important in determining quantitative yield loss. The incidence of black scurf was greatest in the progeny tubers in plots inoculated with AG3PT (83·9%), whereas only very small amounts of black scurf developed on tubers from plants infected with AG2‐1 (510 bp) or AG5 isolates. This is supported by laboratory tests, where isolates of AG3PT produced significantly more sclerotia on potato dextrose agar than isolates of AGs 2‐1, 4, 5 and 8.  相似文献   

12.
A collection of 241 isolates of Rhizoctonia solani obtained from potato plants grown in different areas in France was characterized for anastomosis grouping, symptomatology on tubers of different cultivars and sensitivity to three fungicides. Most isolates collected belonged to (anastomosis groups (AGs)) AG 3, but 2% and 4% of the isolates were AG 5 and AG 2-1. AG 3 and AG 2-1 isolates were mostly obtained from sclerotia on tubers, but all AG 5, some AG 3 and some AG 2-1 isolates were recovered from superficial tuber alterations, like deformations, corky or scabby lesions. Sclerotia were formed on tubers produced by healthy stem cuttings grown in soil artificially infested with AG 3, but not on tubers grown in soil infested with either AG 5 or AG 2-1. No variation in susceptibility to sclerotial formation was observed among five potato cultivars. In all cases, a large proportion of tubers showed superficial corky lesions, often associated with deformations. The proportion of tubers with lesions and deformations was highest in soil infested with AG 2-1 and significantly lower on cv. Samba in all treatments. All isolates were highly sensitive to flutolanil, iprodione and pencycuron, except the AG 5 isolates, moderately sensitive to pencycuron. These results show that, although AG 3 is the most common R. solani group on potato in France, AG 5 and AG 2-1 may be present. Isolates differed for pathogenicity. In vitro sensitivity to fungicides varied among AGs.  相似文献   

13.
ABSTRACT Isolates of Rhizoctonia solani collected from mycorrhizal orchid (Pterostylis acuminata) plants and adjacent leaf litter were characterized. Of 23 selected isolates, 20 were members of a new anastomosis group (AG-12) and the rest were members of AG-6. There were no bridging anastomosis reactions observed between AG-12 and other AGs of R. solani. Among the 20 isolates of AG-12 evaluated, 18 vegetatively compatible populations were detected, indicating diversity within the AG. Mature cultures were dark brown, as were mature sclerotia. Some cultures produced alternating dark- and light-colored concentric rings, with sclerotia forming in the darker rings. Most cultures were appressed to the agar surface. In tests run to characterize pathogenic potential, selected mycorrhizal isolates of AG-12 and AG-6 did little damage to potato and barley seedlings, moderate damage to head lettuce seedlings, and more extensive damage to seedlings of cauliflower and radish. Isolates of AG-12 have not been observed to fruit in nature, and all attempts to induce formation of the teleomorph (Thanatephorus cucumeris) in the laboratory by selected isolates of AG-12 failed.  相似文献   

14.
Real-time PCR protocols were developed to detect and discriminate 11 anastomosis groups (AGs) of Rhizoctonia solani using ribosomal internal transcribed spacer (ITS) regions (AG-1-IA, AG-1-IC, AG-2-1, AG-2-2, AG-4HGI+II, AG-4HGIII, AG-8) or β-tubulin (AG-3, AG-4HGII, AG-5 and AG-9) sequences. All real-time assays were target group specific, except AG-2-2, which showed a weak cross-reaction with AG-2tabac. In addition, methods were developed for the high throughput extraction of DNA from soil and compost samples. The DNA extraction method was used with the AG-2-1 assay and shown to be quantitative with a detection threshold of 10−7 g of R. solani per g of soil. A similar DNA extraction efficiency was observed for samples from three contrasting soil types. The developed methods were then used to investigate the spatial distribution of R. solani AG-2-1 in field soils. Soil from shallow depths of a field planted with Brassica oleracea tested positive for R. solani AG-2-1 more frequently than soil collected from greater depths. Quantification of R. solani inoculum in field samples proved challenging due to low levels of inoculum in naturally occurring soils. The potential uses of real-time PCR and DNA extraction protocols to investigate the epidemiology of R. solani are discussed.  相似文献   

15.
An extensive study was conducted to determine where in the production chain Rhizoctonia solani became associated with UK module-raised Brassica oleracea plants. In total, 2600 plants from 52 crops were sampled directly from propagators and repeat sampled from the field. Additional soil, compost and water samples were collected from propagation nurseries and screened using conventional agar isolation methods. No isolates of R. solani were recovered from any samples collected from propagation nurseries. Furthermore, nucleic acid preparations from samples of soil and compost from propagation nurseries gave negative results when tested for R. solani using real-time PCR. Conversely, R. solani was recovered from 116 of 1300 stem bases collected from field crops. All the data collected suggested R. solani became associated with B. oleracea in the field rather than during propagation. Parsimony and Bayesian phylogenetic studies of ribosomal DNA suggested the majority of further classified isolates belonged to anastomosis groups 2-1 (48/57) and AG-4HGII (8/57), groups known to be pathogenic on Brassica spp. in other countries. Many R. solani isolates were recovered from symptomless plant material and the possibilities for such an association are discussed.  相似文献   

16.
Characterization of Rhizoctonia solani from potato in Great Britain   总被引:1,自引:1,他引:1  
One hundred and thirty five isolates of Rhizoctonia solani were obtained from British potato crops between 2001 and 2003. Isolates were assigned to anastomosis group (AG) using conventional PCR assays for AG2-1 or AG3 or through the observation of hyphal interactions, where appropriate. A previously published primer set was modified in this study to enhance specificity for AG3PT. Most of the isolates (92·6%) belonged to AG3PT whilst some (6·7%) belonged to AG2-1. Only one isolate recovered (0·7%) belonged to AG5. Isolates of AG2-1 were diverse, with variation in both the length of the rDNA intergenic spacer 1 (IGS1) region and the categories of hyphal interaction observed between pairings of AG2-1 isolates. No variation in the length of the rDNA IGS1 region was observed amongst the AG3 isolates collected. Tests carried out on potato stems with a sub-set of the isolates revealed a wide range of aggressiveness amongst AG2-1 isolates. Sequencing of the rDNA internal transcribed spacer (ITS) region of the AG2-1 isolates and construction of a neighbour joining tree with other AG2-1 sequences available indicated that AG2-1 isolates with the short IGS1 region were closely related. This is the first investigation which provides evidence of the relative AG composition of R. solani populations causing disease in potato crops in Great Britain.  相似文献   

17.
绿豆立枯丝核菌研究初报   总被引:1,自引:0,他引:1  
本研究通过形态学、菌丝融合群和致病力测定研究,对从河北省石家庄地区绿豆种植区分离的90个立枯丝核菌进行鉴定。在90个分离物中有71个属于AG4,占供试分离物的78.89%,2个属于AG2-2,占供试分离物的2.22%,另外17个分离物与标准菌株不融合,占供试分离物的18.89%;属于AG4的71个分离物中,55个与AG4完全融合(占77.46%),16个与AG4不完全融合(占22.54%)。在温室条件下采用人工接菌法对40个代表性分离物的致病力进行测定,发现不同分离物对同一品种的致病力存在差异,其中分离物R3、R6、R9、R35致病力最强,分离物R23、R31-1致病力最弱。属于AG 4的分离物R3、R6、R9、R35与其他供试分离物致病力差异极显著;属于未知群体的分离物R20、R29和R24之间致病力差异极显著;属于AG2-2的分离物R21、R31-1致病力较弱,且差异不显著。  相似文献   

18.
我国部分地区玉米丝核菌组成及其致病类型分析   总被引:3,自引:1,他引:2  
IA为主要融合群;双核丝核菌为AG-A融合群;单核丝核菌种类尚不确定.对各融合群的致病类型进行初步比较发现,属于AG1-IA融合群的菌株,可在玉米叶鞘形成典型的云纹状病斑,其它菌株虽可引起玉米发病,但与AG1-IA的症状存在明显差异.  相似文献   

19.
Two-hundred and forty-eight isolates of Rhizoctonia spp, were obtained from 13 locations in Gifu Prefecture in Japan using the plant debris particles isolation, colonization of bait tissue, and soil-clump plating methods. Of the isolates, 143 were binucleate Rhizoctonia spp., 60 were R. solani and 45 were R. zeae. Three isolates of R. solani and 54 of binucleate Rhizoctonia spp, were hypovirulent on radish, whilst all isolates of R. zeae were highly virulent, Hypovirulent strains were isolated most frequently by the plant debris particles isolation method, Hypovirulent isolates of R. solani belonged to anastomosis group 4, whilst the hypovirulent binucleate Rhizoctonia isolates belonged to AG A, AG Ba, AG G, and AG O.
Thirty-two isolates of Rhizoctotria spp, selected for hypovirulence on radish were tested on cucumber in vitro. Only five binucleate Rhizoctonia isolates and one R. solani isolate were hypovirulent on both species, and these isolates were also hypovirulent on seven other crop species. Cucumber showed wide variation in disease susceptibility to different isolates but hypovirulent isolates exhibited a consistent reaction on five different host cultivars, Pathogenicity tests using cucumber grown in soil also showed consistent reactions with isolates selected either for hypovirulence or virulence. The results support the use of cucumber in bioassays for identifying hypovirulent isolates of binucleate Rhizoctonia spp.  相似文献   

20.
Martin FN 《Phytopathology》2000,90(4):345-353
ABSTRACT Rhizoctonia spp. were commonly recovered from the roots of strawberry plants growing in nonfumigated soil in the central coastal region of California. With the exception of one multinucleate isolate of R. solani (frequency of recovery of 0.8%), all other isolates were binucleate and were in anastomosis groups (AG) A, G, or I. AGs-A and -I were recovered from all five collection sites, whereas AG-G was recovered from only two sites. AG-A was the most commonly isolated AG, followed by AGs-I and -G. Similar levels of virulence were observed among the different AGs, but differences in virulence were observed among isolates in the same AG. Evaluating anastomosis grouping by pairing isolates recovered from strawberry with known tester isolates did not always yield a positive anastomosis reaction, even though both isolates anastomosed with other members of the same AG. Subsequent investigations with multiple isolates in the same AG from the same collection location confirmed that there was a lack of anastomosis or weak anastomosis reactions for some combinations of pairings, highlighting the need for to use multiple tester isolates or molecular techniques for AG determination. Restriction fragment length polymorphism (RFLP) analysis of a polymerase chain reaction-amplified region of the rDNA was effective for differentiating AGs. Sixteen RFLP groups were observed after cluster analysis with data for the size of the amplified products and fragment sizes after digestion with four restriction enzymes. Although each AG had isolates in multiple RFLP groups, any one individual RFLP group contained isolates of only a single AG. There was no consistent correlation between RFLP group and location of isolate collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号